
AppSleuth: a Tool for Database Tuning at the Application
Level

Wei CAO*
School of Information, Renmin University of China

59 Zhongguancun Avenue, Haidian, Beijing, 100872,
P.R.C.

caowei@ruc.edu.cn

Dennis SHASHA†

Department of Computer Science, New York University

251 Mercer Street, New York, NY 10012, U.S.A.
shasha@cs.nyu.edu

ABSTRACT
Excellent work ([1]-[6]) has shown that memory management and
transaction concurrency levels can often be tuned automatically
by the database management systems. Other excellent work ([7]]-
[14]) has shown how to use the optimizer to do automatic
physical design or to make the optimizer itself more self-adaptive
([15]-[17]). Our performance tuning experience across various
industries (finance, gaming, data warehouses, and travel) has
shown that enormous additional tuning benefits (sometimes
amounting to orders of magnitude) can come from reengineering
application code and table design. The question is: can a tool help
in this effort? We believe so. We present a tool called AppSleuth
that parses application code and the tracing log for two popular
database management systems in order to lead a competent tuner
to the hot spots in an application. This paper discusses (i)
representative application "delinquent design patterns", (ii) an
application code parser to find them, (iii) a log parser to identify
the patterns that are critical, and (iv) a display to give a global
view of the issue. We present an extended sanitized case study
from a real travel application to show the results of the tool at
different stages of a tuning engagement, yielding a 300 fold
improvement. This is the first tool of its kind that we know of.

Keywords
Database tuning, application-level optimization, performance tool

1. INTRODUCTION
Database administrators can call on a variety of tools to help with
physical configuration ([7]-[14]), system monitoring and
maintenance ([20]-[23]).

Current automatic physical tuning tools have become
sophisticated. Given a representative workload of SQL
statements; they find the best physical design for the workload.
They do this based on tight interaction (what-if analysis [11] or
instrumentation [10]) with the cost-based query optimizer.

Beyond that effort in automatic physical design, Oracle’s SQL
Tuning advisor [18] can collect statistics, correct system
parameters, and recommend changes to SQL statements. (In the
running example of this paper, the Tuning Advisor found high
load SQL statements and identified bad query features like
Cartesian products.) Such tools work at the SQL statement level,
aiming to find beneficial physical structures to the SQL workloads
or to spot the problematic SQL statements. AppSleuth, as a
database tuning tool at the application level, can incorporate and
work with such tools to offer better performance tuning
suggestions to users.

Self-tuning memory management in database systems has also
gained much attention. Reference [1] proposes adaptive memory
allocation in DB2 based on monitoring the characteristics of the
workload during run time. Other commercial products also have
implemented self-tuning memory management facilities to
improve the performance of the database systems ([3], [4]).
DBMS designers have worked hard to make the internals self-
tuning and self-managing. Since how the internals work
adaptively is beyond the control at the application level,
techniques in this category are orthogonal to that of AppSleuth.
AppSleuth works at the application code level. In our tuning
consulting experience, changing application code can lead to 2 to
100 times performance improvements. Thus, tuning efforts at
different levels can combine to obtain the best performance for
database applications.

Oracle 11g has a helpful feature called Hierarchical Profiler [18]
which can profile PL/SQL program executions with the number of
calls and the elapsed time of subprograms and SQL statements.,
Hierarchical Profiler differentiates self time from descendant time
within caller-callee relationships. The package offers analysis of
the raw profile data and generation of a group of reports in HTML
format. That achieves the same functionality as a subset of what
we have in our analysis of SQL trace below.

Database applications’ code run in two different contexts: the
programming context, which deals with programming logic in
languages like Java or Python, and the database context, which
entails database accesses, such as SQL statement processing,
stored procedure calls etc. Frequent switches between the two
contexts will hurt performance seriously. Reference [37] proposes
a way to partition database applications into two parts: one part
runs on the application server, the other part runs on the database
server. The goal is to minimize the roundtrips between the two
servers while retaining the semantics of the original application.
The proposal does an elegant job of allocating proper burdens
onto eligible servers. But such optimized separation at the server
level deals with only one of the factors that affect performance.
One needs to look at the application level and its many
“delinquent” design patterns.

* Work done while the author visited New York University under the support of
China Scholarship Council’s Graduate Education Program, and later partially
supported by Natural Science Foundation of China (No. 61202331, 60170013,
60833005,61070055, 91024032, 91124001), and the National 863 High-tech
Program (No. 2012AA010701, 2013AA013204).
† Work supported by U.S. National Science Foundation grants 0922738, 0929338,
1158273
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EDBT/ICDT’13, March 18–22, 2013, Genoa, Italy.
Copyright 2013 ACM 978-1-4503-1597-5/13/03…$15.00.

589

There are some third-party tools to help database application
developers produce program code of high quality. Quest
Software's (Now Dell’s) TOAD [24] is a proprietary tool that
offers help at the application programming level for different
DBMS’s (see http://www.orafaq.com/node/846 for a tutorial
explanation for Oracle’s PL/SQL). Primarily, it consists of
software engineering advice of the form "make your variable
names self-describing" and encouragement to reduce code
complexity as is measured by metrics such as McCabe's
cyclomatic complexity (which measures the number of
independent paths through program code -- the fewer the better).

Within TOAD, a special module called CodeXpert offers SQL
performance tuning help. CodeXpert allows the user to invoke a
pre-defined set of rules or to create new ones. The rules pertain to
single SQL statements. An example would be: find all SQL
statements that join more than four tables. A more sophisticated
example is to find queries that have insufficient index support. To
identify the latter, CodeXpert runs the queries through the
Explain Plan facility. CodeXpert then simulates the addition of
possibly useful indexes and reruns Explain Plan. Such tools work
well for single SQL statements. AppSleuth’s methodology
extends the tuning capabilities to the multi-statement level.

