
Efficient processing of containment queries on nested sets

Ahmed Ibrahim
Eindhoven University of Technology

The Netherlands
a.ibrahim@student.tue.nl

George H. L. Fletcher
Eindhoven University of Technology

The Netherlands
g.h.l.fletcher@tue.nl

ABSTRACT
We study the problem of computing containment queries
on sets which can have both atomic and set-valued objects
as elements, i.e., nested sets. Containment is a fundamen-
tal query pattern with many basic applications. Our study
of nested set containment is motivated by the ubiquity of
nested data in practice, e.g., in XML and JSON data man-
agement, in business and scientific workflow management,
and in web analytics. Furthermore, there are to our knowl-
edge no known efficient solutions to computing containment
queries on massive collections of nested sets. Our specific
contributions in this paper are: (1) we introduce two novel
algorithms for efficient evaluation of containment queries on
massive collections of nested sets; (2) we study caching and
filtering mechanisms to accelerate query processing in the
algorithms; (3) we develop extensions to the algorithms to
a) compute several related query types and b) accommodate
natural variations of the semantics of containment; and, (4)
we present analytic and empirical analyses which demon-
strate that both algorithms are efficient and scalable.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query process-
ing

General Terms
Algorithms, Experimentation

Keywords
nested sets, containment join, inverted file, homomorphism

1. INTRODUCTION
Data sets with nested structure are encountered in a wide

variety of practical domains and applications. For exam-
ple, nested structures occur in: scientific workflows, XML
and JSON data management, business process management,
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web mash-ups, data integration systems, NoSQL document
and key-value stores, and complex object data management.
Industrial-strength tools for web-scale data storage and an-
alytics, such as Google’s Dremel and Yahoo’s Pig, are also
designed around a nested data model [26, 27].1

As a simple illustration of nested structure, Table 1 gives
a snippet of a collection S of nested set data. This data set
concerns where people live (at the top level of nesting), the
set of locales in which they hold driving privileges (at the
second nesting level), and, at the deepest nesting level, the
set of licenses and vehicle types they are authorized to han-
dle in a particular locale. For example, Tim lives in Boston,
and can operate a car in Virginia (USA), where he holds
class A and B licenses. This simple set-based abstraction,
which we adopt in this paper, captures the basic hierarchi-
cal structure of the nested data which occurs in the many
concrete applications discussed above.

Table 1: An example of a nested set collection S.

key value

Sue {London, UK, {UK, {A, B, C, car, motorbike}}}
Tim {Boston, USA, {USA, VA, {A, B, car}},

{UK,{A, motorbike}}}

A fundamental query pattern for sets is the containment
join, i.e., given collection Q with set-valued attribute A (for
example, the value column of Table 1), retrieve, for each
object q ∈ Q, all objects s in a collection S where q.A ⊆ s.B,
for set valued attribute B. In other words, the join of Q in
S on A ⊆ B is defined as:

Q ./A⊆B S = {(q, s) | q ∈ Q ∧ s ∈ S ∧ q.A ⊆ s.B}. (1)

As an example, consider the query: “retrieve all people
that live in the USA who have license type A valid for a
motorbike in the UK”, which we formulate as the nested
set q = 〈query : {USA, {UK, {A, motorbike}}}〉. Evaluating
{q} ./query⊆value S on the database of Table 1 would give
us {(q, T im)}, where T im is the record having key Tim.

As an essential set-based query type [3, 22], containment
joins also find basic application in diverse areas such as query
processing [4] and data mining [29]. Consequently, efficient
processing of set containment queries has been heavily in-
vestigated. Basic approaches include the use of inverted
files, signature files, and hashing to facilitate efficient join

1The Dremel team has remarked that “A nested data model
underlies most of structured data processing at Google [...]
and reportedly at other major web companies” [26].
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processing (e.g., [15, 24, 25, 28, 35, 34]). To the best of
our knowledge, however, all known solutions for process-
ing containment queries are restricted to the special case of
flat sets, i.e., sets without nesting, whose members are all
atomic objects. Clearly, with the widespread use of nested
data and the fundamental nature of the containment query
pattern, efficient solutions for computing nested containment
are called for. As they are designed specifically for flat set
processing, state of the art containment solutions are not
immediately applicable for nested sets, especially for those
sets having arbitrarily deep nesting structure.

Containment queries are also closely related to the heavily
studied tree pattern queries (TPQ) [14] and nested relational
join queries [9]. Indeed, nested set containment queries are
essentially a hybrid of flat set queries and these query types.
While a nested set can be conceptualized as a type of tree
(as we do below), all natural tree encodings of nested sets
exhibit structure which violate the design of existing TPQ
evaluation solutions (e.g., [8, 11, 19, 38]). In particular,
these solutions crucially rely on internal tree nodes having
exactly one label, whereas tree encodings of nested sets ex-
hibit potentially unlabeled or multi-labeled internal nodes.
Although we build in our work on the same mature inverted
file data structure used by TPQ solutions for representing
XML trees (e.g., the classic position-based node encoding
used in [8]), the richer structure of nested sets necessar-
ily requires a fresh re-think of query processing solutions.
Indeed, it has already been observed that state-of-the-art
TPQ solutions are inadequate even in the special case of
flat set containment joins [35]. Finally, solutions for nested
relational join processing are designed and optimized for the
restricted special case of nested sets having fixed pre-defined
input schemas, and hence are not suitable for processing col-
lections of heterogeneous nested sets [9].

Motivated by these observations, in this paper we present
the first known solutions for scalable, efficient computation
of containment queries on collections of nested sets. In par-
ticular, we make the following contributions.

• We highlight the problem of nested set containment
and propose two practical solutions. The first algo-
rithm works top down, starting at the outer-most nest-
ing level of the query, and working inwards. The sec-
ond algorithm works bottom up, starting at the deep-
est nesting level of the query, and working outwards.
We also study caching and filtering mechanisms to ac-
celerate query processing in the algorithms.

