

Database Theory
– ICDT 2012

15th International Conference

on Database Technology
Berlin, Germany, March 26–29, 2012

Proceedings

Editor:
Alin Deutsch (University of California, San Diego, USA)

Database Theory – ICDT 2012
Proceedings of the 15th International Conference
on Database Theory
Berlin, Germany, March 26–29, 2012

Editor:
Alin Deutsch

The Association for Computing Machinery
2 Penn Plaza, Suite 701
New York, NY, 10121-0701

ACM COPYRIGHT NOTICE. Copyright c 2011 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481, or permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page, copying is
permitted provided that the per-copy fee indicated in the code is paid through the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, +1-978-750-8400, +1-978-750-4470 (fax).

ACM ISBN: 978-1-4503-0791-8

ii

Table of Contents

Foreword . v
Program Committee Members . vi

Invited Papers
Dependence, Independence, and Incomplete Information

Erich Grädel 1-7
Graph Pattern Matching Revised for Social Network Analysis

Wenfei Fan 8-21

Research Sessions

Award Papers
Learning Schema Mappings

Balder Ten Cate, Victor Dalmau, and Phokion Kolaitis . 22-33
Validating XML documents in the Streaming Model with external memory

Christian Konrad and Frederic Magniez . 34-45

Semi-structured Data
Highly Expressive Query Languages for Unordered Data Trees

Serge Abiteboul, Pierre Bourhis, and Victor Vianu . . 46-60
Deciding Twig-Definability of Node Selecting Tree Automata

Timos Antonopoulos, Dag Hovland, Wim Martens, and Frank Neven 61-73
Regular Path Queries on Graphs with Data

Leonid Libkin and Domagoj Vrgoc . 74-85

Relational Transducers, Normalization
Deciding eventual consistency for a simple class of relational transducer networks

Tom Ameloot and Jan Van Den Bussche . 86-98
Win-Move is Coordination-Free

Daniel Zinn, Todd Green, and Bertram Ludaescher .99-113
A Normal Form for Preventing Redundant Tuples in Relational Databases

Hugh Darwen, C.J. Date, and Ronald Fagin . 104-126

XML
Finding Optimal Probabilistic Generators for XML Collections

Serge Abiteboul, Yael Amsterdamer, Daniel Deutch, Tova Milo, and Pierre Senellart 127-139
Learning Twig and Path Queries

Slawek Staworko and Piotr Wieczorek . 140-154
Bounded reparability for regular tree languages

Gabriele Puppis, Cristian Riveros, and Slawek Staworko .155-168

Incomplete, Inconsistent and Annotated Data
On the Complexity of Query Answering over Incomplete XML Documents

Amelie Gheerbrant, Leonid Libkin, and Tony Tan . 169-181
On the Data Complexity of Consistent Query Answering

Balder Ten Cate, Gaelle Fontaine, and Phokion Kolaitis . 182-195
Combining Dependent Annotations for Relational Algebra

Egor Kostylev and Peter Buneman . 196-207
iii

Data Exchange and Views
Representation systems for data exchange

Gösta Grahne and Adrian Onet . 208-221
Computing Universal Models Under Linear Tgds

André Hernich . 222-235
Dynamic Definability

Erich Grädel and Sebastian Siebertz . 236-248

Query Optimization
On the Tractability of Query Compilation and Bounded Treewidth

Abhay Jha and Dan Suciu . 249-261
Equivalence and Minimization of Conjunctive Queries under Combined Semantics

Rada Chirkova . 262-273
Parallel Skyline Queries

Foto N. Afrati, Paraschos Koutris, Dan Suciu and Jeffrey D. Ullman 274-284

Data Summarization
Factorised Representations of Query Results: Size Bounds and Readability

Dan Olteanu and Jakub Zavodny . 285-298
Differentially Private Summaries for Sparse Data

Graham Cormode, Magda Procopiuc, Divesh Srivastava, and Thanh Tran 299-311

iv

Foreword

The papers in this volume were presented at the 15th International Conference on Database Theory
(ICDT'12), held in Berlin, Germany, March 26-28, 2012. Starting in 2009, ICDT was held jointly with
the EDBT (Extending Database Technology) conference. EDBT took place on March 27-29, 2012.
The joint conference also included a series of affiliated workshops, held on March 30, 2012.

In response to the Call for Papers, 60 submissions were received by the submission deadline of July
29, 2011. All were submitted electronically through the EasyChair conference management tool.
EasyChair was also used for the virtual Program Committee meeting, whose deliberations where held
exclusively electronically. The Program Committee selected 22 papers for presentation. Among them,
the Program Committee selected the paper “Learning Schema Mappings”, by Balder Ten Cate, Victor
Dalmau and Phokion Kolaitis for the ICDT Best Paper Award, and the paper "Validating XML
documents in the Streaming Model with External Memory", by Christian Konrad and Frederic
Magniez, for the ICDT Best Newcomer Paper Award.

In addition, there were four ICDT/EDBT keynote speakers: Michael Carey (UC Irvine), Wenfei Fan
(University of Edinburgh), Erich Graedel (RWTH Aachen University) and Alon Halevy (Google).