Other third-party tools, proprietary or open source, which can do
sophisticated static code analysis include klocwork[31],
fortify[32], coverity[33], Enterprise Architect[34], Findbugs[35],
PMD[36], etc. All these tools can statically analyze code written
in one or more of the languages like C/C++, java, C#, Delphi, VB
etc. NIST annually holds a Static Analysis Tool Exposition
(SATE) [27] to advance research in static analysis tools to find
bugs related to security problems. But these tools or solutions
analyze code structures and dependencies to find security
vulnerabilities and programming bugs like resource leaks,
unreferenced variables etc. and report the defects in details. They
mainly work in the context of a specific programming language,
ignoring database interactions.

Researchers from Microsoft proposed a static analysis
methodology for database application binaries in a general sense
[28]. Their method enhances traditional optimizing compilers
with knowledge about data access APIs (e.g. ADO.NET) and
database domains. The solution is based on a compiler
framework, adopting data flow and control flow analysis
customized for database access, forming “a layer of static analysis
services for database applications”, on top of which vertical tools
are built with different functionalities such as detecting SQL
injection vulnerabilities, “extracting the SQL workloads from the
binaries”, or identifying potential data integrity violations. The
static analysis framework aims to make the application code more
DBMS-friendly, but treats performance as one feature among
many auxiliaries of collecting workload etc.

[29] proposed a profiling infrastructure that, during application
run time, logs events from different contexts: instrumented
application events, ADO.NET tracing and Microsoft SQL Server
tracing. After correlating and matching traces from the
application context and those from DBMS context, a
summary/detail view is given involving various attributes like
function names, execution time, number of invocations, SQL text,
number of reads/writes, etc. The “global” profiled data view is the
basis for database application developing tasks like detecting
problematic functions which have caused DB server deadlocks, or
suggesting query hints in application code. Profiling is helpful to

spot performance problems and to give tuning suggestions.
AppSleuth currently takes advantage of DB server side profiling
together with static source code analysis to locate the delinquent
design patterns in application code. Extensions to profiling in
other contexts is part of the future work.

As database performance tuners, we applaud the general use of
database tools that either suggest indexes or flag high-load SQL
statements while other tools seem less database performance
oriented (e.g. static code analysis tools or profiling tools). To us,
static methods are inherently limited, because the performance of
SQL statements depends on their runtime behavior (e.g. how often
they are invoked, the size of the data on which they operate). On
the other hand, many code design patterns that cause the greatest
performance problems in database context may go beyond the
single-SQL-statement level, spanning multiple statements, or
sometimes even multiple programs. For example, loops may not
be present in SQL but rather in Java or some other language that
are not accessible to the tuner. So combining static and runtime
analysis at the application level to find and validate the delinquent
design patterns is necessary to improve database performance.
That is the philosophy of AppSleuth.

2. DELINQUENT DESIGN PATTERNS
Even though hardware has become vastly faster over the last
decades, database tuning continues to be necessary. The accepted
reason for this is that databases grow in size as new data sources
arise. The problem with this explanation is that indexes should
have mitigated this effect enough so data access time would grow
only with the logarithm of the data size, not linearly. But the
reality is often the opposite. We think the deeper reason is that
application programmers mistreat their databases in their code.
Typical application delinquent design patterns include:

1) Insert records into a table one at a time, crossing protection
boundaries and flushing the instruction cache each time. For
example, the following code snippet (In Figure. 1) in Oracle
PL/SQL runs for 20 minutes with appropriate indexes on the table
sku_word (several hours without indexes) having about 3,400,000
rows and on the table hotel_desc with 220,000 rows. (A sku is a
particular instance of a product type. In our running example, it’s
a particular room type in a hotel on a particular night.)

By contrast, all the work can be done in one insert-select
statement (Figure 2) in about one minute on the same hardware
and with the same indexes (a factor of 20 times in improvement).

2) Fetching one record at a time from within, say, a Java loop as
opposed to selecting many records into an array. For example, the
following java code queries the descriptions for the first 1000
hotels (Figure 3).

By contrast, the following code (Figure 4) issues one query to the
database and fetches the result into a collection data type.

3). Processing one record at a time within the stored procedures of
a database management system, testing for conditions within that
record using if statements. For example, suppose that for each
hotel and each room_type, the price varies based on the day of the
week. We may have code like the following Figure 5 using if
statements.

A better way would be to translate the if condition into one or
more where clauses to update many records at a time (Figure 6).

590

The speed-up is over 6 times for updating a Reservation table
having approximately 40 thousand records.

But even this improvement would require 7 update statements,
one for each day of the week. So an even better way would be to
have a table of prices S(hotel, room_type, dayofweek, price) with
7 items for every (hotel, room_type) pair and then do a join
(Figure 7), which, under the same setting, obtains a factor of three
speed-up compared to 7-update-statement approach, bringing the
overall time to 1/20th the time compared to the original “if-
condition” way. If proper indexes are built on the involved tables,
the final improvement goes to 1/500th the original time.

These examples of poor performance in the initial design show
the tendency of programmers to do record-at-a-time programming
as opposed to set-at-a-time programming. This is compounded by
the use of stored procedures, because a subprogram A may loop
on records and call a subprogram B for each record. B may do

DECLARE
l_sku_id INTEGER;
l_hotel_id VARCHAR2(10);
l_room_type_id INTEGER;
l_desc hotel_desc.description%TYPE;
CURSOR c1 IS SELECT sku_id, hotel_id, room_type_id
FROM sku_word;
BEGIN

OPEN c1;
 LOOP
 FETCH c1 INTO l_sku_id, l_hotel_id,
l_room_type_id;
 EXIT WHEN c1%NOTFOUND;
 FOR item IN (SELECT description FROM
hotel_desc WHERE hotel_id = l_hotel_id AND
room_type_id = l_room_type_id)
 LOOP
 INSERT INTO drs_sku(id, description)
 VALUES (l_sku_id, item.description);
 END LOOP;
 END LOOP;
 CLOSE c1;
END;

Figure 1. Delinquent design patterns for insert.

