
ProQua: A System for
Evaluating Logic-Based Scoring Functions on

Uncertain Relational Data

Sebastian Lehrack, Sascha Saretz and Christian Winkel
Brandenburg University of Technology Cottbus

Institute of Computer Science
Postfach 10 13 44, D-03013 Cottbus, Germany

{slehrack, ssaretz, cwinkel}@informatik.tu-cottbus.de

ABSTRACT
ProQua is an innovative probabilistic database system which
enables the application of logic-based and weighted similar-
ity conditions on uncertain relation data. In this demonstra-
tion paper we describe the interrelations among the main
concepts, present an archaeological example scenario and
sketch the software architecture of ProQua.

1. MOTIVATION
Our novel probabilistic database system ProQua1 com-

bines information retrieval techniques with database tech-
nologies. In the last Claremont report2 [?] leading database
researchers have proposed such a combination as an impor-
tant and promising research field. Classical database sys-
tems evaluate a given query against a data tuple either to
the truth value true or to the truth value false. This strict
evaluation approach is not able to meet user expectations
about vague and uncertain conditions adequately [?]. Conse-
quently, there is a need for incorporating the concepts of im-
preciseness and proximity into a traditional database query
language.

A promising approach for handling vagueness is exploiting
similarity conditions as ‘price about 100 ’ or ‘location is close
to Berlin’ within a logic-based query language. This type
of query language combines similarity predicates by logical
operators (∧,∨ and ¬) in order to formulate complex con-
ditions. Data tuples fulfill these complex conditions to a
certain degree which is given by a score value taken from
the interval [0, 1].

Logic-based scoring functions represent the theoretical con-
cept behind complex similarity conditions [?]. In general,
they can be applied on a certain or an uncertain databases.

1ProQua stands for “probabilistic and quantum logic-based
database system”.
2The Database Research Self-Assessment Meeting takes
place every five years.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT ’13 March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ...$15.00.

Probabilistic databases have been established as a new type
of database systems which can manage and query huge data
sets of uncertain data [?].

In [?, ?] we have published a probabilistic data and query
model which enables the application of logic-based scoring
functions on probabilistic databases. In addition, we imple-
mented our techniques in ProQua as an extension of the Ora-
cle database system [?]. In contrast to other state-of-the-art
probabilistic database systems ProQua offers a generic simi-
larity operator within its query language QSQL2 [?, ?]. Fur-
thermore, QSQL2 facilitates the weighting of subqueries and
subconditions exploiting two different weighting approaches
[?, ?, ?].

In the next section we discuss a schema of the key concepts
of ProQua. Afterwards, we present the example scenario
of our online demonstration in Sec. (3). Finally, we give
an overview of the architectural components of ProQua in
Sec. (4).

2. BASIC CONCEPTS
In this section we briefly discuss the main idea behind

ProQua. For this purpose, we describe the interrelations
among its core concepts, see Fig. (1).

In the first step we map the different syntactical com-
ponents of a given QSQL2 query to (i) a logic-based scor-
ing function and (ii) an algebra query on probabilistic data.
Each query type is based on its own semantic model. On the
one hand, a logic-based scoring function is interpreted by a
probabilistic view of a vector space retrieval model [?, ?]. On
the other hand, we exploit the well-known possible-world-
semantics for processing an algebra query on probabilistic
data. Respecting these semantic models the outcome of a
logic-based scoring function is determined by a query plan
computing the result of a normalised similarity domain cal-
culus query [?]. In contrast, the evaluation of an algebra
query is performed by a query plan with intensional and ex-
tensional plan operators [?]. Those plans rely on a novel
representation system for probabilistic databases called U*-
databases. By employing the ranking semantics of expected
scores [?] and a top-k filter [?] we finally generate an overall
query plan which produces the desired query result.

3. EXAMPLE SCENARIO
In order to demonstrate the key features of ProQua and

its query language QSQL2 we provide an online demo:

http://dbis.informatik.tu-cottbus.de/ProQua/.

761

http://dbis.informatik.tu-cottbus.de/ProQua/

vector space
retrieval model

4

syntax semantics

(b)

QSQL2
query

1

algebra query
on probabilistic data

3
possible-worlds-
semantics

5
(a)

(a)

(b)

(d)

normalised similarity
domain calculus query

6

U*-database +
probability computation

7

combined
query plan

8

evaluation

logic-based
scoring function

2
(c)

(c)

Figure 1: Main concepts of ProQua

The example scenario of this online demo is motivated by
the redesign of the CISAR project3. It is a web-based Geo
Information System for archaeology and building history [?].
Technologies of ProQua will be widely used in its successor
system OpenInfRA [?].