Editor

Alin Deutsch, University of California, San Diego, USA

v

Program Committee Members

Research

Reviewers
Serge Abiteboul Marcelo Arenas Michael Benedikt

Bogdan Cautis Edith Cohen Rada Chirkova

Claire David Daniel Deutch Alin Deutsch

Ronald Fagin Floris Geerts Gosta Grahne

Richard Hull Daniel Kifer Maurizio Lenzerini

Wim Martens Maarten Marx Tova Milo

Anca Muscholl Dan Suciu Jan Van den Bussche

External Reviewers
Yael Amsterdamer Pablo Barceló Leopoldo Bertossi

Abhishek Bhowmick Johanna Björklund Pierre Bourhis

Diego Calvanese Anindya De Alan Fakete

Gaelle Fontaine Achille Fokoue Olivier Gauwin

Shiva Kasiviswanathan Benny Kimelfeld Paraschos Koutris

Slawomir Lasota Katrina Ligett Johann Makowsky

Silviu Maniu Alexandra Meliou Filip Murlak

Frank Neven Kobbi Nissim Adrian Onet

Jorge Pérez Juan Reutter Riccardo Rosati

Cristina Sirangelo Alex Thomo David Toman

Yannis Velegrakis Victor Vianu Jef Wijsen

Yuqing Wu Thomas Zeume

vi

Dependence, Independence, and Incomplete Information

Erich Grädel
Mathematische Grundlagen der Informatik,

RWTH Aachen University
graedel@logic.rwth-aachen.de

Jouko Väänänen
Department of Mathematics and Statistics,

University of Helsinki and
ILLC, University of Amsterdam

jouko.vaananen@helsinki.fi

ABSTRACT
Dependence logic, introduced by Väänänen, is the extension
of first-order logic by atomic statements about (functional)
dependencies of variables. An important feature of this logic
is a model-theoretic semantics that, contrary to Tarski se-
mantics, is not based on single assignments (mapping vari-
ables to elements of a structure) but on sets of assignments.
Sets of assignments are called teams and the semantics is
called team semantics.

By focussing on independence rather than depencence, we
have proposed a new logic, called independence logic, based
on atomic formulae x ⊥z y which intuitively say that the
variables x are independent from the variables y whenever
the variables z are kept constant. We show that x ⊥z y
gives rise to a natural logic capable of formalizing basic in-
tuitions about independence and dependence. We contrast
this with dependence logic and show that independence logic
has strictly more expressive power. Further, we will discuss
game-theoretic semantics, expressive power, and complexity
of dependence and independence logic.

1. INTRODUCTION
Statements about dependence or independence, such as

“x depends on y” or “the variables x and y are independent”
are of a substantially different nature than, say, statements
about arithmetical properties auch as“x divides y”. To make
sense of the latter we fix a structure A in which the notion of
divisibility has a well-defined meaning, and an assignment s
mapping x and y to values in A, and we can then determine
whether or not “x divides y” is true in A for the assignment
s, i.e., whether A |=s “x divides y”. Dependence and in-
dependence are concepts of a different kind. They do not
manifest themselves in the presence of a single assignment
but only for larger amount of data, given by a set of assign-
ments or, equivalently, by a table or a relation in a database.
Accordingly, model-theoretic semantics (also known as com-
positial semantics as opposed to game-theoretic semantics),
for logics of dependence or independence refer to structures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

together with a set of assigments and thus differ substan-
tially from the classical Tarski semantics of first-order logic,
second-order logic and similar formalisms.

Logics of dependence and independence (often called log-
ics of imperfect information) go back to the work of Henkin
[10], Enderton [5], Walkoe [17], Blass and Gurevich [3], and
others on partially order (or Henkin-) quantifiers, whose se-
mantics can be naturally described in terms of games of
imperfect information. A next step in this direction were
the independence-friendly (IF) logics by Hintikka and Sandu
[11] that incorporate explicit dependencies of quantifiers on
each other. Again the semantics is usually given in game-
theoretic terms. It had repeatedly be claimed that a compo-
sitional semantics, defined by induction on the construction
of formulae, could not be given for IF-logic. However, this
claim had never been made precise, let alone proved. In fact
the claim was later refuted by Hodges [12] who presented
a compositional semantics for IF-logic in terms of what he
called trumps, which are sets of assignments to a fixed finite
set of variables. The question of why logics of imperfect
information need semantics based on sets of assignments is
further discussed by Hodges in [13].

In 2007, Väänänen [16] proposed a new approach. Rather
than stating dependencies or independencies as annotations
of quantifiers, he proposed to consider dependence as an
atomic formula, denoted =(x1, . . . , xm, y), saying that the
variable y is functionally dependent on (i.e. completely de-
termined by) the variables x1, . . . , xm. Dependence logic is
first-order logic together with such dependency atoms. As in
Hodges’ approach the semantics is compositionally defined
in terms of sets of assignments, called teams.

Väänänen’s approach has many advantages compared to
the previous ones. It made the logical resoning about depen-
dence mathematically much more transparent and led to a
deeper understanding of the logical aspect of dependence
and the expressive power of IF-logic and dependence logic.

Recent work by several authors has revealed that depen-
dence is just one among many different properties that give
rise to interesting logics based on team semantics. In [9] we
have discussed the notion of independence (which is a much
more delicate but also more powerful notion than depen-
dence) and introduced independence logic. Galliani [7] and
Engström [6] have studied several logics with team prop-
erties based on notions originating in database dependency
theory.