INSERT INTO drs_sku(id, description)
SELET sku_id, description
FROM sku_words, hotel_desc
WHERE sku_words.hotel_id = hotel_desc. hotel_id
AND sku_words.room_type_id =
hotel_desc.room_type_id;

Figure 2. An equivalent single insert-select statement that
is 20 times faster.

{
 ResultSet rs = null;
 Statement stmt = conn.createStatement();

l_hotel_id = 1;
while (l_hotel_id <= 1000)
{

 rs = stmt.executeQuery(“select description from
hotel_desc where hotel_id =” + l_hotel_id);
 while (rs.next())
 {…}

}
}

Figure 3. Execute an SQL statement many times in a Java
loop.

{
 ResultSet rs = null;
 Statement stmt = conn.createStatement();
 rs = stmt.executeQuery(“select description from
hotel_desc where hotel_id between 1 and 1000”);
 while (rs.next())
 {…

}
}
Figure 4. Single SQL statement that implements the same

functionality.

UPDATE Reservation
SET price = (SELECT price FROM S
 WHERE
 weekday(Reservation.this_date) = S.dayofweek
 AND Reservation.hotel = S.hotel
 AND Reservation.room_type = S.room_type)

Figure 7. Code after introducing a new table. Here we
have included the hotel and room_type constraints, so

the full logic of the query is given.

Figure 6. The if condition becomes a where clause
that can apply to many rows at a time.

UPDATE Reservation
SET price = Sunday_price
WHERE weekday(this_date) = 0;

Figure 5. Process data using IF statements to insert
the price into a table Reservation for a particular date

“this_date”. (We omit constraints on hotel and
room_type for the sake of exposition.)

…
IF weekday(this_date) == 0 THEN
 Price = Sunday_price;
…
ELSIF weekday(this_date) == 1 THEN
 Price = Monday_price;
ELSIF …
END IF;

591

some joins and then again call subprograms for each record
produced. Tools like the Oracle Tuning Advisor or CodeXpert
don’t look for such problems.

These problems may appear to be a symptom of what Dave Maier
famously called the "impedance mismatch" between the record-
at-a-time C-style language and the bulk database language. But
the deeper problem is that application programmers perversely
embrace the impedance mismatch by treating the database as a
giant record store. Programmers are trained (in schools, alas) to
write programs on small amounts of data. As a result, they reach
the workplace and test their program on 100 record databases.
With such small databases, inserting records one at a time works
blindingly fast. They are then surprised when it takes hours to
insert a million records.

4). Denormalizing tables for convenience of query performance at
horrendous costs to updates

This is a schema rather than code delinquent design pattern. From
our tuning experience, we have noticed that delinquent designs
occur together – denormalization, record-at-a-time processing,
poor use of indexes and excessive use of subqueries happen in
close proximity to one another.

Code copying causes delinquent design patterns to proliferate
across an application. The tuner normally doesn't have time to
correct every problem. For this reason, it is essential to know
which procedures are costing the most time. To do this, a tool
must examine the database statements found in the log and
determine where they come from. The goal is to find the
superdelinquents -- delinquent design patterns that take up lots of
time -- and then turn them over to a competent tuner.

AppSleuth both analyzes code and the DBMS’s tracing facility to
discover superdelinquents. AppSleuth’s current implementation
targets Oracle PL/SQL and Microsoft TSQL. We plan to
implement versions for other popular commercial DBMS’s and
other delinquent design patterns (as found in database tuning
books [25] and online guides) in other popular programming
languages in the future. The basic architecture – performs a global
parse, identifies critical paths, and matches against the database
trace – will change little. We are happy to share the source code
of AppSleuth to members of the community who are interested to
work on it.

The rest of this paper contains three sections: the architecture of
AppSleuth, a case study, and a conclusion.

3. COMPONENTS OF APPSLEUTH
AppSleuth parses and analyzes the application source code,
collects useful statistics from the tracing log, detects potential
critical hot spots in them and presents visualized output to a tuner.
AppSleuth has four main parts: (i) a parser which underlies both
(ii) a structure analyzer for the application source code, and (iii) a
log analyzer for trace files. All three components feed a (iv)
visualization output generator. The different components are
shown in Figure 8.

In addition, AppSleuth builds on top of Oracle’s DBMS advisor
to suggest physical design decisions based on the collected
workload of SQL statements. Our recommendation is to consider
those changes after eliminating delinquent design patterns.

3.1 Brief Introduction to PL/SQL and
Transact-SQL
PL/SQL and Transact-SQL (TSQL for short) are two full (Turing-
Complete) programming languages at the database server side
which includeprocedures, conditionals, loops, error handlings, and
integrated SQL. PL/SQL offers subprogram overloading while
TSQL does not. In order to do a global analysis of performance
issues, AppSleuth parses the code and identifies delinquent design
patterns in semantic actions. Because these patterns include loop
and subroutine calls, the parser has to detect blocks, subprograms
possibly at different levels, and different kinds of loops (e.g.
basic, for, while, and cursor loops for PL/SQL).

Here are specifications of for loop constructs in PL/SQL (Figure
9):

The following is the syntax of loops in TSQL[26] (Figure 10):

3.2 Inputs to AppSleuth
AppSleuth takes one or more source code files as inputs and
locates delinquent design patterns as well as forms the intra- and
inter-file call graph. For example, in our running travel
application case study, AppSleuth for PL/SQL reads in all the
source code files, analyzes the structure in each file and finds the
inter-file calling relationships between them. After viewing the
inter-file call graph, the tuner can zoom into one specific file to
look at its internal structures and intra-file call graph which
illustrates nested subprogram calling logic. AppSleuth for TSQL
works in a similar but more straightforward way because in TSQL
all the subprograms are standalone. It doesn’t have PL/SQL’s
packaged or nested subprograms.