Our simplified example scenario relies on the determin-
istic table Artefacts (Arte) and the two probabilistic tables
Artefacts classified by Experts (ArteExp) and Artefacts clas-
sified by Material (ArteMat), see Fig. (3). In table Arte we
store information about several artefacts which were found
during an archaeological excavation. Thereby, the sondage
number (attribute sond) of an artefact encodes its geograph-
ical area of finding.

Furthermore, various experts gave a valuation about the
originating culture (attribute culture) for each artefact, see
table ArteExp. Those estimations are quantified by a con-
fidence value (attribute conf) embodying the probability
that the considered artefact is created by the specified cul-
ture. Besides these subjective expert reports we also in-
volve more objective methods. These archaeometrical meth-
ods (e.g. XRF and ICS-MS4) utilize material analyses. In
combination with the artefact finding site and the age, the
material composition can be useful to elucidate the originat-
ing culture. The corresponding confidence values are also
given in the attribute conf.

Using those data tables our online demo contains several
examples queries. All example queries are presented accord-
ing to a classification of all supported query types. This clas-
sification is inferred from two independent criteria, namely
(i) the expressiveness of the supported conditions and (ii)
the nature of the underlying relational data basis. Thus, we
indicate

• the capability of incorporating the concepts of impre-
ciseness and vagueness in terms of similarity condi-
tions, i.e. classical Boolean conditions (BC) vs. similarity
conditions (SC), and
• the capability of expressing several possible database

states derived from tuple and attribute uncertainty, i.e.
classical certain data bases (CD) vs. uncertain data
bases (UD).

By combining these criteria orthogonally we build the four
query classes as described subsequently. They all are ex-

3http://www.dainst.org/en/project/cisar/
4The abbreviations XRF and ICS-MS stand for the x-ray
fluorescence and the inductively coupled plasma mass spec-
trometry method, respectively.

Arte
aid type sond age
art1 vase fragment 3 300
art2 spear head 10 500
art3 vase fragment 4 300

ArteExp
expert rep aid culture conf

Peter B art1 roman 0.3
Peter B art1 greek 0.4
Cathy C art1 roman 0.4
John A art2 egyptian 0.6

ArteMat
method year aid culture conf

XRF 1997 art1 roman 0.3
XRF 1997 art1 greek 0.3

ICS-MS 2008 art2 punic 0.8
XRF 2010 art2 egyptian 0.5

Figure 3: Data tables of the example scenario: Arte,
ArteExp and ArteMat

emplified by a characteristic query taken from our example
scenario5.

(I.) Boolean conditions on certain data: The class
BConCD includes queries formed by Boolean conditions (i.e.
the result is given by either the truth value true or false) on
deterministic relational data. These queries are supported
by traditional relational query languages as SQL. Referring
to our scenario a typical query of BConCD is exemplified
by “Determine all artefacts which have a sondage number
between 7 and 12 or an age between 250 and 350 years”.
This kind of query produces a homogeneous result set of
artefacts matching the defined condition.

(II.) Similarity conditions on certain data: The class
SConCD represents queries which enable vagueness and im-
preciseness by similarity conditions. The result of such a
query is defined by a list of tuples ordered by score values
from the interval [0, 1]. These score values express the de-
gree of query fulfilment. For instance, a SConCD-query is
given by “Determine all artefacts such that their sondage
numbers should be around 10 or their ages should be around
300 years”.

(III.) Boolean conditions on uncertain data: The

5In our online demo each query class is characterised by a
weighted and an unweighted version of an example query.
For the sake of brevity, we give in this paper just an un-
weighted query per query class.