• We develop extensions to both algorithms, to han-
dle (1) related query types (such as superset and set-
overlap); and, (2) natural variations of the semantics
of containment.

• We show that our solutions are efficient and scalable,
on a variety of synthetic and real data sets.

Additional features of our algorithms include conceptual sim-
plicity and their use of the widely adopted inverted file data
structure. These practical aspects further help to give our
solutions strong potential for practical use and impact.

We proceed in the rest of the paper as follows. In the next
section, we give our basic definitions. In Section 3, we then
present and theoretically analyze our two solutions. This
is followed in Section 4 with a discussion of extensions to
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Figure 1: Tree representations of the nested set values
associated with keys Sue and Tim, resp., in collection S of
Table 1.

our algorithms. In Section 5, we then discuss an empirical
study of our two algorithms, demonstrating their practical
behavior. Finally, we give closing remarks in Section 6.

2. PRELIMINARIES
In this section we give basic definitions, and describe the

main data structure used in our algorithms.

Data model. In this paper, we consider data objects in the
form of finite sets built over some universe of atomic objects
(e.g., strings or integers). We impose no restrictions on the
cardinality or nesting depth of data objects. As sets, we also
assume no ordering in the internal structure of data objects.

The problem. We study how to efficiently compute Equa-
tion 1 of Section 1 when Q and S are finite sets of data
objects. We assume that both Q and S are too large to fit
in internal memory. In particular, we will treat Q as a set
of queries over which we iterate, and, simplifying Equation
1, focus specifically on the problem of computing

q ./⊆ S = {(q, s) | s ∈ S and q ⊆ s} (2)

for a given query (i.e., nested set value) q ∈ Q. Note that
we will assume that the set-valued attributes of interest in
Q and S are fixed, and hence did not explicitly mention
attribute names in Equation 2 and will continue to not do
so in the sequel.

Notions of containment. We next clarify how we interpret
the condition “q ⊆ s” of Equation 2, which, as we will see,
has several distinct natural semantics. Towards this, we first
introduce a handy alternative perspective on nested sets.

A nested set can be viewed as a type of unordered node-
labeled rooted tree, where internal (i.e., non-leaf) nodes de-
note sets and leaf nodes denote atomic values. Figure 1
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Figure 2: The set rooted at ta is not ⊆iso-contained, but is ⊆hom- (and hence, also ⊆homeo-) contained, in the set of Figure
1 rooted at rtim. The set rooted at tb is ⊆iso- (and hence also ⊆hom- and ⊆homeo-) contained in rtim. The set rooted at tc is
⊆homeo- (but not ⊆hom-, and hence also not ⊆iso-) contained in rtim.

gives tree representations of the set values associated with
keys Sue and Tim from collection S of Table 1. In this repre-
sentation, arbitrary unique identifiers label distinct internal
nodes (we use integer IDs in the implementation of our data
structures; see below). For internal node n of tree T , we use
the notation nodes(n) to denote the set of non-leaf children
of n in T and `(n) to denote the set of (labels of) leaf node
children of n in T . For example, nodes(rtim) = {m1,m3}
and `(m1) = {USA, VA}. Clearly, this interpretation of nested
sets is well-defined; we omit a formal definition here, due to
space limitations. In the sequel, we will move freely between
speaking of sets as trees and vice versa.

For flat sets, there is a default natural notion of contain-
ment, namely standard subset semantics. Here, to evaluate
q ⊆ s, we are simply interested in finding an assignment of
the atoms of flat set q to the atoms of the flat set s. In nested
sets, however, we must not only map the leaf nodes of q to
the leaf nodes of s, but we must also map internal nodes of
q to internal nodes of s, while ensuring that set nesting is
preserved (e.g., the root of q is mapped to the root of s). In
other words, for “q ⊆ s” to hold, we must be able to map q
in a root preserving manner to a subtree of s.

We can identify three basic variants of the notion of sub-
tree containment which arise naturally in practice:

• subtree isomorphism (⊆iso) — the mapping of internal
nodes of q to internal nodes of s is injective and parent-
child edges in q must be mapped to parent-child edges
in s.2 In the literature, this is also known as a (root-
preserving) unordered path embedding [20] or a top-
down, unordered subtree isomorphism [32, 36].

• subtree homomorphism (⊆hom) — the mapping from
the internal nodes of q to the internal nodes of s is
not necessarily injective, but parent-child edges in q
must be mapped to parent-child edges in s. This is
also referred to as an unordered pseudo-tree matching
or a tree homomorphism matching [10, 18].

• subtree homeomorphism (⊆homeo) [10, 18] — the map-
ping from internal nodes of q to internal nodes of s is
not necessarily injective, and parent-child edges in q
can be mapped to ancestor-descendant edges in s.3

2i.e., for all nodes m of q, if m′ is a child of m and m is
mapped to node n in s, then m′ must be mapped to a child
n′ of n.
3i.e., for all nodes m of q, if m′ is an internal child of m and
m is mapped to node n in s, then m′ must be mapped to

Note that all isomorphic embeddings are homomorphic em-
beddings, and all homomorphic embeddings are homeomor-
phic embeddings. Furthermore, both of these inclusions are
strict. Figure 2 gives illustrations of these three notions.

We adopt ⊆hom as our primary semantics for ⊆. We make
this choice because (1) homomorphism is very natural (e.g.,
corresponds to the semantics of conjunctive query languages
such as those at the heart of SQL, search languages, XPath,
and SPARQL [7, 11, 13, 14]); and, (2) solutions for homo-
morphic containment can easily be relaxed to solutions for
checking homeomorphic containment as well as extended to
the stricter notion of isomorphic containment [10, 18]. We
discuss how to adapt our algorithms to compute contain-
ment under the alternate iso- and homeo-morphism seman-
tics in Section 4.