AppSleuth locates the relevant programming language code by
comparing the database trace against programming language files
that issue SQL statements as well as stored procedures. The parser

Figure 10. Syntax for while loop statements inTSQL.

while_statement ::=
WHILE Boolean_expression
 { sql_statement | statement_block | BREAK |

CONTINUE }

Figure 9. Syntax for basic and cursor for loops statements in
PL/SQL.

for_loop_statement ::= [<<label_name>>]
 FOR index_name IN [REVERSE] lower_bound ..
upper_bound

 LOOP
Statements

 END LOOP [label_name] ‘;’

cursor_for_loop_statement ::= [<<label_name>>]
 FOR record_name IN (cursor | ‘(‘select_statement ‘)’)

LOOP
Statements

END LOOP [label_name] ‘;’

592

also records execution times to see which programming language
source code files and stored subprograms require special
attention.

3.3 Output of AppSleuth
The output of AppSleuth presents a global picture of database
problems by showing a call graph with critical paths highlighted.
Besides the visualization, AppSleuth also (i) collects the SQL
workload of the application, which is very helpful for physical
database design, (ii) counts the number of SQL statements in
subprograms, and (iii) analyzes SQL statement attributes such as
the number of tables referenced in a SQL statement. AppSleuth
for PL/SQL can also output index building suggestions by calling
the database tuning advisor interface with the workloads collected
during the analysis.

3.4 AppSleuth Static Code Analysis
We have built a lexer and a parser using flex [39] and bison [38]
respectively for both PL/SQL and TSQL source code,
implementing the full grammar of each of those languages.
During static analysis, the LALR parser scans each PL/SQL or
TSQL source file and analyzes its structure to detect loops and
subroutine calls as well as more local performance-related
features such as the number of SQL statements in subprograms,
the variables and arguments which are declared but never
referenced in the source code, and the number of tables in SQL
statements. The output generator produces a call graph with thin
arrowed-lines for calls from the top level of the caller procedure
to the callee procedure and thick arrowed-lines if the caller
procedure makes the call from within a loop, which suggests a
possibly delinquent pattern that might hurt performance. Figure
11 illustrates this.

3.4.1 Finding Loop Structures
Inside loop statements there is much information worth analyzing.
For example, SQL statements within cursor loops are a delinquent
design pattern. Replacing them by a single SQL statement might
help as we saw in section 2.

3.4.2 Finding Subprogram Calls
AppSleuth must determine which subprogram is being called in
the source code based on the name of the subprogram and the
calling parameters. Because PL/SQL allows overloading of
nested-level subprogram and packaged subprogram names,
AppSleuth for PL/SQL examines all subprogram overloading
mechanisms as well as forward subprogram declaration
mechanisms to disambiguate subroutine calls having the same
name based on discerning different argument lists.

When a callee, say Y, is called by a caller, X, at different
locations in the code, the graph uses the “most pessimistic” call,
i.e. the one from the most deeply nested loop, to represent the
caller-callee relationship of X and Y.

3.5 AppSleuth Trace File Analyzer
The goal of trace file analyzer is to get the profiling information
of subprograms calls and SQL statements in terms of duration,
number of executions, etc., and to combine the profiling
information with the static code analysis to get a whole picture of
the potential delinquent design patterns in the source code. This
will also give insight into delinquent patterns in external
languages such as Java and C.

The hierarchical profiler in Oracle provides a temporal trace of
the basic events at the call stack of subprograms and records
simple information for each individual event such as subprogram
entrance and returns, elapsed time between neighboring events,
etc. The subprogram duration and number of executions of a
particular code segment can be obtained by parsing and analyzing
such a trace file.

SQL Server can trace over 200 kinds of events. Start and
complete events for stored procedures can trace the performance
times of stored procedures. SP:StmtStarting and
SP:StmtCompleted can be utilized to trace stored function calls, if
any. SQL Server’s trace files are binary files which cannot be
directly parsed by AppSleuth. So a built-in function
(fn_trace_gettable) loads the trace file into tables which can be
exported as a text file and analyzed by AppSleuth to get
information like duration of stored subprograms, numbers of
executions, etc.

In both systems, the profiling mechanism gives more detailed
performance information like CPU time, number of block reads,
and so on for each SQL statement execution. Oracle has a
separate SQL trace functionality. SQL Server presents SQL trace
using the same uniform view as all the other tracing events. But
neither system relates SQL statements to the stored subprograms
which issue them. AppSleuth does this.

AppSleuth links those SQL statements back to the PL/SQL source
code files as follows: When parsing the source code files,
AppSleuth collects the static SQL statements of a procedure into a
“footprint”. Because some of these SQL statements appear inside
a conditional or inside a looping construct, they may appear in the
trace several times, perhaps with slight changes to constants.
AppSleuth parses the SQL trace file and determines which
standalone stored subprogram left footprints in the SQL trace file.
If more than one subprogram contains the same SQL statement s,
then neighboring SQL statements in the trace may help to
disambiguate the source of s. For example, if s1 could come from
subprograms P1 or P2 and s2 could come from P2 or P3, then if
the trace shows s1 and s2 in close proximity, they probably come
from an invocation of subprogram P2.

If there is no such stored procedure, then statements that differ
only by a constant or in some other minor way may come from a
programming language (e.g. Java, C) loop. The footprint notion
identifies which SQL statements belong to which stored
procedure or suggests the need to look at some programming
language code that might be causing the issue. Our current
implementation performs this trace analysis for Oracle. Achieving
this on SQL Server is still in the works.

593

Figure11. AppSleuth's anatomy of subprograms and two kinds of edges between caller and

callee in its output. Inside subprogram X, dash lined arrows with sign ‘+’ means multiple call
statements or loop structures may exist; sign ‘*’ near loop structures means these structures

can be nested to arbitrary depth. We omit other kinds of information using ellipsis.