762

http://www.dainst.org/en/project/cisar/

� �
select aid, type, culture
from (select aid, culture

from ArteExp
union[0.9, 0.4]

select aid, culture
from ArteMat

) origin
inner join

(select *
from Arte
where (sond ~ 10 or[0.3,

0.8] age ~ 300)
) prop

on (origin.aid = prop.aid)� �

πaid,type,culture

./

∪ω1,ω2

πaid,culture

ArteExp

πaid,culture

ArteMat

σsond≈10∨ω3,ω4age≈300

Arte

Figure 2: Example scenario query as QSQL2 query (left) and as abstract version (right)

queries of the class BConUD are typical for probabilistic data-
bases. As an example query we give “Determine all artefacts
which are probably created by Roman people”. Once again the
resulting tuples are ranked. But in this case probabilities are
used for the final ranking instead of score values.
(IV.) Similarity conditions on uncertain data: If we

combine both criteria, then we achieve a query class with an
expanded expressiveness. A SConUD-query is formulated as
“Determine all artefacts with their possible cultural origins
such that their finding sondages should be near sondage 10
or their ages should be around 300”. The ranking is now de-
termined by a given ranking semantics, e.g. expected scores.

In order to give an example query in QSQL2 we present
the last SConUD-query as weighted version in Fig. (2). In
addition to similarity conditions, a user individualises this
query by weighting the importance of various parts of the
query on two different levels. Concretely, the user quantifies
the significances between following query parts:

(i) the culture estimated by an expert vs. the culture clas-
sified by the material analysis (see keyword union[0.9,
0.4] and operator ∪ω1,ω2 in Fig. (2)) and

(ii) the sondage vs. the age (see keyword or[0.3, 0.8] and
operator ∨ω3,ω4 in Fig. (2)).

For this query we assume that the considered user deter-
mines the weighting variables to ω1 = 0.9, ω2 = 0.4, ω3 = 0.3
and ω4 = 0.8. That means, the user prioritises (i) the ex-
pert valuation over the material analysis and (ii) the age over
the sondage, because we define that a high weight from the
interval [0, 1] corresponds to a high priority.

4. PROQUA ARCHITECTURE
In this section we briefly sketch the architecture of the

ProQua system (see Fig. 4). In detail, we present the main
components of ProQua by describing the primary control
and data flow.

The foundation of our implementation is a transformation
sequence of different operator plans. The operators within
these plans are developed as specialised versions of the well-
known relational algebra operators. By adapting algebra
operators we facilitate a direct and efficient integration into
an existing object-relational database system like Oracle 11g
[?]. The current ProQua implementation consists of (i) a
client library for Java applications and (ii) a cartridge which
extends the Oracle DBMS by scoring and probability com-
putation capabilities.

The components (1) to (6) of Fig. (4) form the client
library QSQL2forJava. This library replaces the database

driver which is usually invoked by a Java application. In
contrast, the components (7) to (8) are directly integrated
within the Oracle DBMS. In the following we briefly describe
the main components of ProQua as depicted in Fig. (4).

(1) QSQL2 syntax engine: The two main tasks of the
QSQL2 syntax engine are the syntax checking and the con-
struction of an abstract syntax tree.

(2) sf plan generator: The sf plan generator constructs
a logic-based scoring function by processing the incoming
syntax tree. Subsequently, the sf plan generator carries out
a syntactical normalisation as pre-step for constructing a sf
plan. It can be shown that each sf plan can compute score
values in polynomial time.

(3) pr plan generator: The pr plan generator also takes
the abstract syntax tree and extracts an algebra query which
can be evaluated by a pr plan. The underlying extensional
and intensional plan operators calculate the probabilities
for all resulting tuples. In general, the computation of those
probabilities is in the complexity class #P6.

(4) sf/pr plan combiner: The sf/pr plan combiner
merges the sf plan and the pr plan to an overall query plan.
Thereby, the applied combining strategy intensively depends
on the underlying ranking semantics. In the current imple-
mentation ProQua exploits the expected score semantics.

(5) sf/pr plan optimiser: Even though the complexity
class of the merged query plan is determined by its input
plans, the optimiser can reach significant improvements of
the overall processing time by using further standard opti-
misation strategies on the plan operator level.

(6) plan2Oracle transformer: The last transforma-
tion step is the compilation of the optimised query plan into
(several) Oracle query statements by a special transformer
component tailored for the supported Oracle DBMS. Refer-
ring to the modular architecture of ProQua we are able to
support other systems and platforms by developing further
transformer modules for such systems and platforms.

(7) ProQua query engine: The ProQua query engine is
responsible for the computation of all score values and prob-
abilities. Thus, the various plan operators can call scoring
functions and probability computation algorithms provided
by the ProQua query engine to determine the final result.

(8) Oracle query engine: Besides the computation of
score values and probabilities delivered by (7) the Oracle
query engine creates the relational data part of the com-
puted query result.