Inverted files for nested sets. In the literature on pro-
cessing containment queries on flat sets, solutions using in-
verted files as the physical representation of the database
have demonstrated robust efficient performance [15, 24, 35].4

Furthermore, a variety of industrial-strength open-source so-
lutions for building inverted files are available off the shelf,
and are widely adopted and used by practitioners.

For these reasons, we have also adopted the inverted file
as the basic data structure in our solutions. The key-space
of our inverted file is the set of all atomic values occurring in
the collection S of Equation 2. The inverted lists associated
with these values store information about the location of
the values in the collection. In our physical representation
of a nested set, all internal nodes are assigned an arbitrary
unique integer identifier. The “location” of a leaf node is
given by the identifier of its parent, i.e., the ID of the set
containing the leaf.

Unlike in a traditional inverted file, it is not sufficient for
us to store in the inverted lists just the locations of atomic
values. We must also store structural information of the
given key value, in order to facilitate navigation in the set
hierarchy. Hence, we extend the inverted lists with addi-
tional information regarding related internal nodes. In par-

an internal node n′ in the subtree rooted at n. In order to
retain hierarchical structure, however, we require that edges
from internal nodes to leaf nodes in q must still be mapped
to parent-child edges in s. This restriction can easily be
lifted, if need be.
4Recall that an inverted file is an index data structure which
maps each atomic value appearing in the database instance
to a sorted list of the locations of the occurrences of the
value in the data; cf. [37].
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Table 2: The inverted file SIF for the collection S of Fig-
ure 1.

atom inverted list

London
〈
(rsue, 〈n1〉)

〉
UK

〈
(m3, 〈m4〉), (n1, 〈n2〉), (rsue, 〈n1〉)

〉
A

〈
(m2, 〈〉), (m4, 〈〉), (n2, 〈〉)

〉
B

〈
(m2, 〈〉), (n2, 〈〉)

〉
C

〈
(n2, 〈〉)

〉
car

〈
(m2, 〈〉), (n2, 〈〉)

〉
motorbike

〈
(m4, 〈〉), (n2, 〈〉)

〉
Boston

〈
(rtim, 〈m1,m3〉)

〉
USA

〈
(m1, 〈m2〉), (rtim, 〈m1,m3〉)

〉
VA

〈
(m1, 〈m2〉)

〉
ticular, for a given atomic value a (i.e., a search key) in the
collection, the associated inverted list is

SIF (a) = 〈(p1, C1), . . . , (pn, Cn)〉

sorted on pi values, where the pi’s are the identifiers of all
locations of leaf nodes labeled a in the collection S, and, for
each 1 ≤ i ≤ n, Ci is the sorted listing of nodes(pi). Table 2
gives the inverted file SIF for the nested sets of Figure 1,
representing the collection S of Table 1.

To navigate in the set hierarchy using SIF requires a series
of inverted list joins ./IF, defined as

L./IF L
′ = {(p, C′) | (p, C) ∈ L ∧ (p′, C′) ∈ L′ ∧ p′ ∈ C},

where L and L′ are inverted lists. For example, to deter-
mine in our example collection S which sets are contained
in a set having the atom UK, which is in turn contained in
a set containing the atom London, we perform navigation
one level down into the set hierarchy, from London to UK, as
SIF (London) ./IF SIF (UK), which we see from Table 2 evalu-
ates to

〈
(rsue, 〈n2〉)

〉
. In other words, there is only one such

appropriately nested set in the database, namely n2 nested
within rsue.

3. TWO CONTAINMENT ALGORITHMS
In this section we present two different approaches to solv-

ing Equation 2, under the homomorphic semantics for con-
tainment, using the inverted file data structure described
in the previous section. The first algorithm takes a top-
down perspective which starts by evaluating the root node
of the query and continues recursively with its children. The
second algorithm takes a bottom-up approach which starts
exploring the set at its leaf nodes, in a depth-first fashion.
For both solutions, we first explain the algorithm via an
example, and then give details.

Before we move to the presentation of the algorithms, we
make two comments. (1) A naive solution to computing
containment of q in S is to apply an off-the-shelf subtree
homomorphism algorithm (e.g., [18]) to each pairing (q, s),
for s ∈ S. Intuitively, such an approach would be substan-
tially more expensive than processing S in bulk, as we do
in our algorithms below, since this would require retrieving
every single object from the database. A small empirical
study of the naive solution which we undertook confirmed
this intuition. (2) Our algorithms, as presented here, as-
sume non-empty sets at each nesting level (e.g., they do not
support queries such as {A, {{{B}}}}). The algorithms can

motorbikeA

UK

USA

Figure 3: The tree representation of the example query q
of Section 1.

be directly adapted to handle empty sets, however, following
the approach for implementing homeomorphic containment
discussed in Section 4.2.

3.1 Top-down algorithm

Example run. We illustrate the top-down approach with
our query q from Section 1; Figure 3 shows the tree repre-
sentation of q. Let SIF be the inverted file of Table 2. We
proceed from the root of the query as follows.

1. We first retrieve the inverted list of USA and place it in
a temporary list R0, i.e.,

R0 ← 〈(m1, 〈m2〉), (rtim, 〈m1,m3〉)〉.

Figure 4a illustrates this step.

2. We next navigate downwards, by retrieving the in-
verted list of UK and performing the ./IF-join with
the values stored in R0 to determine which roots have
children in this set. We store these values in R1 ←
R0 ./IF SIF (UK), i.e., R1 ← 〈(rtim, 〈m4〉)〉. Figure 4b
illustrates this step.

3. We continue by retrieving the inverted lists that satisfy
the intersection of A and motorbike and navigate from
the paths stored in R1 into this set. We store these
values in R2 ← R1 ./IF(SIF (A)∩SIF (motorbike)), i.e.,
R2 ← 〈(rtim, 〈〉)〉. Figure 4c illustrates this processing.