4. TRAVEL IS US: a sanitized case study
This section presents a case study of global tuning at the
application level. The application is a web-based travel agency
whose database consists of 1000 hotels, each having between one
and fifteen room types. A room type could be “double room with
sea view”, “suite with balcony”, etc. There are approximately
1500 different room types for all the hotels. Each hotel for each
room type may charge different amounts depending on the day of
the week (or the season, though season and vacation periods are
processed separately). A customer can make a reservation for a
certain number of rooms of one or more certain room types in one
or more hotels for a period of time. So a certain room type in a
certain hotel on a given date forms a sku.

In the application, every room type in every hotel has a literal
description in English (the base language). The descriptions must
be translated into 10 other languages.

This excerpted part from the application deals with translating the
descriptions for designated languages for each sku.

4.1 Schema Information
Tables involved in this part of the application include (throughout
this example, we present only those columns relevant to tuning;
all indexes are non-clustered):

4.1.1 trans_dict
The table trans_dict (Figure 12) stores the dictionary of
translations for all descriptions in all languages. Here the column
phrase stores the description in the language indicated by the
column lang; each description, indicated by desc_id, is stored in
as many rows as there are the languages. So the primary key of
trans_dict is (desc_id, lang).

Figure 12. Columns of table trans_dict, with primary key
(desc_id, lang) and an index on desc_id

trans_dict (
 desc_id SMALLINT,
 phrase VARCHAR2(255),
 lang CHAR(2)
)

Loop structure

Loop structure

Nested subprogram
definitions (PL/SQL
only)

stored subprog Y

……

stored subprog Z

……

The thick edge
indicates Z is called
from within a loop
statement in X

The thin edge
indicates Y is called
from the top level of
X

Call stmt

Call stmt

+ +

*

+ +
*

……

……

…… ……

standalone stored subprogram X

 AppSleuth Code Parser

Code Structure Analyzer Trace File Analyzer

Output Generator

Source files

Trace file

Figure 8. Components of AppSleuth. Source files are code. The trace file contains SQL that hits
the database, but does not identify the source of that SQL.

594

4.1.2 sku_translated
The table sku_translated (Figure 13) stores all the already
translated descriptions for the skus. During the processing of each
sku, the translations of its description to all languages are
appended to the table sku_translated. This is by far the largest
table in the application. The primary key for this table is (sku_id,
lang).

4.2 Pseudo Code of the Application
In the application’s initial design, each hotel is processed as
follows:

4.2.1 skut_manager
Skut_manager receives as an input argument a hotel id and calls
skut_loop to do the translation of all room types for all dates (i.e.
all skus) for this hotel unless the hotel needs to be checked (Figure
14).

4.2.2 skut_loop
Procedure skut_loop (Figure 15) just does the translation for each
sku through the procedure skut_tran.

4.2.3 Other stored procedures along the way
In skut_tran, the step of performing the translation is implemented
by the stored procedure skut_tran_sku.

Procedure skut_tran_sku, in turn, calls skut_sku_dict to look up
the dictionaries for the designated translation of the sku. After

every translated entry for the sku is returned, the procedure
inserts a row into sku_translated.

4.3 AppSleuth in Application Tuning
The first graph (Figure 16) presents the analysis of structure
(before the analysis of the trace log). The graph shows more than
we’ve discussed, but one can see the flow from skut_mangager
through skut_loop in the description translation path. It turns out
that another path translates “attributes of rooms” though we don’t
analyze this further.

Calls from within loops are represented by bold edges and the
“loop layer” is the depth of the nested loop in the application. The
line numbers of the calls are also shown.

 For purposes of exposition, we restrict our attention to the core
of the application.

4.3.1 Two Other Working Tables
• hotel_desc table:

Table hotel_desc (Figure 17) records descriptions in English for
hotel-roomtype pairs. Translating such descriptions from English
to all other languages entails a lookup in the dictionary table
trans_dict and the appending of the translated descriptions to the
table sku_translated. The primary key of hotel_desc is (hotel_id,
room_type_id) pair. There is an index on columns of (hotel_id,
room_type_id).

hotel_desc (
 hotel_id SMALLINT,
 room_type_id SMALLINT,
 descriptioninEN VARCHAR2(255)
)

Figure 16. Output of AppSleuth for the original application
code

Figure 15. Pseudo-code for skut_loop.

skut_loop(hotel_id, home_lang, target_lang)
For every sku (hotel_id, room_type, date) of the given

hotel
 call skut_tran to do the actual translation for the
current sku of its description in the home language;

End loop;

Figure 14. Pseudo-code for skut_manager.

skut_manager(hotel_id)
1. Get the status for hotel_id, and from_language,
to_language, for its translation
2. If the hotel’s status is ‘need checking’ then
 skut_check(hotel_id, from_language, to_language);
 Else if the hotel’s status is ‘passed checking’ then
 skut_loop(hotel_id, from_language, to_language);
 End if;

Figure 13. Columns of sku_translated
with primary key (sku_id, lang)

sku_translated (
 sku_id SMALLINT,
 translated VARCHAR2(255),
 lang CHAR(2),
 …
)

595

• sku_def table:

Table sku_def (Figure 18) records the mapping from all the
generated skus to hotel – roomtype pairs. The primary key is
sku_id.

There is an index on the columns of (hotel_id, room_type_id,
sku_id).

4.3.2 The Original Application and Stored
Procedures Involved
The original application is shown in Figure 19 for one typical
execution of processing 10 hotels. The processing logic in pseudo
code is as follows:

Figure 19. Pseudo-code for the original application design.

The application core consists of the following stored
procedures:

• manager
• preparehotel
• skuttran
• insertsku.

Stored procedure manager (Figure 20) receives a set of hotel ids
to work on. For each hotel id, manager calls preparehotel to
prepare for the translation. The pseudo code is like the following:

Figure 20. Pseudo code for manager.

