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ABSTRACT 
Excellent work ([1]-[6]) has shown that memory management and 
transaction concurrency levels can often be tuned automatically 
by the database management systems. Other excellent work ([7]]-
[14]) has shown how to use the optimizer to do automatic 
physical design or to make the optimizer itself more self-adaptive 
([15]-[17]). Our performance tuning experience across various 
industries (finance, gaming, data warehouses, and travel) has 
shown that enormous additional tuning benefits (sometimes 
amounting to orders of magnitude) can come from reengineering 
application code and table design. The question is: can a tool help 
in this effort? We believe so. We present a tool called AppSleuth 
that parses application code and the tracing log for two popular 
database management systems in order to lead a competent tuner 
to the hot spots in an application. This paper discusses (i) 
representative application "delinquent design patterns", (ii) an 
application code parser to find them, (iii) a log parser to identify 
the patterns that are critical, and (iv) a display to give a global 
view of the issue. We present an extended sanitized case study 
from a real travel application to show the results of the tool at 
different stages of a tuning engagement, yielding a 300 fold 
improvement. This is the first tool of its kind that we know of. 
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1. INTRODUCTION 
Database administrators can call on a variety of tools to help with 
physical configuration ([7]-[14]), system monitoring and 
maintenance ([20]-[23]). 

Current automatic physical tuning tools have become 
sophisticated. Given a representative workload of SQL 
statements; they find the best physical design for the workload. 
They do this based on tight interaction (what-if analysis [11] or 
instrumentation [10]) with the cost-based query optimizer. 

Beyond that effort in automatic physical design, Oracle’s SQL 
Tuning advisor [18] can collect statistics, correct system 
parameters, and recommend changes to SQL statements. (In the 
running example of this paper, the Tuning Advisor found high 
load SQL statements and identified bad query features like 
Cartesian products.) Such tools work at the SQL statement level, 
aiming to find beneficial physical structures to the SQL workloads 
or to spot the problematic SQL statements. AppSleuth, as a 
database tuning tool at the application level, can incorporate and 
work with such tools to offer better performance tuning 
suggestions to users. 

Self-tuning memory management in database systems has also 
gained much attention. Reference [1] proposes adaptive memory 
allocation in DB2 based on monitoring the characteristics of the 
workload during run time. Other commercial products also have 
implemented self-tuning memory management facilities to 
improve the performance of the database systems ([3], [4]). 
DBMS designers have worked hard to make the internals self-
tuning and self-managing. Since how the internals work 
adaptively is beyond the control at the application level, 
techniques in this category are orthogonal to that of AppSleuth. 
AppSleuth works at the application code level. In our tuning 
consulting experience, changing application code can lead to 2 to 
100 times performance improvements. Thus, tuning efforts at 
different levels can combine to obtain the best performance for 
database applications. 

Oracle 11g has a helpful feature called Hierarchical Profiler [18] 
which can profile PL/SQL program executions with the number of 
calls and the elapsed time of subprograms and SQL statements., 
Hierarchical Profiler differentiates self time from descendant time 
within caller-callee relationships. The package offers analysis of 
the raw profile data and generation of a group of reports in HTML 
format.  That achieves the same functionality as a subset of what 
we have in our analysis of SQL trace below. 

Database applications’ code run in two different contexts: the 
programming context, which deals with programming logic in 
languages like Java or Python, and the database context, which 
entails database accesses, such as SQL statement processing, 
stored procedure calls etc. Frequent switches between the two 
contexts will hurt performance seriously. Reference [37] proposes 
a way to partition database applications into two parts: one part 
runs on the application server, the other part runs on the database 
server. The goal is to minimize the roundtrips between the two 
servers while retaining the semantics of the original application. 
The proposal does an elegant job of allocating proper burdens 
onto eligible servers. But such optimized separation at the server 
level deals with only one of the factors that affect performance. 
One needs to look at the application level and its many 
“delinquent” design patterns.  
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There are some third-party tools to help database application 
developers produce program code of high quality. Quest 
Software's (Now Dell’s) TOAD [24] is a proprietary tool that 
offers help at the application programming level for different 
DBMS’s (see http://www.orafaq.com/node/846 for a tutorial 
explanation for Oracle’s PL/SQL). Primarily, it consists of 
software engineering advice of the form "make your variable 
names self-describing" and encouragement to reduce code 
complexity as is measured by metrics such as McCabe's 
cyclomatic complexity (which measures the number of 
independent paths through program code -- the fewer the better). 

Within TOAD, a special module called CodeXpert offers SQL 
performance tuning help. CodeXpert allows the user to invoke a 
pre-defined set of rules or to create new ones. The rules pertain to 
single SQL statements. An example would be: find all SQL 
statements that join more than four tables. A more sophisticated 
example is to find queries that have insufficient index support. To 
identify the latter, CodeXpert runs the queries through the 
Explain Plan facility. CodeXpert then simulates the addition of 
possibly useful indexes and reruns Explain Plan. Such tools work 
well for single SQL statements. AppSleuth’s methodology 
extends the tuning capabilities to the multi-statement level. 