4. We finish processing by propagating all results back
up towards the root, evaluating along the way the in-
tersection π1(R2)∩π1(R1)∩π1(R0) of the sets of path
“heads” (i.e., the first element of each pair) in each of
the temporary lists of paths, i.e., {(rtim)}∩{(rtim)}∩
{(rtim)} = {(rtim)}. The last intersection at the root
finishes the computation. Recall from our discussion
in Section 1, that q is indeed contained in the record
associated with rtim.

The algorithm. We give pseudo code of the top down ap-
proach in Algorithms 1 and 2. The algorithm starts with a
call to Top-down-containment (Algorithm 1) with a query q
and an inverted file encoded database SIF . We compute the
set of candidates for the embedding of the root node of the
query root(q), and pass them along to Algorithm 2.

The children of the root (and so on, recursively) are pro-
cessed in Top-down-interior (Algorithm 2). Input N is the
current set of sibling nodes of the query to be processed. If
N is empty, we have hit the bottom of a set nesting, and we
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R0 ← SIF (USA)

motorbikeA

UK

��USA

(a) Initially, we evaluate (the leaves of) the root of q and store the
resulting list in R0. We cancel out the leaf node USA to indicate
that it has now been processed.

R0

R1 ← R0 ./IF SIF (UK)

motorbikeA

��UK

��USA

(b) Next, we evaluate the internal child of the root, placing the
resulting list in R1.

R0

R1

R2 ← R1 ./IF(SIF (A) ∩ SIF (motorbike))

((((
(

motorbike�A

��UK

��USA

(c) Finally, we evaluate the inner-most set, and then propagate
up the local result R2. The final result is the intersection of the
sets of heads of paths in R0, R1 and R2.

Figure 4: Illustration of the top-down algorithm on the
example query of Figure 3.

return all roots which have successfully covered this subtree
of the query (lines 1-2). Input P contains the set of paths in
S which have successfully navigated to this subtree. If P is
empty, there are no such paths, and we return ∅ to indicate
this (lines 3-4). Otherwise, there are successful paths to this
location, and we have more work to do (lines 5-14). On line
6, we compute the set of roots in S which have successfully
navigated to this part of the query. Then, in the for-loop
at lines 7-12, we process each internal query node n ∈ N .
At line 8, we evaluate n. At line 9, we extend the current
paths from the root into the retrieved lists, storing these in
P ′. At line 10, we recur on the children of n. In line 11, we
filter out roots which were not able to successfully cover the
subquery rooted at n. Finally, we return the subset of roots
which were able to successfully cover all of N (line 13).

Algorithm 1 Top-down-containment
input: query q, inverted file SIF

output: q ./⊆ S

1: P ←
⋂

`∈`(root(q)) SIF (`)

2: return Top-down-interior(nodes(root(q)), P , SIF )

Algorithm 2 Top-down-interior
input: set N of query siblings; set P of current successful
paths from roots in S to nodes in N ; inverted file SIF

output: roots in P which successfully contain the sets N in
this location

1: if N = ∅ then
2: return {root | ∃c : (root, c) ∈ P}
3: else if P = ∅ then
4: return ∅
5: else
6: Roots← {root | ∃c : (root, c) ∈ P}
7: for all nodes n ∈ N do
8: Candidates←

⋂
`∈`(n) SIF (`)

9: P ′ ← P ./IF Candidates
10: Roots′ ← Top-down-interior(nodes(n), P ′, SIF )
11: Roots← Roots ∩Roots′
12: end for
13: return Roots
14: end if

Analysis. Correctness of the top-down algorithm is straight-
forward. The worst case running time for evaluating a leaf
of q is O(|S|), i.e., the number of (internal) nodes in the
database. Letting Lq denote the number of leaf nodes of q,
the worst case running time of Top-down-containment (Algo-
rithm 1) is then bounded by O(Lq ∗ |S|). Letting Nq denote
number of internal nodes of q, the cost breakdown of Top-
down-interior (Algorithm 2) is as follows.

• lines 1-6: P is at most as large as the database, hence,
over the course of the full run of the algorithm, cost is
bounded by O(Nq ∗ |S|).

• line 8: Over the course of the full run of the algorithm,
we evaluate this intersection once for each leaf of the
query, with worst case cost as before, giving us an up-
per bound of O(Lq ∗ |S|).

• lines 9 and 11: Since both lists are sorted, each of
these operations, over the course of the full run of the
algorithm, is bounded by O(Nq ∗ |S|).

We conclude that the worst-case running time of the top-
down algorithm is O(|q| ∗ |S|).

3.2 Bottom-up algorithm

Example run. The second algorithm we introduce evalu-
ates containment in a depth-first fashion, using a stack to
store and process intermediate results. The basic idea is to
process the subtree under a given query node before pro-
cessing the node itself. We use the query q of Figure 3 and
inverted file SIF of Table 2 to illustrate the bottom-up al-
gorithm, which proceeds as follows.

1. We start by initializing an empty stack at the root
of the query. Figure 5a shows that a special marker
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$

motorbikeA

UK

USA

$
stack

(a) We start at the root, pushing the first marker onto the
stack.

$

$

motorbikeA

UK

USA

$
$

stack

(b) We continue with the child of the root, pushing a second
marker onto the stack.

$

$

$

motorbikeA

UK

USA

$
$
$

stack

(c) We continue descending, pushing a third marker onto the
stack.

$

$

H0 ← H(SIF (A) ∩ SIF (motorbike), ∅)

((((
(

motorbike�A

UK

USA

H0

$
$

stack

(d) We evaluate the inner-most node, pop the stack, and put the
local result H0 onto the stack.

$

H1 ← H(SIF (UK), H0)

((((
(

motorbike�A

��UK

USA

H1

$
stack

(e) We evaluate and, popping the stack, process the second
node, and put the local result H1 onto the stack.

H2 ← H(SIF (USA), H1)

((((
(

motorbike�A

��UK

��USA

H2

stack

(f) We process the root and put the final results H2 on top of the
stack.