We here give a survey, without proofs, on our work in [9]
and [8] about logics of dependence and independence, and
discuss also related results by Galliani [7] and by Kontinen

ICDT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0791-8/12/03 ...$10.00

1

and Väänänen [14, 15]. We want to show that the intuitive
notions of dependence and independence can be treated as
atomic statements in suitable logics (just like their cousin,
identity). In this way, dependence and independence become
logical notions with suitable axiomatizations, and they give
rise to an emerging new logical theory.

2. DEPENDENCE AND INDEPENDENCE
AS ATOMIC FORMULAE

The strongest form of dependence is functional depen-
dence. This is the kind of dependence in which some given
variables completely determine certain other variables, as
surely as x and y determine x + y and x · y in elemen-
tary arithmetic. The idea is that weaker forms of depen-
dence can be understood in terms of the strongest. Fol-
lowing [16], functional dependence of y on x is denoted by
the symbol =(x, y). By adopting the shorthand =(x, y) for
=(x, y1) ∧ . . .∧ =(x, yn) we get more general dependence
atoms. Although there are many different intuitive mean-
ings for =(x, y), such as “x totally determines y” or “y is a
function of x”, the best way to understand the concept is to
give it semantics. Let A be a structure with universe A and
let V be a set of variables. A team X with domain V and
values in A is a set of assignments s : V → A.

Definition 2.1. A team X satisfies the dependency atom
=(x, y), in symbols A |=X =(x, y), if

∀s, s′ ∈ X(s(x) = s′(x)→ s(y) = s′(y)). (1)

Condition (1) is a universal statement. As a consequence
it is closed downward, that is, if a team satisfies it, every
subteam does. Further, every dependency atom is, for trivial
reasons, satisfied by the empty team and by every singleton
team {s}.

A long time ago, functional dependence has been studied
in database theory and some basic properties, called Arm-
strong’s Axioms have been isolated [2]. These axioms state
the following properties of =(x, y):

(1) =(x, x). Anything is functionally dependent of itself.

(2) If =(x, y) and x ⊆ z, then =(z, y). Functional depen-
dence is preserved by increasing input data.

(3) If =(x, y), z is a permutation of x, and u is a per-
mutation of y, then =(z, u). Functional dependence
does not look at the order of the variables.

(4) If =(x, y) and =(y, z), then =(x, z). Functional de-
pendences can be transitively composed.

These rules completely describe the behaviour of =(x, y)
in the following sense: If T is a finite set of dependence
atoms of the form =(x, y) for various x and y, then =(x, y)
follows from T according to the above rules if and only if
every team that satisfies T also satisfies =(x, y).

We shall now give the concept of independence a similar
treatment. Independence is a much more subtle notion than
dependence and is not just the absence of dependence. We
start from the intuition that two variables x and y are in-
dependent if learning more about one does not convey any
information whatsoever about the other. We thus oberve a

kind of total lack of connection between them. More pre-
cisely, suppose we know a team X and we know that s is an
assignment in X, but we have no further information about
the values of s. Thus, for every variable z in the domain
of X we just know that s(z) ∈ {s′(z) : s′ ∈ X}. Now, in-
dependence of x and y in X means that learning the value
s(x) does not provide any additional information about the
potential values of s(y).

A different, but equivalent way to say this is that that
values for (x, y) appear in all conceivable combinations: if
values (a, b) and (a′, b′) occur for (x, y), then so do (a, b′)
and (a′, b).

We discuss some classical scenarios where independence
plays a role. Suppose balls of different sizes and masses are
dropped from the Leaning Tower of Pisa in order to observe
how size and mass influence the time of descent. In setting
up such an experiment, one may want to make sure the
following:

The size of the ball is independent of the mass of
the ball.

To satisfy this requirement one would vary the sizes and
the masses freely so that if one mass is chosen for one size
it would also have to occur for all the other sizes, and if
one size is chosen for one mass it also appears with all other
masses. This would eliminate any dependence between size
and mass and the test would genuinely tell us something
about the time of descent itself. We would then say that the
size and the mass were made independent of each other in
the strongest sense of the word.

Suppose we have data about tossing two coins and we
want to state:

Whether one coin comes heads up is independent
of whether the other coin comes heads up.

To be convinced, we would look at the data and point out
that all four possibilities occur. Of course, probability the-
ory has its own concept of independence which however is
in harmony with ours, only we do not pay attention to how
many times a certain pattern occurs. In probability theory,
roughly speaking, two random variables are independent if
observing the other does not affect the (conditional) proba-
bility of the other. We could say the same without paying
attention to probabilities as follows: two variables are inde-
pendent if observing one does not restrict in any way what
the value of the other is.

We next look at two examples of a seemingly different
nature. When Galileo dropped balls of the same size from
the Leaning Tower of Pisa he was able to observe:

The time of descent of an object is independent
of its mass.

Einstein stated in his theory of special relativity:

The speed of light is independent of the observer’s
state of motion.

These are famous examples of independence where one of
the variables is constant. The intuition that independence
means that values appear in all conceivable combinations, or
that learning a value of one does not tell us anything about
the other, is satisfied here as well (although in a somewhat

2

trivial way). So we should accept that one form of total inde-
pendence is when one of the variables is a constant. Another
feature of this strong form of independence is symmetry.
There are weaker forms of independence where symmetry is
not present.