Stored procedure preparehotel (Figure 21) finds all the skus
belonging to the hotel, and does translation for each sku:

Stored procedure skuttran (Figure 22) does the translation of a
sku’s English description into all the languages:

The last stored procedure insertsku (Figure 23) does the insertion
into sku_translated. The pseudo code is

4.3.3 AppSleuth’s output without a trace file
After analysis of the code, AppSleuth outputs the call graph of
Figure 24. We can see the loop structures detected by AppSleuth
which form a critical path.

4.3.4 AppSleuth’s output with a trace file
After doing the translation for a set of 10 hotels with the
execution traced, AppSleuth outputs the result with trace analysis
in Figure 24. The brown edges show the actually executed calls.
The call graph does a best effort guess of the number of times
each stored procedure has executed. The elapsed time in each
node is the total execution time of that stored subprogram. So the
time shown in the top procedure manager is the total elapsed time
for processing translations for 10 hotels (including all
subroutines).

preparehotel (i_hotel_id)
 Find all the skus belonging to this i_hotel_id from
sku_def;
 For each sku
 get its description from the hotel_desc table;
 do translation for this description (calling
skuttran(sku_id, descriptioninEN))
 End for;

Figure 23. Pseudo code for insertsku.

insertsku(sku_id, description, language)
 insert into sku_translated(sku_id, description, language);

skuttran(sku_id, descriptioninEN)
 Find the desc_id for this descriptionEN in trans_dict
 For each of the phrases with the same desc_id
 Call insertsku to do the insertion.

End for;

Figure 22. Pseudo code for skuttran.

Figure 21. Pseudo code for preparehotel.

manager(a set of hotel_ids)
 For each hotel_id
 Call preparehotel(hotel_id)
 End for;

Figure 18. Columns of the table sku_def, with
primary key sku_id and an index on (hotel_id,

room_type_id, sku_id)

sku_def (
 sku_id SMALLINT,
 hotel_id SMALLINT,
 room_type_id SMALLINT
)

Figure 17. Columns of the description table for hotels and
room types with primary key (hotel_id, room_type_id).

There is an index on (hotel_id, room_type_id)

input: a set of hotel ids
 for each hotel_id,

find all the skus in this hotel.
For every such sku, get its description in English

For all the supporting languages
Append the description in the current
language for the sku

596

The graph of Figure 25 shows that the delinquent design pattern
starting at preparehotel is in fact a superdelinquent, because the
total elapsed time is large and the number of subroutine calls
grows as one descends the tree from 10 calls to 1068 calls to
11748. (We applied both the Oracle SQL Tuning Advisor and
Quest SQL Optimizer, but neither recommended any changes.)

4.3.5 Table design improvement
A tuner looking at this graph would follow the critical path from
preparehotel to skuttran to insertsku and start to take a look at the
queries and the table design. Analysis of the code shows that
translations are done for each sku. The inserted description for
each sku depends on the possible language. There are 11
languages involved in the application, so each of the 1068 skus in
the 10 hotels is inserted into sku_translated table for all the 11
languages (1068 * 11 = 11748) .On the other hand, the call to the
translation routine depends only on hotel_id and room_type. (This
makes sense because the description “double bedroom with a sea
view” does not change over time.) So the denormalization of
sku_translated table is one root cause of the slow performance.

On the other hand, lots of (unshown) application code depends on
the existence of the sku_translated table, so we first consider how
to insert into it more efficiently. We do so by taking descriptions
from a table that depends only on hotel_id, room_type_id. So the
first fundamental improvement is to alter the hotel_desc table by
replacing descriptioninEN by desc_id (having values from the
domain of trans_dict.desc_id) (Figure 26).

To shorten the length of the critical path of repeatedly called
subprograms, given the i_hotel_id as the input argument, the
insertion into sku_translated table can be implemented using one
insert-select statement in a three table join (Figure 27).

Figure 27. A single insert-select replaces nested loops.

This improvement greatly reduces the numbers of calls and the
elapsed time as shown by Figure 28:

Figure 28. AppSleuth's output after the first improvement.

Specifically, the total elapsed time improves by a factor of nearly
200 (from 21 seconds to 0.11 seconds). The call graph is of
course radically simplified too, potentially enhancing
maintainability.

4.3.6 Second Improvement of the Application
Reexamining the table schema design of the application, we
noticed that it would be beneficial to reduce the three-table join to
a two-table join by adding the desc_id column to the sku_def
table instead of to the hotel_desc table. Although this
denormalizes the sku_def table, the number of rows remains
unchanged and one table is eliminated from the join. (We tried
Quest SQL Optimizer and Oracle SQL Tuning Advisor to tune
the SQL statement of Figure 27, but neither suggested any
improvement.) Table sku_def becomes (Figure 29):

INSERT INTO sku_translated (sku_id, translated, lang)
SELECT sku_def.sku_id, trans_dict.phrase,
trans_dict.lang
FROM sku_def, hotel_desc, trans_dict
WHERE sku_def.hotel_id = hotel_desc.hotel_id
 AND sku_def.room_type_id = hotel_desc.room_type_id
 AND hotel_desc.hotel_id = i_hotel_id
 AND hotel_desc.desc_id = trans_dict.desc_id

hotel_desc (
 hotel_id SMALLINT,
 room_type_id SMALLINT,
 desc_id SMALLINT
)

Figure 26. Optimized table schema for hotel_desc.

Figure 25. Output of
AppSleuth for the original
application code as well as

the trace.

Figure 24. Output of
AppSleuth of the original

simplified version.

597

The insert-select with the two-way join is much simpler (Figure
30):

Figure 30. An even more optimized insert-select statement.

Denormalization improves the query performance by a factor of
nearly 50% as shown in Figure 31.

Figure 31. Output of AppSleuth after the second

improvement.
Overall, these two improvements reduce the overall elapsed time,
by a factor of 300 compared to the original design (from 21
seconds to 0.07s). This occurred without changing indexes, the
buffer management, or hardware. No tool that we know of would
help point the way leading to either improvement.