Figure 5: Illustration of the bottom-up algorithm on the example query of Figure 3.

‘$’ is pushed onto the stack, as we recur on the root’s
single internal child. Figure 5b and 5c show that a sec-
ond and then third marker are pushed onto the stack,
as depth-first processing continues. Hitting the inner-
most nesting level, we (1) evaluate the current node,
(2) pop the stack until a ‘$’ marker is reached, col-
lecting all retrieved sets in a set Lists, and (3) push
onto the stack the set of the heads of all inverted
list elements found in the first step which have chil-
dren in each of the lists in Lists. Intuitively, these
heads identify nodes in the database which success-
fully cover the subquery rooted at the current node.
Here, Lists = ∅, as the current node has no internal
children which were evaluated earlier in the compu-
tation. We place all heads of the evaluation H0 ←

H(SIF (A) ∩ SIF (motorbike), ∅) on the stack,5 i.e.,

H0 ← the set of the heads of all lists in

SIF (A) ∩ SIF (motorbike) which have

children in each of the sets in Lists = ∅
← the set of the heads of all lists in

SIF (A) ∩ SIF (motorbike)

← {m4, n2}.

This step is illustrated in Figure 5d. Note that at this
point, rtim and rsue (the root ancestors of m4 and n2,

5A formal definition of H() is given below (line 12 of Algo-
rithm 4).
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resp.) are both candidates for the full query.

2. Moving up one nesting level, we next process the child
of the root. This involves constructing the local set of
candidates for embedding this node in the database,
namely SIF (UK), and popping the stack until the next
marker is reached, to construct Lists = {H0}. Then,
we place onto the stack the set H1 ← H(SIF (UK), H0)
of all “head” nodes in the local list of candidates which
have paths into H0, i.e.,

H1 ← {(m3, n1)}.

This step is illustrated in Figure 5e. Note that rtim
and rsue are still both candidates for q.

3. Moving up to the root, we repeat the same process,
constructing local candidates SIF (USA), popping the
stack to build Lists = {H1}, and pushing

H2 ← H(SIF (USA), {H1})
← {rtim}

onto the stack. This step is illustrated in Figure 5f.
The final step is to pop the final result set H2 off the
top of the stack. As expected, Tim satisfies the query;
Sue is not in the final result set as she lives in the UK.

The algorithm. We give the pseudo code of the bottom-up
approach in Algorithms 3 and 4. The algorithm starts with
a call to Bottom-up-containment (Algorithm 3) with a query
q and an inverted file encoded database SIF .

Algorithm 3 Bottom-up-containment
input: query q, inverted file SIF

output: q ./⊆ S

1: s← a new empty stack
2: Bottom-up-interior(root(q), s, SIF )
3: return pop(s)

After setting up the (global) stack, processing proceeds
with a call to Bottom-up-interior (Algorithm 4) on the root
node of the query, root(q). Lines 1-4 in Algorithm 4 corre-
spond to Figures 5a-5c, namely, we recur on children until
a flat set is encountered. Lines 5-9 collect from the top of
the stack the set Lists which must be covered by candidates
for the current query node n. If each element of Lists is
non-empty (Line 10), then it is potentially possible to cover
the subtree rooted at n in the database; otherwise, it is not
possible and we push an empty set onto the stack to sig-
nal this to n’s parent (Lines 14-15). In the case that it is
possible, we compute the local set of candidates to cover n
(Line 11), collect those candidate nodes which actually do
cover the subtree rooted at n (Line 12), and push the set
of these “head” nodes onto the stack for processing by the
parent of n (Line 13). The process of constructing this set is
denoted by H() in Figures 5d-5f. The bottom-up algorithm
terminates when we have worked our way back to the root
node, leaving the final result set on top of the stack, which
is finally retrieved in Algorithm 3, Line 3.

Analysis. Correctness of the bottom-up algorithm is straight-
forward. To calculate the running time, we use the same no-
tation as in our analysis of the top-down algorithm in Section

Algorithm 4 Bottom-up-interior
input: query node n, stack s, inverted file SIF

1: push($, s)
2: for all c ∈ nodes(n) do
3: Bottom-up-interior(c, s, SIF )
4: end for
5: Lists← ∅
6: while peek(s) 6= $ do
7: Lists← Lists ∪ {pop(s)}
8: end while
9: pop(s)

10: if ∀L ∈ Lists : L 6= ∅ then
11: Candidates←

⋂
`∈`(n) SIF (`)

12: Heads← {h | ∃C : [(h,C) ∈ Candidates
∧∀L ∈ Lists : C ∩ L 6= ∅]}

13: push(Heads, s)
14: else
15: push(∅, s)
16: end if

3.1. The work of Bottom-up-containment (Algorithm 3) takes
constant time. The cost breakdown of Bottom-up-interior
(Algorithm 4) is as follows.

• lines 1-10, 13-16: over the course of the whole compu-
tation, each internal node is processed once on each of
these lines, all of constant cost, and hence is O(Nq).

• line 11: Over the course of the full run of the algorithm,
we evaluate this intersection once for each leaf of the
query, with worst case cost of O(Lq ∗ |S|).

• line 12: Since all lists are sorted, this operation, over
the course of the full computation, is O(Nq ∗ |S|).

We conclude that the worst-case running time of the bottom-
up algorithm is O(|q|∗|S|), i.e., the same as for the top-down
algorithm.

3.3 Optimizations
There are many opportunities for optimizations to accel-

erate processing in our algorithms. In this section we discuss
two simple optimizations which we will empirically study in
Section 5. The first optimization is to cache a frequent sub-
set of the inverted file payloads and the second optimization
is to prune results in an early stage of join evaluation.