Let us now introduce the semantics of the independence
atom x⊥y:

Definition 2.2. A team X satisfies the atomic formula
x⊥y if

∀s, s′ ∈ X∃s′′ ∈ X(s′′(x) = s(x) ∧ s′′(y) = s′(y)). (2)

We immediately observe that a constant variable is in-
dependent of every other variable, including itself. We can
also immediately observe the symmetry of independence, be-
cause the criterion (2) is symmetrical. Independence can be
axiomatized in a similar way as dependence, using the fol-
lowing axioms.

(1) If x⊥y, then y⊥x (Symmetry Rule).

(2) If x⊥y, and z ⊆ x, then z⊥y.

(3) If x⊥y, z is a permutation of x, and u is a permuta-
tion of y, then z⊥u.

(4) If x⊥y and xy⊥z, then x⊥yz.

The independence atom x⊥y actually is a special case of
the more general notion

x ⊥z y

the intuitive meaning of which is that the variables y are
totally independent of the variables x when the variables z
are kept fixed.

Suppose objects of different forms (balls, pins, etc), differ-
ent sizes and different masses are dropped from the Leaning
Tower of Pisa in order to observe how the form, size and
mass influence the time of descent. One may want to make
sure that in this test:

For any fixed form, the size of the object is inde-
pendent of the mass of the object.

To make sure of this, one would vary for each form sepa-
rately the sizes and the masses freely so that if one mass is
chosen in that form for one size it would be also be chosen
in that form for all the other sizes, and so on. We would
then say that the size and the mass were made independent
of each other, given the form, in the strongest sense of the
word.

We now give mathematical content to x ⊥z y:

Definition 2.3. A team X satisfies the atomic formula
x ⊥z y if for all s, s′ ∈ X such that s(z) = s′(z) there
exists s′′ ∈ X such that s′′(z) = s(z), s′′(x) = s(x), and
s′′(y) = s′(y).

Lemma 2.4. (1) =(x, y) logically implies y ⊥x z.

(2) y ⊥x z logically implies =(x, y ∩ z).

(3) =(x, y)↔ y ⊥x y

So dependence is a special case of independence, when
independence is defined in the more general form. This has
the pleasant consequence that when we define independence
logic I by adding the atomic formulas x ⊥z y to first order
logic, we automatically include all of dependence logic.

We get the following reformulation of (3):

Corollary 2.5. y ⊥x y ⇒ y ⊥x z (Constancy Rule)

As above, we collect some axioms for x ⊥z y:

(1) x ⊥x y (Reflexivity Rule)

(2) z ⊥x y ⇒ y ⊥x z (Symmetry Rule)

(3) ~yy′ ⊥~x ~zz′ ⇒ ~y ⊥~x ~z. (Weakening Rule)

(4) If ~z′ is a permutation of z, ~x′ is a permutation of x,
~y′ is a permutation of y, then y ⊥x z ⇒ ~y′ ⊥~x′ ~z′.
(Permutation Rule)

(5) z ⊥x y ⇒ yx ⊥x zx (Fixed Parameter Rule)

(6) x ⊥z y∧~u ⊥~z~x ~y ⇒ u ⊥z y. (First Transitivity Rule)

(7) y ⊥z y∧zx⊥yu⇒ x ⊥z u (Second Transitivity Rule)

Note that the Second Transitivity Rule gives by letting
u = x:

y ⊥z y ∧ x ⊥y x⇒ x ⊥z x,

which is the transitivity axiom of functional dependence. In
fact Armstrong’s Axioms are all derivable from the above
rules.

There are of course many other atomic properties of teams
that can be understood as dependency properties. Database
dependency theory (see e.g. [1]) is one source of such prop-
erties. In fact, the independence atom discussed above is
very closely related to the notion of multivalued dependency
(see [6]). Also multivalued dependency can be used as an
atom on teams, but one should take care to make the vari-
ables explicit, to make sure that the atom only depends on
the variables actually appearing in it. Of specific interest
are further properties known from dependency theory such
as inclusion, exclusion, equiextension, etc.

Definition 2.6.

(1) A team X satisfies an inclusion atom x ⊂ y if for all
s ∈ X there is an s′ ∈ X with s(x) = s′(y).

(2) A team X satisfies an exclusion atom x | y if for all
s, s′ ∈ X, s(x) 6= s′(y).

(3) A team X satisfies an equiextension atom x ./ y if
{s(x) : s ∈ X} = {s(y) : s ∈ X}.

Results from dependency theory show that for these kinds
of atoms and for combinations thereof, axiomatizations can
been given.

3

3. LOGICS OF DEPENDENCE AND
INDEPENDENCE

The atomic formulae stating dependence or independece
properties can be combined with the common logical op-
erators, such as connectives and quantifiers to obtain full-
fledged logics for reasoning about dependence and indepen-
dence. One aspect that makes these logics interesting and
different from common logical systems such as first-order
logic, modal logic, or second-order logic, is the requirement
to evalute formulae against a set of assignments rather than
a single assignment. We now explain this semantics, called
team semantics.