6Problems of the complexity class #P ask for the number
of accepting paths of a non-deterministic Turing machine
which is running in polynomial time (i.e. NP ⊂ #P).

763

server side
Oracle 11g DBMS

probabilistic
data tables

ProQua
meta data

relational
data tables

ProQua query engine

Oracle query engine

client side

QSQL2 syntax
checker 1

SQL

Oracle SQL
queries

QSQL2ForOracle java library

QSQL2
query

QSQL2 result

sf plan
generator

2

pr plan
generator

3

sf plan

pr plan

sf/pr plan
combiner 4

sf/pr plan

sf/pr plan
optimiser

5

optimised
sf/pr plan

plan2Oracle
transformer

6

abstract
syntax tree

QSQL2

7

8

Figure 4: Architecture of the ProQua database system

Acknowledgment: The development of ProQua was sup-
ported by the German Research Foundation (DFG) grants
SCHM 1208/11–1 and SCHM 1208/11–2.

5. REFERENCES
[1] Sanjay Agrawal, Surajit Chaudhuri, Gautam Das, and

Aristides Gionis. Automated ranking of database
query results. In CIDR, 2003.

[2] Frank Henze, Heike Lehmann, and Wolfgang Langer.
CISAR - A Modular Database System as a Basis for
Analysis and Documentation of Spatial Information.
In CAA, pages 228–233, 2007.

[3] Ihab F. Ilyas and Mohamed A. Soliman. Probabilistic
Ranking Techniques in Relational Databases. Synthesis
Lectures on DM. Morgan & Claypool, 2011.

[4] Sebastian Lehrack. Applying weighted queries on
probabilistic databases. In CIKM, pages 2209–2213,
2012.

[5] Sebastian Lehrack and Sascha Saretz. A Top-k Filter
for Logic-Based Similarity Conditions on Probabilistic
Databases. In ADBIS, pages 268–281, 2012.

[6] Sebastian Lehrack and Sascha Saretz. Evaluating
Logic-Based Scoring Functions on Uncertain
Relational Data. JIDM, 3(3):348–363, 2012.

[7] Sebastian Lehrack, Sascha Saretz, and Ingo Schmitt.
QSQL2: Query Language Support for Logic-Based
Similarity Conditions on Probabilistic Databases. In
RCIS, pages 1–12, 2012.

[8] Sebastian Lehrack and Ingo Schmitt. QSQL:
Incorporating Logic-Based Retrieval Conditions into
SQL. In Hiroyuki Kitagawa, Yoshiharu Ishikawa, Qing
Li, and Chiemi Watanabe, editors, DASFAA (1),
volume 5981 of Lecture Notes in Computer Science,
pages 429–443. Springer, 2010.

[9] Sebastian Lehrack and Ingo Schmitt. A Probabilistic
Interpretation for a Geometric Similarity Measure. In
ECSQARU, pages 749–760, 2011.

[10] Sebastian Lehrack and Ingo Schmitt. A Unifying
Probability Measure for Logic-Based Similarity
Conditions on Uncertain Relational Data. In
Proceedings of the International Workshop on New
Trends in Similarity Search (EDBT workshop), pages
14–19, New York, NY, USA, 2011. ACM.

[11] Tony Morales. Oracle Database Reference, 11g Release
1 (11.1). Oracle Corp., Publishers, 2008.

[12] J. Pearl. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann,
1988.

[13] Rakesh Agrawal, Anastasia Ailamaki, Philip A.
Bernstein et al. The Claremont report on database
research. SIGMOD Rec., 37:9–19, September 2008.

[14] Felix Schäfer and Alexander Schulze. OpenInfRA –
Storing and retrieving information in a heterogenous
documentation system. In CAA, 2012.

[15] Ingo Schmitt. Weighting in CQQL. BTU Cottbus,
Computer Science Reports 04/07, 2007.

[16] Ingo Schmitt. QQL: A DB&IR Query Language.
VLDB J., 17(1):39–56, 2008.

[17] Dan Suciu, Dan Olteanu, Christopher Ré, and
Christoph Koch. Probabilistic Databases. Synthesis
Lectures on Data Management. Morgan & Claypool
Publishers, 2011.

[18] David Zellhöfer and Ingo Schmitt. A preference-based
approach for interactive weight learning: learning
weights within a logic-based query language.
Distributed and Parallel Databases, 27(1):31–51, 2010.

764