Caching. The inverted file SIF is accessed continuously in
the top-down and the bottom-up approach, i.e., for every
occurrence of every leaf value ` in the query, we retrieve
SIF (`). Retrieving the inverted list for every leaf value is
fine for small queries, but for larger queries or a batch of
queries, accessing SIF can incur many repetitive accesses.
We can reduce access cost by caching the inverted lists of
the most frequent values of S in a main memory data struc-
ture, subject to an available memory budget; we study such
caching below in our empirical study. We could also consider
caching with respect to frequent values in a query workload;
we leave this option open for future study.

Bloom filters. Bloom filters are compact data structures
for probabilistic representation of a set that supports mem-
bership queries (‘is element x in set Y ?’)[2]. Bloom filters
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are applicable for flat sets, however they are not originally
designed to represent hierarchies [21]. In [21], two data
structures are presented, Breadth and Depth Bloom filters,
which are multi-level structures that assist efficient process-
ing of queries on XML trees. Hierarchical Bloom filters are
well suited for assisting in the evaluation of set containment
queries on nested sets, i.e., we can build a Bloom filter on a
subset of the leaf values in a tree (say, the least frequent),
place the filter at the root of the tree and do a bitwise com-
parison between the filters of two trees before descending
into their internal structure. If the comparison fails, we
know that a containment is not possible. We refer the reader
to the the full version of this paper for further discussion [17].

4. EXTENSIONS
In this section we show how our top-down and bottom-up

algorithms can be adapted to (1) process other set-based join
types and (2) accommodate alternate embedding semantics.

4.1 Extension 1: other set-based joins
The top-down and bottom-up algorithms presented in the

previous sections can be directly adapted to process several
other natural set-based join types. In evaluating q ./⊆ S,
we ensured in both algorithms during evaluation of the in-
tersection operation (i.e., line 8 of Algorithm 2 and line 11
of Algorithm 4), for each internal node n of q and for each
potential match s ∈ S for n, that s has at least as many
leaf children as n does, i.e., |`(n)| ≤ |`(s)|. Our adjustments
will be to this condition and/or the construction of the set
of candidate matches of n in S.

Set equality join. For the set equality join, defined as

q ./= S = {(q, s) | s ∈ S and q = s},

the leaf count condition is strengthened in both algorithms,
such that, when computing for internal query node n,

Candidates←
⋂

`∈`(n)

SIF (`),

we remove from Candidates those sets s where |`(n)| 6=
|`(s)|. For the implementation, we can just extend the in-
verted lists to also carry the leaf count of each internal node.

Superset join. For the superset join, defined as

q ./⊇ S = {(q, s) | s ∈ S and q ⊇ s},

a more relaxed nature of processing is required. In partic-
ular, we compute the set of candidates for internal query
node n as

Candidates ←
⊎

`∈`(n)

SIF (`),

where
⊎

is the multi-set union, and remove from Candidates
all copies of those sets s where |`(s)| does not equal the
number of occurrences of s in Candidates. This ensures
that s does not have leaf values outside of those of n. Note
that multi-set semantics is used to permit the duplicates
necessary for checking this condition.

ε-overlap join. The subset join retrieves all sets that have,
at all nesting levels, at least as many leaves as the query. Of-
ten, we are interested in the weaker condition of having just

some non-empty overlap with the query. This is captured
by the ε-overlap join [24], for some ε ≥ 1, defined as

q ./ε S =
{

(q, s)
∣∣∣ s ∈ S ∧ ∃ϕq

s

∧
(n,m)∈ϕq

s

|`(n) ∩ `(m)| ≥ ε
}
,

where ϕq
s is an embedding of q in s (i.e., a set of pairs of all

the corresponding internal nodes of q and s). We compute
the set of candidates for internal query node n as

Candidates ←
⊎

`∈`(n)

SIF (`),

and remove from Candidates all copies of those sets s which
do not appear at least ε times in Candidates.

4.2 Extension 2: other embeddings
The algorithms presented in Section 3 can also be adapted

to evaluate the iso- and homeomorphic containment seman-
tics discussed in Section 2. We illustrate this on the top-
down approach (Section 3.1).

Isomorphic containment. To accommodate the special re-
stricted case of computing ⊆iso embeddings of the query q in
collection S, an extra condition is added in the top-down al-
gorithm, namely, at every level of processing q, the matches
of internal nodes of q to internal nodes of s must be injec-
tive. We then must do some bookkeeping at the beginning of
each recursion, to ensure that the nodes of the query and the
nodes of the data set do indeed match in a one-to-one man-
ner. First, we have to mark retrieved lists of the inverted file
to ensure that they are not reused. Then, we have to poten-
tially backtrack, updating marked lists, to check additional
subtrees in the event of a non-match (i.e., returning unsuc-
cessfully from a recursive call) to ensure that all possibilities
for a correct match are investigated. While this bookkeeping
is a straightforward addition to the algorithm, backtracking
necessarily incurs a higher runtime complexity.

Homeomorphic containment. The top-down algorithm is
adapted to check for relaxed ⊆homeo embeddings in the col-
lection S by simply tagging all nodes in the inverted lists
with a scheme that encodes ancestor-descendant relation-
ships (e.g., pre-post ordering [11]). Next, the join condition
in the algorithm is updated to check ancestor-descendant
containment (i.e., line 9 of Algorithm 2). This adjustment
does not introduce any additional complexity since we can
determine the ancestor-descendant relationship between any
two nodes in constant time by using only two comparison
operations [11].

5. EMPIRICAL ANALYSIS
In this section we report on a series of experiments which

we performed to determine the general empirical behavior of
our proposed algorithms. Our approach here was to measure
the efficiency and scalability of the top-down and bottom-up
algorithms on a variety of data sets and queries.

5.1 Experimental set-up

Environment. The experiments were conducted on a ma-
chine running Fedora 12 / 64-bit Linux, with 8 x 2 Ghz
processors, 144 GB RAM, and a 2.8 TB disk. The data
structures and algorithms were implemented in Java (version
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J2SE-1.5), as a single threaded process. The inverted files
were implemented using Tokyo Cabinet6 (version 1.24) as
the storage engine. Tokyo Cabinet is an industrial-strength
open-source library of routines for managing key-value pair
indexes on disk, as B+trees or hash tables. We used the
external memory hash table in our implementation, with no
main memory buffering (i.e., we explicitly disabled Tokyo
Cabinet’s caching mechanisms).