5. CONCLUSION AND FUTURE WORK
AppSleuth parses database engine source code and the trace log.
Happily, it does not need to parse programming language (e.g.
C++, Java, R etc) code. The reason is that delinquent design
patterns in the programming context can be detected by seeing
their effects on the trace log. For example, a cluster of queries that
differ only by a constant indicate an iteration through a loop in
some external programming language context. Further, timing
information from the database trace log helps to find those
delinquents that are on a critical path, the “superdelinquents”.
AppSleuth displays these in a global flow graph to focus the
attention of a tuner who can often (as in our sanitized travel
application example) improve performance by an order of

magnitude or more. As far as we know, this is the first global
application code analyzer for database tuning ever built.

We have focused on the misuse of loops, because that was the
most challenging-to-detect tuning problem we knew of that has
great practical importance. Detecting other tuning bugs (like
sequences of SQL statements that take a long time) falls out
naturally.

Future work includes generalizing the tool to discover other
delinquents and exploiting the synergy between our tool and
statement-at-a-time and physical design tools. The eventual goal
is to go beyond the detection of problems to explicit suggestions
for improvement. Right now, that is the programmer’s job.

When we do database tuning professionally, we find that we can
sometimes so much improve applications by correcting
delinquent design patterns that we upset our clients. It's
remarkably hard to show an application programmer that his or
her "extremely complicated" application which takes 9 hours in
production can in fact run in under a minute using much less
code. Often such a programmer will ignore the suggestion. With a
tool like AppSleuth, the tuner can deflect the anger to the
software.

6. ACKNOWLEDGEMENTS
We would like to thank Laura Puglisi for helpful discussions as
well as both the conference reviewers and our shepherd for their
thoughtful comments.

7. REFERENCES
[1] Storm, A. J., Garcia-Arellano, C., Lightstone, S., Diao, Y.,

and Surendra, M. Adaptive self-tuning memory in DB2. In
Proceedings of the 32nd International Conference on Very
Large Data Bases (VLDB’06) (Seoul Korea, September 12 –
15, 2006). VLDB Endowment, pp 1081-1092.

[2] Baryshnikov, B., Clinciu, C., Cunningham, C.,
Giakoumakis, L., Oks, S., and Stefani, S. Managing query
compilation memory consumption to improve DBMS
throughput. In Proceedings of he 3rd Biennial Conference on
Innovative Database Systems Research (CIDR’07)
(Asilomar, CA, January 7 – 10, 2007). www.crdrdb.org,
2007, pp 275 – 280.

[3] Dageville, B., and Zait, M. SQL memory management in
Oracle 9i. In Proceedings of the 28nd International
Conference on Very Large Data Bases (VLDB’02) (Hong
Kong China, August 20 – 23, 2002). VLDB Endowment, pp
962- 973.

[4] Microsoft Corporation. SQL Server 2005 books online:
Dynamic memory management. SQL Server product
documentation. (September 2007), DOI =
http://msdn.microsoft.com/en-us/library/ms178145
(SQL.90).aspx.

[5] Larson, P., Graefe, G., Memory management during run
generation in external sorting. In Proceedings of the 1998
ACM SIGMOD International Conference on Management of
Data (SIGMOD’98) (Seattle, Washington, June 2 – 4, 1998).
ACM Press, New York, NY, 1998, pp 472 – 483.

[6] Weikum, G., Hasse, C., MoenKeberg, A., and Zabback, P.
The COMFORT automatic tuning project. Invited Project
Review. Inf. Syst., 19, 5 (Jan. 1994), pp 381 – 432.

INSERT INTO sku_translated(sku_id, translated, lang)
SELECT sku_def.sku_id, trans_dict.phrase, trans_dict.lang
FROM sku_def, trans_dict
WHERE sku_def.hotel_id = i_hotel_id
 AND sku_def.desc_id = trans_dict.desc_id

Figure 29. Optimized table schema for sku_def to
store description ids.

sku_def (
 sku_id SMALLINT,
 hotel_id SMALLINT,
 room_type_id SMALLINT,
 desc_id SMALLINT
)

598

[7] Zilio, D., Rao, J., Lightstone, S., Lohman, G., Storm, A. J.,
Garcia-Arellano, C., and Fadden, S. DB2 Design Advisor:
integrated automatic physical database design. . In
Proceedings of the 30th International Conference on Very
Large Data Bases (VLDB ‘04) (Toronto, Canada, August 31
– September 3, 2004). Morgan Kaufmann, San Francisco,
CA, 2004, pp 1110 – 1121.

[8] Oracle Corporation. Performance tuning using the SQL
Access Advisor. Oracle White Paper. (2007), DOI =
http://otn.oracle.com.

[9] Agrawal, S., Chaudhuri, S., Koll{\’a}r, L., Mathare, A. P.,
Narasayya, V. R., and Syamala, M. Database Tuning Advisor
for Microsoft SQL Server 2005. In Proceedings of the 30th
International Conference on Very Large Data Bases (VLDB
‘04) (Toronto, Canada, August 31 – September 3, 2004).
Morgan Kaufmann, San Francisco, CA, 2004, pp 1110 –
1121.

[10] Bruno, N., and Chaudhuri, S. Automatic physical database
tuning: a relaxation-based approach. In Proceedings of the
2005 ACM SIGMOD International Conference on
Management of Data (SIGMOD’05) (Baltimore, Maryland,
June 13 – 16, 2005). ACM Press, New York, NY, 2005, pp
227 – 238.

[11] Agrawal, S., Chaudhuri, S., Narasayya, V. R. Automated
selection of materialized views and indexes in SQL
databases. In Proceedings of the 26nd International
Conference on Very Large Data Bases (VLDB’00) (Cairo,
Egypt, September 10 – 14, 2000). Morgan Kaufmann, San
Francisco, CA, 2000, pp 496 – 505.

[12] Kornacker, M., Shah, M., and Hellerstein, J. M., Amdb: a
design tool for access methods. IEEE Data Engineering
Bulletin, 26, 2 (Jun. 2003), pp 3 – 11.