In the sequel L is any logic, whose syntax extends first-
order logic by atomic formulae on teams (such as depen-
dence, independence, inclusion, exclusion or a combination
thereof). We only admit atoms that are local in the sense
that only the values assigned to variables that occur free in
a formula are relevant for the truth of that formula. More
formally, for every atom ϕ, every stucture A and every team
X we require that

A |=X ϕ ⇐⇒ A |=X�free(ϕ) ϕ.

Negation is, for good reasons (see the last section of this
paper), used only in front of atomic formulae, i.e. formulae
are always in negation normal form.

Let A be a structure with universe A. An assignment
(into A) is a map s : V → A whose domain V is a set of
variables. Given such an assignment s, a variable y, and an
element a ∈ A we write s[y 7→ a] for the assignment with
domain V ∪ {y} that updates s by mapping y to a.

A team is a set of assignments with the same domain. For
a team X, a variable y, and a function F : X → P(A), we
write X[y 7→ F] for the set of all assignments s[y 7→ a] with
a ∈ F (s). Further we write X[y 7→ A] for the set of all
assignments s[y 7→ a] with a ∈ A.

Team semantics for L defines whether a formula ψ ∈ L
is satisfied by a team X in a structure A, written A |=X ψ.
We always require that the domain of X contains all free
variables of ψ.

We have already explained the semantics of the atomic
formulae describing dependence, independence, and other
basic properties of teams. Notice that all of these are triv-
ially satisfied by the empty team. By definition, negated
atoms of this kind are satisfied precisely by empty team.
For instance, A |=X ¬=(x1, . . . , xm, y) if, and only if X = ∅.
The further semantic rules are the following.

(1) If ψ is an atom x = y or Rx1 . . . xm or the negation of
such an atom, then A |=X ψ if, and only if, A |=s ψ
(in the sense of Tarski semantics) for all s ∈ X.

(2) A |=X (ϕ ∧ ϑ) if, and only if, A |=X ϕ and A |=X ϑ.

(3) A |=X (ϕ ∨ ϑ) if, and only if, there exist teams Y,Z
with X = Y ∪ Z such that A |=Y ϕ and A |=Z ϑ.

(4) A |=X ∀yϕ if, and only if, A |=X[y 7→A] ϕ.

(5) A |=X ∃yϕ if, and only if, there is a map F : X →
(P(A) \ ∅) such that A |=X[y 7→F] ϕ.

Notice that a disjunction is true in a team if that team
can be split into subteams that satisfy the disjuncts. As
a consequence ϕ ∨ ϕ is, in general, not equivalent to ϕ.

Clause (5) giving semantics to existential quantifiers might
seem surprising at first sight since it permits the choice of
an arbitrary non-finite set of witnesses for an existentially
quantified variable rather than a single witness (for each
s ∈ X). What we use here has been called lax semantics in
[7], as opposed to the more common strict semantics. For
disjunctions (clause (3)) there is also a strict variant, requir-
ing that the team X is split into disjoint subteams Y and
Z. For first-order logic, and also for dependence logic the
difference is immaterial since the two semantics are equiva-
lent. However, this is no longer the case for stronger logics,
in particular for independence logic. In these cases the lax
semantics seems more appropriate since it preserves the lo-
cality principle that a formula should depend only on those
variables that actually occur in it, whereas the strict se-
mantics violates this principle. In game-theoretic terms the
difference between strict and lax semantics corresponds to
the difference between deterministic and nondeterministic
strategies.

Notice that A |=∅ ψ holds for all formulae ψ.

If our formulae are just first-order, without dependence
or independence atoms of any kind, then team semantics
reduces to Tarski semantics. Indeed, it is easy to see that a
first-order formula is satisfied by a team if, and only if, it is
satisfied (in the sense of Tarski) by all assignments in it:

A |=X ψ ⇐⇒ A |={s} ψ for all s ∈ X
A |=s ψ for all s ∈ X.

This changes radically when the formulae make use of de-
pendence or independence atoms.

4. EXPRESSIVE POWER
Let us first consider dependence logic D, the extension of

first-order logic by dependence atoms =(x1,xm, y). A
first observation is that the semantics of dependence logic is
downwards closed for teams.

Proposition 4.1 (Downwards Closure). For all A,
all formulae ψ ∈ D and all teams Y ⊆ X, we have

A |=X ψ =⇒ A |=Y ψ.

We say that a structure A is a model of a sentence ψ ∈ D
if A |={∅} ψ, i.e. if ψ is satisfied by the team that just con-
tains the empty assignment. We thus can directly compare
the expressive power of sentences of dependence logic with
sentences of classical logics with Tarski semantics. It is not
difficult to see that in this sense, dependence logic is equiva-
lent to existential second-order logic Σ1

1 (see [16]) and thus,
by Fagin’s Theorem expresses precisely those properties of
finite structures that are in NP.

Proposition 4.2. For sentences, D ≡ Σ1
1.

For formulae of dependence logic with free variables, such
a direct comparison is not possible since dependence formu-
lae are evaluated on teams and classical formulae on single
assignments. However, a team X, with domain {x1, . . . , xk}
and values in A, can of course be represented by a rela-
tion rel(X) ⊆ Ak, defined by rel(X) = {(s(x1), . . . , s(xk)) :
s ∈ X}. A formula ψ with vocabulary τ and free variables
x1, . . . , xk can then be translated into a Σ1

1-sentence ψ∗ of

4

vocabulary τ ∪ {R} such that, for every τ -structure A and
every team X

A |=X ψ ⇐⇒ (A, rel(X)) |= ψ∗.