Other third-party tools, proprietary or open source, which can do 
sophisticated static code analysis include klocwork[31], 
fortify[32], coverity[33], Enterprise Architect[34], Findbugs[35], 
PMD[36], etc. All these tools can statically analyze code written 
in one or more of the languages like C/C++, java, C#, Delphi, VB 
etc. NIST annually holds a Static Analysis Tool Exposition 
(SATE) [27] to advance research in static analysis tools to find 
bugs related to security problems. But these tools or solutions 
analyze code structures and dependencies to find security 
vulnerabilities and programming bugs like resource leaks, 
unreferenced variables etc. and report the defects in details. They 
mainly work in the context of a specific programming language, 
ignoring database interactions. 

Researchers from Microsoft proposed a static analysis 
methodology for database application binaries in a general sense 
[28]. Their method enhances traditional optimizing compilers 
with knowledge about data access APIs (e.g. ADO.NET) and 
database domains. The solution is based on a compiler 
framework, adopting data flow and control flow analysis 
customized for database access, forming “a layer of static analysis 
services for database applications”, on top of which vertical tools 
are built with different functionalities such as detecting SQL 
injection vulnerabilities, “extracting the SQL workloads from the 
binaries”, or identifying potential data integrity violations. The 
static analysis framework aims to make the application code more 
DBMS-friendly, but treats performance as one feature among 
many auxiliaries of collecting workload etc. 

[29] proposed a profiling infrastructure that, during application 
run time, logs events from different contexts: instrumented 
application events, ADO.NET tracing and Microsoft SQL Server 
tracing. After correlating and matching traces from the 
application context and those from DBMS context, a 
summary/detail view is given involving various attributes like 
function names, execution time, number of invocations, SQL text, 
number of reads/writes, etc. The “global” profiled data view is the 
basis for database application developing tasks like detecting 
problematic functions which have caused DB server deadlocks, or 
suggesting query hints in application code. Profiling is helpful to 

spot performance problems and to give tuning suggestions. 
AppSleuth currently takes advantage of DB server side profiling 
together with static source code analysis to locate the delinquent 
design patterns in application code. Extensions to profiling in 
other contexts is part of the future work. 

As database performance tuners, we applaud the general use of 
database tools that either suggest indexes or flag high-load SQL 
statements while other tools seem less database performance 
oriented (e.g. static code analysis tools or profiling tools). To us, 
static methods are inherently limited, because the performance of 
SQL statements depends on their runtime behavior (e.g. how often 
they are invoked, the size of the data on which they operate). On 
the other hand, many code design patterns that cause the greatest 
performance problems in database context may go beyond the 
single-SQL-statement level, spanning multiple statements, or 
sometimes even multiple programs. For example, loops may not 
be present in SQL but rather in Java or some other language that 
are not accessible to the tuner. So combining static and runtime 
analysis at the application level to find and validate the delinquent 
design patterns is necessary to improve database performance. 
That is the philosophy of AppSleuth.  

2. DELINQUENT DESIGN PATTERNS 
Even though hardware has become vastly faster over the last 
decades, database tuning continues to be necessary. The accepted 
reason for this is that databases grow in size as new data sources 
arise. The problem with this explanation is that indexes should 
have mitigated this effect enough so data access time would grow 
only with the logarithm of the data size, not linearly. But the 
reality is often the opposite. We think the deeper reason is that 
application programmers mistreat their databases in their code. 
Typical application delinquent design patterns include: 

1) Insert records into a table one at a time, crossing protection 
boundaries and flushing the instruction cache each time. For 
example, the following code snippet (In Figure. 1) in Oracle 
PL/SQL runs for 20 minutes with appropriate indexes on the table 
sku_word (several hours without indexes) having about 3,400,000 
rows and on the table hotel_desc with 220,000 rows. (A sku is a 
particular instance of a product type. In our running example, it’s 
a particular room type in a hotel on a particular night.)  

By contrast, all the work can be done in one insert-select 
statement (Figure 2) in about one minute on the same hardware 
and with the same indexes (a factor of 20 times in improvement).  

2) Fetching one record at a time from within, say, a Java loop as 
opposed to selecting many records into an array. For example, the 
following java code queries the descriptions for the first 1000 
hotels (Figure 3).  

By contrast, the following code (Figure 4) issues one query to the 
database and fetches the result into a collection data type.  

3). Processing one record at a time within the stored procedures of 
a database management system, testing for conditions within that 
record using if statements. For example, suppose that for each 
hotel and each room_type, the price varies based on the day of the 
week. We may have code like the following Figure 5 using if 
statements.  