[13] Aboulnaga, A., Gebaly, K. EI., Robustness in automatic
physical design. In Proceedings of the 11th International
Conference on Extending Database Technology (EDBT’08)
(Nantes, France, March 25 -29, 2008). ACM Press, New
York, NY, 2008, pp 145 – 156.

[14] Papadomanolakis, S., Dash, D., Ailamaki, A., Efficient use
of the query optimizer for automated physical design. . In
Proceedings of the 33th International Conference on Very
Large Data Bases (VLDB ‘07) (University of Vienna,
Austria, September 23 – 27, 2007). ACM Press, New York,
NY, 2008, pp 1093 – 1104.

[15] Babu, S., Bizarro, P., DeWitt, D., Proactive re-optimization.
In Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data (SIGMOD’05)
(Baltimore, Maryland, June 13 – 16, 2005). ACM Press, New
York, NY, pp 107 – 118.

[16] Stillger, M., Lohman, G. M., Markl, V., Kandil, M., LEO:
DB2’s LEarning Optimizer. In Proceedings of the 27th
International Conference on Very Large Data Bases (VLDB
‘01) (Roma, Italy, September 11 – 14, 2001) Morgan
Kaufmann, San Francisco, CA, 2001, pp 19 – 28.

[17] Raman, V., Markl, V., Simmen, D., Lohman, G., and
Pirahesh, H., Progressive optimization in action. . In
Proceedings of the 30th International Conference on Very
Large Data Bases (VLDB ‘04) (Toronto, Canada, August 31
– September 3, 2004). Morgan Kaufmann, San Francisco,
CA, 2004, pp 1337 – 1340.

[18] Oracle Database Advanced Application Developer's Guide
on Hierarchical Profiler. DOI =
http://docs.oracle.com/cd/B28359_01/appdev.111/b28424/ad
fns_profiler.htm#g3157198.

[19] Dageville, B., Das, D., Dias, K., Yagoub, K., Zait, M.,
Ziauddin, M. Automatic SQL tuning in Oracle 10g. In
Proceedings of the 30th International Conference on Very
Large Data Bases (VLDB ‘04) (Toronto, Canada, August 31
– September 3, 2004). Morgan Kaufmann, San Francisco,
CA, 2004, pp 1110 – 1121.

[20] Oracle Corporation. The self-managing database: automatic
performance diagnosis. Oracle White Paper, (2007) , DOI =
http://otn.oracle.com.

[21] Dias, K., Ramacher, M., Shaft, U., Ventakaramani, V., and
Wood, G., Automatic performance diagnosis and tuning in
Oracle. In Proceedings of he 2nd Biennial Conference on
Innovative Database Systems Research (CIDR’05)
(Asilomar, CA, January 4 – 7, 2005). www.crdrdb.org, 2005,
pp 84 – 94.

[22] Garcia-Arellano, C. M., Lightstone, S., Lohman, G., Markl,
V., Storm, A., Autonomic features of the IBM DB2
Universal Database for Linux, UNIX, and Windows. IEEE
Transactions on Systems, Man, and Cybernetics special
issue on Engineering Autonomic Systems, 36, 3 (May 2006),
pp 365 – 376.

[23] Microsoft Corporation. SQL Server 2005 books online:
Automating administrative tasks. SQL Server product
documentation. (September 2007), DOI =
http://msdn.microsoft.com/en-
us/library/ms187061(SQL.90).aspx.

[24] Quest Software. Toad: SQL Tuning, Database Development
& Administration Software. (2012), DOI =
http://www.quest.com/toad/, 2012.

[25] Shasha, D., and Bonnet, P. Database Tuning: principles,
experiments and troubleshooting techniques. Morgan
Kaufmann, San Francisco, CA, 2002.

[26] Microsoft Tansact-SQL reference. DOI =
http://msdn.microsoft.com/en-us/library/ms178642.aspx

[27] The SAMATE website. (2012) , DOI =
://samate.nist.gov/SATE.html

[28] Arjun Dasgupta, Vivek Narasayya, Manoj Syamala, A
Static Analysis Framework for Database Applications,
ICDE '09 Proceedings of the 2009 IEEE International
Conference on Data Engineering, pp 1403-1414

[29] Surajit Chaudhuri, Vivek Narasayya, and Manoj Syamala,
Bridging the Application and DBMS Profiling Divide for
Database Application Developers, VLDB '07 Proceedings of
the 33rd international conference on Very large data bases,
pp 1252-1262

[30] Surajit Chaudhuri, Vivek Narasayya, Manoj Syamala,
Bridging the application and DBMS divide using static
analysis and dynamic profiling, SIGMOD '09 Proceedings of
the 2009 ACM SIGMOD International Conference on
Management of data, pp 1039-1042

[31] The Klocwork website. (2012) , DOI =
http://www.klocwork.com/

599

[32] The Fortify website. (2012) , DOI =
https://www.fortify.com/

[33] The Coverity website. (2012), DOI =
http://www.coverity.com/

[34] The Enterprise-architect homepage on Sparx Systems
Website. (2012), DOI =
http://www.sparxsystems.com.au/enterprise-architect.

[35] The FindBugs homepage on Sourceforge. (2012) , DOI =
http://findbugs.sourceforge.net/

[36] The PMD homepage on SourceForge. (2012), DOI = :
http://pmd.sourceforge.net/pmd-5.0.0/

[37] Cheung, A., Arden, O, Madden, S., Myers, A., Automatic
Partitioning of Database Applications. In Proceedings of the
38th International Conference on Very Large Data Bases
(VLDB’12) (Istanbul, Turkey, August 27th – 31st, 2012).
Morgan Kaufmann, San Francisco, CA, 2012, pp 1471-1482

[38] The GNU Bison Project (2012), DOI =
http://www.gnu.org/software/bison

[39] Paxson, V. Flex. DOI = http://flex.sourceforge.net/

600