Thus, on finite structures dependence logic can only ex-
press properties of teams that are in NP. The converse is not
true since all properties of teams expressible in dependence
logic are downwards closed (which of course need not be the
case for arbitrary NP-properties). It was shown by Konti-
nen and Väänänen [14] that one can nevertheless precisely
characterize the power of dependence formulae in terms of
Σ1

1-definability.

Theorem 4.3. The expressive power of dependence logic
is equivalent to the power of existential second-order sen-
tences which are downwards monotone in the team predi-
cate. Syntactically this means that dependence formulae are
equivalent (on non-empty teams) to Σ1

1-sentences in which
the predicate for the team appears only negatively.

An interesting special case of dependence atoms are those
of form =(y), expressing that s(y) is constant, i.e. y takes
the same value in all assignments s ∈ X. The fragment of
dependence logic that only uses dependency atoms of this
form is called constancy logic (see [7]). For sentences, con-
stancy logic reduces to first-order logic, but this is not true
for open formulae. Indeed, even the formula =(x) cannot be
equivalent to a first-order formula since its semantics does
not reduce to Tarski semantics.

We next consider Independence Logic I, the extension
of first order logic by the new atomic formulas y⊥xz for
all sequences x, y, z of variables. On the level of sentences,
independence logic is equivalent to Σ1

1, and thus also equiv-
alent to dependence logic. However, on the level of formu-
lae, independence logic is strictly stronger than dependence
logic. Indeed, any dependence atom =(x, y) is equivalent to
the independence atom y⊥xy, but independence logic is not
downwards closed, so a converse translation is not possible.
It had been posed as an open problem in [9] to character-
ize the NP-properties of teams that correspond to formu-
lae of independence logic. Very recently, Galliani [7] solved
this problem by showing that actually, all NP-properties of
teams can be expressed in independence logic. To do so Gal-
liani has studied the logics obtained by adding other atomic
properties such as inclusion, exclusion, and equiextension to
FO.

The expressive power of these logics can be summarized
as follows.

Theorem 4.4. (1) First-order logic with inclusion atoms
is incomparable to dependence logic and strictly con-
tained in independence logic.

(2) First-order logic with exclusion is equivalent to de-
pendence logic

(3) First-order logic with equiextension atoms is equally
expressive as FO with inclusion atoms.

(4) First-order logic with inclusion and exclusion has the
same expressive power as independence logic. More-
over, both logics are equivalent to Σ1

1.

5. MODEL-CHECKING GAMES AND
COMPLEXITY

Let L be any extension of first-order logic (with team se-
mantics) by a collection of atomic formulae on teams (such
as dependence, independence, constancy, inclusion, exclu-
sion, equiextension . . .). We design model checking games
for L. For every formula ψ(x) ∈ L (which we always assume
to be in negation normal form), every structure A and every
team X with domain free(ψ) we define a game G(A, X, ψ)
as follows.

Let T (ψ) be the syntax tree of ψ; its nodes are the oc-
currences of the subformulae of ψ, with edges leading from
any formula to its immediate subformulae, i.e. from ϕ ∨ ϑ
and ϕ ∧ ϑ to both ϕ and ϑ and from ∃yϕ and ∀yϕ to ϕ.
The model-checking game G(A, X, ψ) is obtained by taking
an appropriate product of T (ψ) with assignments mapping
variables to elements of A. The positions of the game are the
pairs (ϕ, s) consisting of a node ϕ ∈ T (ψ) and an assignment
s : free(ϕ)→ A. Verifier (Player 0) moves from positions as-
sociated with disjunctions and with formulae starting with
an existential quantifier. From a position (ϕ ∨ ϑ, s), she
moves to either (ϕ, s′) or (ϑ, s′′) where s′, s′′ are the re-
strictions of s to the free variables of ϕ and ϑ, respectively.
From a position (∃yϕ, s), Verifier can move to any position
(ϕ, s[y 7→ a]), where a is an arbitrary element of A. Dually,
Falsifier (Player 1) makes corresponding moves for conjunc-
tions and universal quantifications. If ϕ is a literal then
the position (ϕ, s) is terminal and attributed to none of the
players.

Notice that the game tree, the rules for moves, and the
set of plays are the same as in model checking games for
first-order logic (in the usual sense, with Tarski semantics).
However, there are some important differences.

First, in model-checking games for classical logics, it is not
necessary to work with the syntax tree. Instead one can take
a more compact representation by a directed acyclic graph
(dag) that identifies different occurrences of the same sub-
formula. For logics with team semantics it is relevant that
we actually take the syntax tree, i.e., that we distinguish be-
tween different occurrences of the same subformula. Indeed,
for instance, a formula ϕ ∨ ϕ is not equivalent to ϕ, and in
its evaluation, different teams are typically attributed to the
two occurrences of ϕ in ϕ ∨ ϕ. A more relevant difference
concerns the winning conditions and the associated strate-
gies that we want to synthesize. The model checking games
for logics with team semantics are not reachability games.
In fact, winning or losing are not properties that can be at-
tributed to terminal positions and, indeed, not even to single
plays. Due to the underlying team semantics, and also due
to the additional atomic formulae on teams, winning or los-
ing is always a property of a strategy or of a set of plays,
and not of a single play.