Data sets. For database instances S (recall Equation 2),
we used four different synthetic data sets and two different
real-world data sets in our experiments.

• For all synthetic data sets, we drew leaf values from a
fixed domain of 10,000,000 labels. We generated two
different classes of synthetic data sets. The first class
was generated such that data objects had their leaf val-
ues drawn at random, uniformly distributed across the
set of labels. The second class was generated such that
data objects exhibited a skewed Zipfian distribution of
leaf values, across all sets in the database [12]. Skew
is determined by a factor 0 < θ < 1, where the closer
θ is to 1, the greater the skew. The skewness values
we used are θ ∈ {0.5, 0.7, 0.9} (we only report on a
representative subset of the results for these data sets
here; see [17] for all results). Within both the uniform
and skewed classes, we generated synthetic databases
with either “wide” or “deep” nested sets. The process
to generate a nested set was as follows: starting at the
root, (1) randomly choose a number of leaf nodes for
the current node; (2) after assigning labels to the leaf
children of the current node, stop extending this node
with some probability; (3) if we do not stop, then ran-
domly choose some number of internal children, and
recur on each of them, starting at step (1). The val-
ues we used for the stopping probability and the upper
bounds on the number of leaf and internal children for
“wide” and “deep” data sets are given in Table 3.

To summarize, we generated uniform-wide, uniform-
deep, skewed-wide, and skewed-deep synthetic data
collections.

• The first real data set is a collection of tweets from
Twitter, in nested JSON format (which we directly
mapped into our data model), and contains nested in-
formation, such as messages, dates, user ids and urls,
about tweets on a pop idol (‘Justin Bieber’). This data
set, collected via the Twitter Search API,7 is also used
and described further in [30].

• The second real data set is a collection of articles re-
trieved from the DBLP Computer Science Bibliogra-
phy,8 as an XML database. This database contains
records regarding computer science articles, which we
mapped directly into nested sets in our model.

Queries. For benchmark queries, we arbitrarily selected
100 nested sets from each data collection S. We distorted
half of the selected queries such that they are not contained

6http://fallabs.com/tokyocabinet/
7http://dev.twitter.com/docs/api/1/get/search
8http://www.informatik.uni-trier.de/~ley/db/

Table 3: Parameters used for generating different types of
synthetic nested sets.

parameter wide sets deep sets
max # of leaves per node 12 2
max # of non-leaves per node 6 3
stopping probability 0.8 0.2

in the data collection (i.e., we have 50 positive queries and
50 negative queries for each S); this was done by adding a
new leaf value to each set which does not appear anywhere
else in the database.

Inverted list caching. Each benchmark was run both with
and without the caching optimization described in Section
3.3. The caching parameter, i.e., the number of lists that
are buffered in main memory, was set to 250 in all cases.

Other assumptions. We made two simplifying, but easily
remediable, assumptions in our empirical study. (1) The
payloads for any given internal query node, i.e., the retrieved
inverted lists, fit in main memory. As these lists are flat, the
I/O-efficient blocked approach of Mamoulis for flat sets [24]
could be easily used, if necessary, to lift this assumption.
(2) The stack used in the bottom-up algorithm fits in main
memory. I/O-efficient solutions for stacks, e.g., as available
in the open-source STXXL library [6], can be used off-the-
shelf if necessary to remove this assumption.

5.2 Experiments
We next discuss the series of experiments we performed.

Unless stated otherwise, the unit of performance measure-
ment in our experiments is the elapsed time of sequentially
executing all 100 benchmark queries. For each measurement,
we repeat this ten times, exclude the minimum and maxi-
mum timings, and report the average of the middle eight
executions.

Experiment 1. We measured the cost of query execution
on the uniform synthetic databases, while increasing the
database size. Figures 6a and 6b show the results of this
experiment. The figures show that an increase in size does
not always imply an increase in querying time. Also, caching
shows no real effect on the uniform data sets, as is to be ex-
pected. Overall, we see that individual queries can be pro-
cessed in milliseconds, even on databases having 4 million
nested sets.

Experiment 2. We measured the cost of query execution on
the skewed synthetic databases, while increasing the database
size. Figures 6c and 6d show the results of this experiment.
These figures show that there is a modest improvement in
query costs when using caching, on both the wide and deep
databases. Compared to uniform data, we see that skewness
has a considerable impact on evaluation costs. Overall, we
see that individual queries can be processed in milliseconds
to tens of milliseconds, even on databases having 4 million
nested sets.

A technical observation we can make at this point is that
Figures 6a-6d show noise/artifacts, i.e., small dips in query-
ing time. The dips only occur in those situations where
individual querying times are on the order of milliseconds.
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(a) Average query times on uniform wide synthetic databases
ranging in size from 125K to 4M nested sets (Experiment 1).
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(b) Average query times on uniform deep synthetic databases
ranging in size from 125K to 1M nested sets (Experiment 1).
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(c) Average query times on skewed (θ = 0.7) wide synthetic
databases ranging in size from 125K to 4M nested sets (Exper-
iment 2).
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(d) Average query times on skewed (θ = 0.7) deep synthetic
databases ranging in size from 125K to 1M nested sets (Exper-
iment 2).
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(e) Average query time on the Twitter data collection, ranging in
size from 125K to 500K nested sets. (Experiment 3).
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(f) Average query time on the DBLP data collection, ranging in
size from 125K to 4M nested sets (Experiment 3).

Figure 6: Average cost (in milliseconds) for processing 100 queries on the (a-b) uniform synthetic, (c-d) skewed synthetic,
and (e-f) real data sets (Experiments 1, 2, and 3).