A better way would be to translate the if condition into one or 
more where clauses to update many records at a time (Figure 6). 

590



The speed-up is over 6 times for updating a Reservation table 
having approximately 40 thousand records.  

 

   

 

 
But even this improvement would require 7 update statements, 
one for each day of the week. So an even better way would be to 
have a table of prices S(hotel, room_type, dayofweek, price) with 
7 items for every (hotel, room_type) pair and then do a join 
(Figure 7), which, under the same setting, obtains a factor of three 
speed-up compared to 7-update-statement approach, bringing the 
overall time to 1/20th the time compared to the original “if-
condition” way. If proper indexes are built on the involved tables, 
the final improvement goes to 1/500th the original time. 

 
These examples of poor performance in the initial design show 
the tendency of programmers to do record-at-a-time programming 
as opposed to set-at-a-time programming. This is compounded by 
the use of stored procedures, because a subprogram A may loop 
on records and call a subprogram B for each record. B may do 

DECLARE 
l_sku_id   INTEGER; 
l_hotel_id    VARCHAR2(10); 
l_room_type_id INTEGER; 
l_desc    hotel_desc.description%TYPE; 
CURSOR c1 IS SELECT sku_id, hotel_id, room_type_id 
FROM sku_word; 
BEGIN 

OPEN c1; 
 LOOP 
  FETCH c1 INTO l_sku_id, l_hotel_id, 
l_room_type_id; 
  EXIT WHEN c1%NOTFOUND; 
  FOR item IN (SELECT description FROM 
hotel_desc WHERE hotel_id = l_hotel_id AND 
room_type_id = l_room_type_id) 
  LOOP 
   INSERT INTO drs_sku(id, description) 
   VALUES (l_sku_id, item.description); 
  END LOOP; 
 END LOOP; 
 CLOSE c1; 
END; 

Figure 1. Delinquent design patterns for insert. 

INSERT INTO drs_sku(id, description) 
SELET sku_id, description 
FROM sku_words, hotel_desc 
WHERE sku_words.hotel_id = hotel_desc. hotel_id  
AND sku_words.room_type_id = 
hotel_desc.room_type_id; 

Figure 2. An equivalent single insert-select statement that 
is 20 times faster. 

{ 
 ResultSet rs = null; 
 Statement stmt = conn.createStatement(); 

l_hotel_id = 1; 
while (l_hotel_id <= 1000) 
{ 

  rs = stmt.executeQuery(“select description from 
hotel_desc where hotel_id =” + l_hotel_id); 
  while (rs.next()) 
  {…} 

} 
} 

Figure 3. Execute an SQL statement many times in a Java 
loop. 

{ 
 ResultSet rs = null; 
 Statement stmt = conn.createStatement(); 
 rs = stmt.executeQuery(“select description from   
hotel_desc where hotel_id between 1 and 1000”); 
 while (rs.next()) 
 {… 

} 
} 
Figure 4. Single SQL statement that implements the same 

functionality. 

UPDATE Reservation 
SET price = (SELECT price FROM S 
          WHERE 
     weekday(Reservation.this_date) = S.dayofweek 
          AND  Reservation.hotel = S.hotel 
          AND Reservation.room_type = S.room_type) 

Figure 7. Code after introducing a new table. Here we 
have included the hotel and room_type constraints, so 

the full logic of the query is given. 

Figure 6. The if condition becomes a where clause 
that can apply to many rows at a time. 

UPDATE Reservation  
SET price = Sunday_price  
WHERE weekday(this_date) = 0; 

Figure 5. Process data using IF statements to insert 
the price into a table Reservation for a particular date 

“this_date”.  (We omit constraints on hotel and 
room_type for the sake of exposition.) 

… 
IF weekday(this_date) == 0 THEN 
 Price = Sunday_price; 
… 
ELSIF weekday(this_date) == 1 THEN 
 Price = Monday_price; 
ELSIF … 
END IF;
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some joins and then again call subprograms for each record 
produced. Tools like the Oracle Tuning Advisor or CodeXpert 
don’t look for such problems. 

These problems may appear to be a symptom of what Dave Maier 
famously called the "impedance mismatch" between the record-
at-a-time C-style language and the bulk database language. But 
the deeper problem is that application programmers perversely 
embrace the impedance mismatch by treating the database as a 
giant record store. Programmers are trained (in schools, alas) to 
write programs on small amounts of data. As a result, they reach 
the workplace and test their program on 100 record databases. 
With such small databases, inserting records one at a time works 
blindingly fast. They are then surprised when it takes hours to 
insert a million records. 

4). Denormalizing tables for convenience of query performance at 
horrendous costs to updates  

This is a schema rather than code delinquent design pattern. From 
our tuning experience, we have noticed that delinquent designs 
occur together – denormalization, record-at-a-time processing, 
poor use of indexes and excessive use of subqueries happen in 
close proximity to one another. 