We can view a model-checking game as a structure of the
form G(A, X, ψ) = (V, V0, V1, T, E) where V is the set of
positions, Vσ is the set of positions where Player σ moves,
T is the set of terminal positions (associated to literals),
and E is the set of moves. In general, a nondeterminis-
tic (positional) winning strategy for Player 0 is a subgraph
S = (W,F) ⊆ (V,E) where W is the set of positions from
which the strategy is winning (it need not be defined on
other positions) and F ⊆ E ∩ (W ×W) is the set of moves
that are consistent with the strategy. Beyond the obvious

5

consistency requirements for strategies (see (1) and (2) be-
low) we here introduce a third condition that is new and
specific for team semantics. For that, we introduce the fol-
lowing notion. Given S = (W,F) and a formula ϕ ∈ T (ψ),
the team associated with S and ϕ is

Team(S, ϕ) = {s : (ϕ, s) ∈W}.

Informally the new condition (3) requires that every literal
is satisfied by the team that the strategy associates with it.

Definition 5.1. A consistent winning strategy for Ver-
ifier (Player 0) with winning region W in

G(A, ψ) = (V, V0, V1, T, E)

is a subgraph S = (W,F) ⊆ (V,E) with F ⊆ E ∩ (W ×W)
satifying the following three conditions:

(1) If v ∈W ∩ V0, then vF is non-empty.

(2) If v ∈W ∩ V1 then vF = vE.

(3) For every literal ϕ, we have that A |=Team(S,ϕ) ϕ.

Recall that the empty team satisfies all formulae. If a
literal ϕ has no occurrence (ϕ, s) ∈W , then Team(S, ϕ) = ∅,
and thus A |=Team(S,ϕ) ϕ is true for trivial reasons.

Notice that in the case where L is first-order logic (with
team semantics, but without additional atoms), the third
condition is equivalent to saying that A |=s ϕ for all literals
ϕ and all assignments s with (ϕ, s) ∈W . This is in harmony
with the classical game-theoretic semantics for FO and re-
flects the fact that, for any first-order formula ψ, A |=X ψ if,
and only if, Verifier has a winning strategy from all initial
positions (ψ, s) with s ∈ X.

In fact, this generalizes beyond first-order logic.

Theorem 5.2. For every structure A, every formula ψ(x) ∈
L and every team X with domain free(ψ) we have that A |=X

ψ if, and only if, Player 0 has a consistent winning strategy
S = (W,F) for G(A, X, ψ) with Team(S, ψ) = X.

For a proof, see [8].
We can find more abstract and purely combinatorial vari-

ants of such game-theoretic problems, abstracting away from
logics with team semantics and model-checking problems,
but focussing on winning strategies satisfying abstract con-
sistency criteria.

We consider finite game graphs G = (V, V0, V1, I, T, E),
with set of positions V , partioned as above into the sets V0,
V1 and the set T of terminal positions, where E is the set
of moves and I is the set of initial positions. Further, let
Win ⊆ P(T) be a winning condition defining for each set
U ⊆ T of terminal position whether it is a winning set for
Player 0. For algorithmic concerns, let us assume that it can
be decided in polynomial time whether a given set U ⊆ T
belongs to Win.

Definition 5.1 of consistent winning strategies is then sim-
plified and generalized as follows.

Definition 5.3. A consistent winning strategy for Player 0
for a game G = (V, V0, V1, I, T, E) with winning condition
Win is a subgraph S = (W,F) ⊆ (V,E) with F ⊆ E ∩ (W ×
W) satifying the following conditions:

(1) If v ∈W ∩ V0, then vF is non-empty.

(2) If v ∈W ∩ V1 then vF = vE.

(3) W ∩ T ∈Win

(4) I ⊆W .

Notice that item (4) requires a winning strategy to be
winning from all initial positions.

Theorem 5.4. The problem whether a given game graph
G with an oracle for Win admits a consistent winning strat-
egy for Player 0, is NP-complete.

The width of a formula ψ is defined as the maximal num-
ber of free variables in subformulae of ψ, formally

width(ψ) := max{|free(ϕ)| : ϕ ∈ T (ψ)}.

Notice that the size of a model checking game G(A, X, ψ) on

a finite structure A is bounded by |T (ψ)| · |A|width(ψ).

Theorem 5.5. Let L be any extension of first-order logic
with team semantics by atomic formulae on teams that can
be evaluated in polynomial time. Then the model-checking
problem for L on finite structures is in Nexptime. For for-
mulae of bounded width, the model-checking problem is in
NP.

In fact, with team semantics, the model-checking prob-
lem is Nexptime-complete already for relatively simple ex-
tensions of first-order logic. For first-order logic itself, it is
Pspace complete, since without additional atoms, FO with
team semantics reduces to FO with Tarski semantics. In
particular, the model-checking for dependence logic is Nex-
ptime complete, which can be proved by an encoding of an
appropriate domino problems [8].

Theorem 5.6. The problem to decide, given a finite struc-
ture A, a team X and a formula ψ in dependence logic,
whether A |=X ψ, is Nexptime-complete. This also holds
when A and X are fixed, in fact even in the case where A is
just the set {0, 1} and X = {∅}.