These small fluctuations are due to the selection of queries.
In particular, when looking at the queries selected, we saw
that the small databases had some larger queries selected
than those selected for subsequently larger databases.

Experiment 3. We measured the cost of query execution
on the real databases, while increasing the database size.
Upon inspection, we found that the distributions of values
in both data sets were skewed. For example, popular users
dominate the Twitter discussion of the pop idol.

Figure 6e shows the results of the Twitter data. The fig-
ure shows an improvement by a factor of 100 with caching.

236



Table 4: Average cost, in milliseconds, for individual negative (−) and positive (+) queries on databases of 500K nested sets
(Experiment 4). The table shows a comparison between the top-down (TD) and bottom-up (BU) algorithms, with inverted
list caching disabled and enabled. Also given are “speed-up”, the ratio of no caching to caching, and TD

BU
, the ratio of top-down

to bottom-up.

Uniform data Skewed data (θ = 0.5) Real data
wide sets deep sets wide sets deep sets Twitter DBLP

TD BU TD
BU

TD BU TD
BU

TD BU TD
BU

TD BU TD
BU

TD BU TD
BU

TD BU TD
BU

no caching
+ 1.18 1.02 1.2 1.39 0.83 1.7 1.9 1.8 1.1 5.58 4.04 1.4 64.1 74.11 0.9 4.42 2.51 1.8
− 0.4 1.15 0.4 0.94 1.53 0.6 0.1 4.18 0.02 1.18 7.71 0.2 9.76 14.64 0.7 0.62 0.79 0.8

caching
+ 1.46 0.75 1.95 1.76 0.92 1.9 0.53 0.84 0.6 2.64 2.28 1.2 0.79 0.69 1.1 1.94 0.98 2.0
− 0.56 0.83 0.7 1.15 1.69 0.7 0.07 3.09 0.02 0.67 4.96 0.1 0.1 0.88 0.1 0.4 0.36 1.1

speed-up
+ 0.8 1.36 0.6 0.78 0.9 0.9 3.6 2.14 1.7 2.11 1.78 1.2 81.1 107.4 0.8 2.28 2.56 0.9
− 0.71 1.39 0.5 0.82 0.91 0.9 1.4 1.35 1.04 1.76 1.55 1.1 97.6 16.64 5.9 1.55 2.19 0.7

Overall, we see that individual queries can be processed in
hundreds of ms without caching, and on the order of mil-
liseconds or less with caching. Figure 6f shows the results of
the DBLP data set. Here, we see a less pronounced improve-
ment with caching enabled, and behavior similar to those of
Twitter and the other skewed data collections.

Experiment 4. In this experiment we distinguished costs
for positive and negative queries. Table 4 shows the average
querying time for individual positive and negative queries,
for the databases having 500K nested sets. The main obser-
vation we make here is that, both with and without caching,
both algorithms exhibit very similar behavior. We some-
times see a slight performance gain of the top-down approach
for negative queries and the bottom-up approach for posi-
tive queries, but the differences are minor. We leave open
a finer empirical analysis of top-down vs. bottom-up as an
interesting topic for further research.

Experiment 5. Finally, we conducted an experiment with
the Bloom filter, using the top-down algorithm, to investi-
gate its effectiveness in early pruning of false matches of the
query in the database. Here, we used uniform synthetic data
with an average of seven levels of nesting. We adorn the root
of every query and database object with a Bloom filter, in
the form of a boolean array of 20 bits. Figure 7 shows that
the Bloom filter is indeed effective in spotting false matches,
leading to an order of magnitude reduction in query cost.

5.3 Discussion
In general, we observed that both the top-down and bot-

tom up algorithms exhibited efficient and scalable behavior
on all databases. In particular, queries could often be pro-
cessed in milliseconds or tens of milliseconds, even on collec-
tions of millions of nested sets. Both algorithms were most
challenged by skewed data sets. We also demonstrated the
effectiveness of caching (for non-uniform data) for both al-
gorithms, and of filtering for early pruning of candidates in
the top-down algorithm, with both optimizations exhibiting
up to orders of magnitude improvement in query costs.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have developed the first known efficient

scalable solutions for computing containment joins on col-
lections of nested data sets. We gave two distinct algorithms
for this basic problem, discussed optimizations to accelerate
query processing with the algorithms, and presented exten-
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Figure 7: The average cumulative querying time when us-
ing Bloom filters with the top-down algorithm (Experiment
5). The data set contains 100K uniform synthetic deeply
nested sets (average of seven levels of nesting). Every query
is distorted (i.e., is a negative query).

sions to our solutions to handle other practical set-based
query patterns and alternate containment semantics. Ana-
lytic and empirical analysis demonstrated the efficiency and
scalability of our solutions. Our algorithms have the addi-
tional benefits of conceptual simplicity and usage of a widely
adopted data structure. Hence, our results have excellent
potential to make a practical impact on data management
systems and solutions.

Many interesting research challenges remain open. We
close by listing a few. (1) Our empirical study showed that
skewed data is challenging for our algorithms. Incorpora-
tion in our algorithms of recent results on efficiently dealing
with list intersections and data skew should be investigated
[5, 35]. (2) It would be interesting to study the impact on
our solutions of variations to the data model (e.g., multi-set
and list types) or query model (e.g., bottom-up subtree em-
beddings [36]). (3) Further theoretical analysis of set-based
joins in the context of nested data is warranted, to place
them in the broader landscape of join problems; cf. [3, 22].
(4) In practice, both queries and data are often noisy and
uncertain. It would be interesting to investigate extensions
to handle query relaxations such as set similarity joins and
set containment in uncertain data models [1, 23, 31, 39].
(5) More sophisticated pruning mechanisms for hierarchi-
cal data could be profitably developed for our context, e.g.,
based on recent work such as [16, 33]. (6) A deeper study of
nested set caching mechanisms should be undertaken, e.g.,
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investigating alternatives such as caching with respect to an
evolving query workload.
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