Code copying causes delinquent design patterns to proliferate 
across an application. The tuner normally doesn't have time to 
correct every problem. For this reason, it is essential to know 
which procedures are costing the most time. To do this, a tool 
must examine the database statements found in the log and 
determine where they come from. The goal is to find the 
superdelinquents -- delinquent design patterns that take up lots of 
time -- and then turn them over to a competent tuner. 

AppSleuth both analyzes code and the DBMS’s tracing facility to 
discover superdelinquents. AppSleuth’s current implementation 
targets Oracle PL/SQL and Microsoft TSQL. We plan to 
implement versions for other popular commercial DBMS’s and 
other delinquent design patterns (as found in database tuning 
books [25] and online guides) in other popular programming 
languages in the future. The basic architecture – performs a global 
parse, identifies critical paths, and matches against the database 
trace – will change little. We are happy to share the source code 
of AppSleuth to members of the community who are interested to 
work on it. 

The rest of this paper contains three sections: the architecture of 
AppSleuth, a case study, and a conclusion. 

3. COMPONENTS OF APPSLEUTH 
AppSleuth parses and analyzes the application source code, 
collects useful statistics from the tracing log, detects potential 
critical hot spots in them and presents visualized output to a tuner. 
AppSleuth has four main parts: (i) a parser which underlies both 
(ii) a structure analyzer for the application source code, and (iii) a 
log analyzer for trace files. All three components feed a (iv) 
visualization output generator. The different components are 
shown in Figure 8.  

In addition, AppSleuth builds on top of Oracle’s DBMS advisor 
to suggest physical design decisions based on the collected 
workload of SQL statements. Our recommendation is to consider 
those changes after eliminating delinquent design patterns.  

3.1 Brief Introduction to PL/SQL and 
Transact-SQL 
PL/SQL and Transact-SQL (TSQL for short) are two full (Turing-
Complete) programming languages at the database server side 
which includeprocedures, conditionals, loops, error handlings, and 
integrated SQL. PL/SQL offers subprogram overloading while 
TSQL does not. In order to do a global analysis of performance 
issues, AppSleuth parses the code and identifies delinquent design 
patterns in semantic actions. Because these patterns include loop 
and subroutine calls, the parser has to detect blocks, subprograms 
possibly at different levels, and different kinds of loops (e.g. 
basic, for, while, and cursor loops for PL/SQL).  

Here are specifications of for loop constructs in PL/SQL (Figure 
9):  

 
The following is the syntax of loops in TSQL[26] (Figure 10): 

 

3.2  Inputs to AppSleuth 
AppSleuth takes one or more source code files as inputs and 
locates delinquent design patterns as well as forms the intra- and 
inter-file call graph. For example, in our running travel 
application case study, AppSleuth for PL/SQL reads in all the 
source code files, analyzes the structure in each file and finds the 
inter-file calling relationships between them. After viewing the 
inter-file call graph, the tuner can zoom into one specific file to 
look at its internal structures and intra-file call graph which 
illustrates nested subprogram calling logic. AppSleuth for TSQL 
works in a similar but more straightforward way because in TSQL 
all the subprograms are standalone. It doesn’t have PL/SQL’s 
packaged or nested subprograms.  

AppSleuth locates the relevant programming language code by 
comparing the database trace against programming language files 
that issue SQL statements as well as stored procedures. The parser 

Figure 10. Syntax for while loop statements inTSQL. 

while_statement ::=  
WHILE Boolean_expression  
     { sql_statement | statement_block | BREAK | 

CONTINUE }  

Figure 9. Syntax for basic and cursor for loops statements in 
PL/SQL. 

for_loop_statement ::= [<<label_name>>]  
         FOR index_name IN [REVERSE] lower_bound .. 
upper_bound 

 LOOP  
Statements 

 END LOOP [label_name] ‘;’ 

cursor_for_loop_statement ::= [<<label_name>>]  
       FOR record_name IN (cursor | ‘(‘select_statement ‘)’ ) 

LOOP 
Statements 

END LOOP [label_name] ‘;’ 
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also records execution times to see which programming language 
source code files and stored subprograms require special 
attention. 

3.3 Output of AppSleuth 
The output of AppSleuth presents a global picture of database 
problems by showing a call graph with critical paths highlighted. 
Besides the visualization, AppSleuth also (i) collects the SQL 
workload of the application, which is very helpful for physical 
database design, (ii) counts the number of SQL statements in 
subprograms, and (iii) analyzes SQL statement attributes such as 
the number of tables referenced in a SQL statement. AppSleuth 
for PL/SQL can also output index building suggestions by calling 
the database tuning advisor interface with the workloads collected 
during the analysis.  