It is not difficult to see that the same complexity results
hold for independence logic, and logics using inclusion, ex-
clusion, and/or equiextension atoms.

On the other side, constancy logic is a fragment of lower
complexity.

Theorem 5.7. The model checking problem for constancy
logic is Pspace-complete.

6. NEGATION
Negation is a nontrivial issue in logics of dependence and

independence since we do not have the Law of Excluded
Middle. This is reflected by the fact that the associated
semantical games are usually not determined.

Given a formula ψ ∈ L (where L is one of the logics con-
sidered above), let ψ¬ denote the formula in negation nor-
mal form that corresponds to the negation of ψ. For teams
X 6= ∅, it cannot be the case that A |=X ψ and at the same
time A |=X ψ¬, but A 6|=X ψ does not imply that A |=X ψ¬.
We say that ψ is false for A and X, if A |=X ψ¬.

When just considering truth, one could describe the se-
mantics of ψ in A as the the set of all teams X with domain
free(ψ) that satisfy the formula, i.e.

[[ψ]]A := {X : A |=X ψ}.

6

However, when taking into account both truth and falsity,
one should consider the pair ([[ψ]]A, [[ψ¬]]A) as the appro-
priate semantic value of ψ in A. This is also justified by
results due to Burgess [4] and Kontinen and Väänänen [15]
which show that for team semantics, negation is not really
a semantic operation, contrary to disjunction, conjunction,
and quantifiers. When we know [[ψ]]A and [[ϕ]]A we can eas-
ily compute [[ϕ ∧ ψ]]A and [[ϕ ∨ ψ]]A (without even know-
ing the syntax of ψ and ϕ). Analogous observations hold
for quantifiers. However, knowing [[ψ]]A does not provide
much knowledge about [[ψ¬]]A. Indeed, for any two formula
ψ and ϕ of dependence logic that exclude each other (i.e.
[[ψ]]A ∩ [[ϕ]]A = {∅} on all A), there is formula ϑ such that
[[ϑ]]A = [[ψ]]A and [[ϑ¬]]A = [[ϕ]]A.

In what sense is the semantic value ([[ψ]]A, [[ψ¬]]A) de-
scribed by the model-checking games? Notice that the game
graphs of G(A, X, ψ) do not strongly depend on X. We can
just as well account for all appropriate teams in a single
game graph G(A, ψ).

Theorem 6.1. In the game graph G(A, ψ), Player 0 has
a consistent winning strategy S with Team(S, ψ) = X pre-
cisely for the teams X ∈ [[ψ]]A and Player 1 has a consistent
winning strategy S′ with Team(S′, ψ) = Y precisely for the
teams Y ∈ [[ψ¬]]A.

Notice that, ψ¬ is a formula in the same logic as ψ, and
therefore equivalent also to a Σ1

1-sentence, and, in general,
not to one in Π1

1. Further, the problem to check that a
formula is false (for a given structure and a given team) is
also in Nexptime (and in general not in Co-Nexptime).

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu, Foundations

of Databases, Addison-Wesley, 1995.

[2] W. Armstrong, Dependency structures of data base
relationships, Information Processing, 74 (1974).

[3] A. Blass and Y. Gurevich, Henkin quantifiers and
complete problems, Annals of Pure and Applied Logic,
32 (1986), pp. 1–16.

[4] J. P. Burgess, A remark on Henkin sentences and
their contraries, Notre Dame J. Formal Logic, 44
(2003), pp. 185–188.

[5] H. Enderton, Finite partially ordered quantifiers, Z.
Math. Logik, 16 (1970), pp. 393–397.

[6] F. Engström, Generalized quantifiers in dependence
logic. Draft, 2011.

[7] P. Galliani, Inclusion and exclusion in team
semantics — on some logics of imperfect information,
Annals of Pure and Applied Logic, 163 (2012),
pp. 68–84.

[8] E. Grädel, Model-checking games for logics of
incomplete information. Submitted for publication,
2012.

[9] E. Grädel and J.Väänänen, Dependence and
independence, Studia Logica, (2012). To appear.

[10] L. Henkin, Some remarks on infinitely long formulas,
in Infinitistic Methods, Warsaw, 1961, pp. 167–183.

[11] J. Hintikka and G. Sandu, Informational
independence as a semantical phenomenon, in Studies
in Logic and Foundations of Mathematics, vol. 126,
North-Holland, 1989, pp. 571–589.

[12] W. Hodges, Compositional semantics for a logic of
imperfect information, Logic Journal of IGPL, 5
(1997), pp. 539–563.

[13] W. Hodges, Logics of imperfect information: Why
sets of assignments?, in Interactive Logic, J. van
Benthem, B. Löwe, and D. Gabbay, eds., vol. 1 of
Texts in Logic and Games, Amsterdam University
Press, 2007, pp. 117–134.

[14] J. Kontinen and J. Väänänen, On definability in
dependence logic, Journal of Logic, Language, and
Information, 18 (2009), pp. 317–241.

[15] J. Kontinen and J. Väänänen, A remark on
negation in dependence logic, Notre Dame Journal of
Formal Logic, 52 (2011), pp. 55–65.

[16] J. Väänänen, Dependence Logic, Cambridge
University Press, 2007.

[17] W. Walkoe, Finite partially-ordered quantification,
Journal of Symbolic Logic, 35 (1970), pp. 535–555.

7