3.4 AppSleuth Static Code Analysis 
We have built a lexer and a parser using flex [39] and bison [38] 
respectively for both PL/SQL and TSQL source code, 
implementing the full grammar of each of those languages. 
During static analysis, the LALR parser scans each PL/SQL or 
TSQL source file and analyzes its structure to detect loops and 
subroutine calls as well as more local performance-related 
features such as the number of SQL statements in subprograms, 
the variables and arguments which are declared but never 
referenced in the source code, and the number of tables in SQL 
statements. The output generator produces a call graph with thin 
arrowed-lines for calls from the top level of the caller procedure 
to the callee procedure and thick arrowed-lines if the caller 
procedure makes the call from within a loop, which suggests a 
possibly delinquent pattern that might hurt performance. Figure 
11 illustrates this. 

3.4.1 Finding Loop Structures 
Inside loop statements there is much information worth analyzing. 
For example, SQL statements within cursor loops are a delinquent 
design pattern. Replacing them by a single SQL statement might 
help as we saw in section 2.  

3.4.2 Finding Subprogram Calls 
AppSleuth must determine which subprogram is being called in 
the source code based on the name of the subprogram and the 
calling parameters. Because PL/SQL allows overloading of 
nested-level subprogram and packaged subprogram names, 
AppSleuth for PL/SQL examines all subprogram overloading 
mechanisms as well as forward subprogram declaration 
mechanisms to disambiguate subroutine calls having the same 
name based on discerning different argument lists. 

When a callee, say Y, is called by a caller, X, at different 
locations in the code,  the graph uses the “most pessimistic” call, 
i.e. the one from the most deeply nested loop, to represent the 
caller-callee relationship of X and Y. 

3.5 AppSleuth Trace File Analyzer 
The goal of trace file analyzer is to get the profiling information 
of subprograms calls and SQL statements in terms of duration, 
number of executions, etc., and to combine the profiling 
information with the static code analysis to get a whole picture of 
the potential delinquent design patterns in the source code. This 
will also give insight into delinquent patterns in external 
languages such as Java and C. 

The hierarchical profiler in Oracle provides a temporal trace of 
the basic events at the call stack of subprograms and records 
simple information for each individual event such as subprogram 
entrance and returns, elapsed time between neighboring events, 
etc. The subprogram duration and number of executions of a 
particular code segment can be obtained by parsing and analyzing 
such a trace file.  

SQL Server can trace over 200 kinds of events. Start and 
complete events for stored procedures can trace the performance 
times of stored procedures. SP:StmtStarting and 
SP:StmtCompleted can be utilized to trace stored function calls, if 
any. SQL Server’s trace files are binary files which cannot be 
directly parsed by AppSleuth. So a built-in function 
(fn_trace_gettable) loads the trace file into tables which can be 
exported as a text file and analyzed by AppSleuth to get 
information like duration of stored subprograms, numbers of 
executions, etc. 

In both systems, the profiling mechanism gives more detailed 
performance information like CPU time, number of block reads, 
and so on for each SQL statement execution. Oracle has a 
separate SQL trace functionality. SQL Server presents SQL trace 
using the same uniform view as all the other tracing events. But 
neither system relates SQL statements to the stored subprograms 
which issue them. AppSleuth does this.  

AppSleuth links those SQL statements back to the PL/SQL source 
code files as follows: When parsing the source code files, 
AppSleuth collects the static SQL statements of a procedure into a 
“footprint”. Because some of these SQL statements appear inside 
a conditional or inside a looping construct, they may appear in the 
trace several times, perhaps with slight changes to constants. 
AppSleuth parses the SQL trace file and determines which 
standalone stored subprogram left footprints in the SQL trace file. 
If more than one subprogram contains the same SQL statement s, 
then neighboring SQL statements in the trace may help to 
disambiguate the source of s. For example, if s1 could come from 
subprograms P1 or P2 and s2 could come from P2 or P3, then if 
the trace shows s1 and s2 in close proximity, they probably come 
from an invocation of subprogram P2.  

If there is no such stored procedure, then statements that differ 
only by a constant or in some other minor way may come from a 
programming language (e.g. Java, C) loop. The footprint notion 
identifies which SQL statements belong to which stored 
procedure or suggests the need to look at some programming 
language code that might be causing the issue. Our current 
implementation performs this trace analysis for Oracle. Achieving 
this on SQL Server is still in the works. 
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Figure11. AppSleuth's anatomy of subprograms and two kinds of edges between caller and 

callee in its output. Inside subprogram X, dash lined arrows with sign ‘+’  means multiple call 
statements or loop structures may exist; sign ‘*’ near loop structures means these structures 

can be nested to arbitrary depth. We omit other kinds of information using ellipsis. 

4. TRAVEL IS US: a sanitized case study 
This section presents a case study of global tuning at the 
application level. The application is a web-based travel agency 
whose database consists of 1000 hotels, each having between one 
and fifteen room types. A room type could be “double room with 
sea view”, “suite with balcony”, etc. There are approximately 
1500 different room types for all the hotels. Each hotel for each 
room type may charge different amounts depending on the day of 
the week (or the season, though season and vacation periods are 
processed separately). A customer can make a reservation for a 
certain number of rooms of one or more certain room types in one 
or more hotels for a period of time. So a certain room type in a 
certain hotel on a given date forms a sku. 

In the application, every room type in every hotel has a literal 
description in English (the base language). The descriptions must 
be translated into 10 other languages.  

This excerpted part from the application deals with translating the 
descriptions for designated languages for each sku.  

4.1 Schema Information 
Tables involved in this part of the application include (throughout 
this example, we present only those columns relevant to tuning; 
all indexes are non-clustered): 

4.1.1 trans_dict 
The table trans_dict (Figure 12) stores the dictionary of 
translations for all descriptions in all languages. Here the column 
phrase stores the description in the language indicated by the 
column lang; each description, indicated by desc_id, is stored in 
as many rows as there are the languages. So the primary key of 
trans_dict is (desc_id, lang).  

 
 

Figure 12. Columns of table trans_dict, with primary key 
(desc_id, lang) and an index on desc_id 

trans_dict ( 
 desc_id    SMALLINT, 
 phrase    VARCHAR2(255), 
 lang    CHAR(2) 
) 

Loop structure

Loop structure  

Nested subprogram 
definitions (PL/SQL 
only) 

stored subprog Y 

……

stored subprog Z 

……

The thick edge 
indicates Z is called 
from within a loop 
statement in X 

The thin edge 
indicates Y is called 
from the top level of 
X 

Call stmt

Call stmt

+ + 

*

+ + 
* 

……

……

…… ……

standalone stored subprogram X  

 
 
 
 
 
 
 
 
          AppSleuth Code Parser 

Code Structure Analyzer Trace File Analyzer 

Output Generator 

Source files 

Trace file 

Figure 8. Components of AppSleuth. Source files are code. The trace file contains SQL that hits 
the database, but does not identify the source of that SQL. 
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4.1.2 sku_translated 
The table sku_translated (Figure 13) stores all the already 
translated descriptions for the skus. During the processing of each 
sku, the translations of its description to all languages are 
appended to the table sku_translated. This is by far the largest 
table in the application. The primary key for this table is (sku_id, 
lang). 

 

4.2 Pseudo Code of the Application 
In the application’s initial design, each hotel is processed as 
follows: 

4.2.1  skut_manager 
Skut_manager receives as an input argument a hotel id and calls 
skut_loop to do the translation of all room types for all dates (i.e. 
all skus) for this hotel unless the hotel needs to be checked (Figure 
14).  

 

4.2.2 skut_loop 
Procedure skut_loop (Figure 15) just does the translation for each 
sku through the procedure skut_tran.  

 

4.2.3 Other stored procedures along the way 
In skut_tran, the step of performing the translation is implemented 
by the stored procedure skut_tran_sku.  

Procedure skut_tran_sku, in turn, calls skut_sku_dict to look up 
the dictionaries for the designated translation of the sku. After 

every translated entry for the sku is returned, the procedure 
inserts a row into sku_translated.  

4.3 AppSleuth in Application Tuning 
The first graph (Figure 16) presents the analysis of structure 
(before the analysis of the trace log). The graph shows more than 
we’ve discussed, but one can see the flow from skut_mangager 
through skut_loop in the description translation path.  It turns out 
that another path translates “attributes of rooms” though we don’t 
analyze this further. 

Calls from within loops are represented by bold edges and the 
“loop layer” is the depth of the nested loop in the application. The 
line numbers of the calls are also shown. 

 For purposes of exposition, we restrict our attention to the core 
of the application. 

 

 

4.3.1  Two Other Working Tables 
• hotel_desc table: 

Table hotel_desc (Figure 17) records descriptions in English for 
hotel-roomtype pairs. Translating such descriptions from English 
to all other languages entails a lookup in the dictionary table 
trans_dict and the appending of the translated descriptions to the 
table sku_translated. The primary key of hotel_desc is (hotel_id, 
room_type_id) pair. There is an index on columns of (hotel_id, 
room_type_id). 

  

hotel_desc ( 
  hotel_id   SMALLINT, 
  room_type_id  SMALLINT, 
  descriptioninEN VARCHAR2(255) 
 ) 

Figure 16. Output of AppSleuth for the original application 
code 

Figure 15. Pseudo-code for skut_loop. 

skut_loop(hotel_id, home_lang, target_lang) 
For every sku (hotel_id, room_type, date) of the given 

hotel 
  call skut_tran to do the actual translation for the 
current sku of its description in the home language; 

End loop; 

Figure 14. Pseudo-code for skut_manager. 

skut_manager(hotel_id) 
1. Get the status for hotel_id, and from_language, 
to_language, for its translation 
2. If the hotel’s status is ‘need checking’ then 
 skut_check(hotel_id, from_language, to_language); 
    Else if the hotel’s status is ‘passed checking’ then 
 skut_loop(hotel_id, from_language, to_language); 
    End if; 

Figure 13. Columns of sku_translated 
with primary key (sku_id, lang) 

sku_translated ( 
 sku_id   SMALLINT, 
 translated  VARCHAR2(255), 
 lang   CHAR(2), 
 … 
) 
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• sku_def table: 

Table sku_def (Figure 18) records the mapping from all the 
generated skus to hotel – roomtype pairs. The primary key is 
sku_id. 

 
There is an index on the columns of (hotel_id, room_type_id, 
sku_id). 

4.3.2 The Original Application and Stored 
Procedures Involved 
The original application is shown in Figure 19 for one typical 
execution of processing 10 hotels. The processing logic in pseudo 
code is as follows: 

 
Figure 19. Pseudo-code for the original application design. 

The application core consists of the following stored 
procedures: 

• manager 
• preparehotel 
• skuttran 
• insertsku. 

Stored procedure manager (Figure 20) receives a set of hotel ids 
to work on.  For each hotel id, manager calls preparehotel to 
prepare for the translation.  The pseudo code is like the following:  

 
Figure 20. Pseudo code for manager. 

Stored procedure preparehotel (Figure 21) finds all the skus 
belonging to the hotel, and does translation for each sku: 

 

 
Stored procedure skuttran (Figure 22) does the translation of a 
sku’s English description into all the languages: 

 
The last stored procedure insertsku (Figure 23) does the insertion 
into sku_translated. The pseudo code is  

 

4.3.3 AppSleuth’s output without a trace file 
After analysis of the code, AppSleuth outputs the call graph of 
Figure 24. We can see the loop structures detected by AppSleuth 
which form a critical path.  

4.3.4 AppSleuth’s output with a trace file 
After doing the translation for a set of 10 hotels with the 
execution traced, AppSleuth outputs the result with trace analysis 
in Figure 24. The brown edges show the actually executed calls. 
The call graph does a best effort guess of the number of times 
each stored procedure has executed. The elapsed time in each 
node is the total execution time of that stored subprogram. So the 
time shown in the top procedure manager is the total elapsed time 
for processing translations for 10 hotels (including all 
subroutines). 

preparehotel (i_hotel_id) 
 Find all the skus belonging to this i_hotel_id from 
sku_def; 
 For each sku 
  get its description from the hotel_desc table; 
  do translation for this description (calling 
skuttran(sku_id, descriptioninEN)) 
 End for; 

Figure 23. Pseudo code for insertsku. 

insertsku(sku_id, description, language) 
 insert into sku_translated(sku_id, description, language); 

skuttran(sku_id, descriptioninEN) 
 Find the desc_id for this descriptionEN in trans_dict 
 For each of the phrases with the same desc_id  
  Call insertsku to do the insertion. 

End for;

Figure 22. Pseudo code for skuttran. 

Figure 21. Pseudo code for preparehotel. 

manager(a set of hotel_ids) 
 For each hotel_id 
  Call preparehotel(hotel_id) 
 End for; 

Figure 18. Columns of the table sku_def, with 
primary key sku_id and an index on (hotel_id, 

room_type_id, sku_id) 

sku_def ( 
  sku_id   SMALLINT, 
  hotel_id  SMALLINT, 
  room_type_id SMALLINT 
 ) 

Figure 17. Columns of the description table for hotels and 
room types with primary key (hotel_id, room_type_id). 

There is an index on (hotel_id, room_type_id) 

input: a set of hotel ids 
 for each hotel_id,  

find all the skus in this hotel.  
For every such sku, get its description in English 

For all the supporting languages  
Append the description in the current 
language for the sku  
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The graph of Figure 25 shows that the delinquent design pattern 
starting at preparehotel is in fact a superdelinquent, because the 
total elapsed time is large and the number of subroutine calls 
grows as one descends the tree from 10 calls to 1068 calls to 
11748. (We applied both the Oracle SQL Tuning Advisor and 
Quest SQL Optimizer, but neither recommended any changes.)  

4.3.5 Table design improvement 
A tuner looking at this graph would follow the critical path from 
preparehotel to skuttran to insertsku and start to take a look at the 
queries and the table design. Analysis of the code shows that 
translations are done for each sku. The inserted description for 
each sku depends on the possible language. There are 11 
languages involved in the application, so each of the 1068 skus in 
the 10 hotels is inserted into sku_translated table for all the 11 
languages (1068 * 11 = 11748) .On the other hand, the call to the 
translation routine depends only on hotel_id and room_type. (This 
makes sense because the description “double bedroom with a sea 
view” does not change over time.) So the denormalization of 
sku_translated table is one root cause of the slow performance.  

On the other hand, lots of (unshown) application code depends on 
the existence of the sku_translated table, so we first consider how 
to insert into it more efficiently. We do so by taking descriptions 
from a table that depends only on hotel_id, room_type_id. So the 
first fundamental improvement is to alter the hotel_desc table by 
replacing descriptioninEN by desc_id (having values from the 
domain of trans_dict.desc_id) (Figure 26).  

 
To shorten the length of the critical path of repeatedly called 
subprograms, given the i_hotel_id as the input argument, the 
insertion into sku_translated table can be implemented using one 
insert-select statement in a three table join (Figure 27). 

 
Figure 27. A single insert-select replaces nested loops. 

This improvement greatly reduces the numbers of calls and the 
elapsed time as shown by Figure 28: 

 
Figure 28. AppSleuth's output after the first improvement.  

Specifically, the total elapsed time improves by a factor of nearly 
200 (from 21 seconds to 0.11 seconds). The call graph is of 
course radically simplified too, potentially enhancing 
maintainability. 

4.3.6 Second Improvement of the Application 
Reexamining the table schema design of the application, we 
noticed that it would be beneficial to reduce the three-table join to 
a two-table join by adding the desc_id column to the sku_def 
table instead of to the hotel_desc table. Although this 
denormalizes the sku_def table, the number of rows remains 
unchanged and one table is eliminated from the join. (We tried 
Quest SQL Optimizer and Oracle SQL Tuning Advisor to tune 
the SQL statement of Figure 27, but neither suggested any 
improvement.) Table sku_def becomes (Figure 29):  

INSERT INTO sku_translated (sku_id, translated, lang) 
SELECT sku_def.sku_id, trans_dict.phrase, 
trans_dict.lang 
FROM sku_def, hotel_desc, trans_dict 
WHERE sku_def.hotel_id = hotel_desc.hotel_id 
  AND sku_def.room_type_id = hotel_desc.room_type_id 
  AND hotel_desc.hotel_id = i_hotel_id 
 AND hotel_desc.desc_id = trans_dict.desc_id 

hotel_desc ( 
  hotel_id  SMALLINT, 
  room_type_id SMALLINT, 
  desc_id   SMALLINT 
 ) 

Figure 26. Optimized table schema for hotel_desc.

Figure 25. Output of 
AppSleuth for the original 
application code as well as 

the trace. 

Figure 24. Output of 
AppSleuth of the original 

simplified version. 
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The insert-select with the two-way join is much simpler (Figure 
30): 

 
Figure 30. An even more optimized insert-select statement. 

Denormalization improves the query performance by a factor of 
nearly 50% as shown in Figure 31. 

 
Figure 31. Output of AppSleuth after the second 

improvement. 
Overall, these two improvements reduce the overall elapsed time, 
by a factor of 300 compared to the original design (from 21 
seconds to 0.07s). This occurred without changing indexes, the 
buffer management, or hardware. No tool that we know of would 
help point the way leading to either improvement. 

5. CONCLUSION AND FUTURE WORK 
AppSleuth parses database engine source code and the trace log. 
Happily, it does not need to parse programming language (e.g. 
C++, Java, R etc) code.  The reason is that delinquent design 
patterns in the programming context can be detected by seeing 
their effects on the trace log. For example, a cluster of queries that 
differ only by a constant indicate an iteration through a loop in 
some external programming language context. Further, timing 
information from the database trace log helps to find those 
delinquents that are on a critical path, the “superdelinquents”. 
AppSleuth displays these in a global flow graph to focus the 
attention of a tuner who can often (as in our sanitized travel 
application example) improve performance by an order of 

magnitude or more. As far as we know, this is the first global 
application code analyzer for database tuning ever built.  

We have focused on the misuse of loops, because that was the 
most challenging-to-detect tuning problem we knew of that has 
great practical importance. Detecting other tuning bugs (like 
sequences of SQL statements that take a long time) falls out 
naturally. 

Future work includes generalizing the tool to discover other 
delinquents and exploiting the synergy between our tool and 
statement-at-a-time and physical design tools. The eventual goal 
is to go beyond the detection of problems to explicit suggestions 
for improvement. Right now, that is the programmer’s job. 

When we do database tuning professionally, we find that we can 
sometimes so much improve applications by correcting 
delinquent design patterns that we upset our clients. It's 
remarkably hard to show an application programmer that his or 
her "extremely complicated" application which takes 9 hours in 
production can in fact run in under a minute using much less 
code. Often such a programmer will ignore the suggestion. With a 
tool like AppSleuth, the tuner can deflect the anger to the 
software. 
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