
Pollux: Towards Scalable Distributed Real-time Search on

Microblogs

Liwei Lin†

linliwei@mail.sdu.edu.cn
Xiaohui Yu†,\

⇤

xhyu@yorku.ca
Nick Koudas§

koudas@cs.toronto.edu
†School of Computer Science & Technology, Shandong University, Jinan, China

\School of Information Technology, York University, Toronto, ON, Canada
§Department of Computer Science, University of Toronto, Toronto, ON, Canada

ABSTRACT
The last few years have witnessed a meteoric rise of microblog-
ging platforms, such as Twitter and Tumblr. The sheer volume of
the microblog data and its highly dynamic nature present unique
technical challenges for the platforms that provide search services.
In particular, the search service must provide real-time response to
queries, and continuously update the results as new microblogs are
posted. Conventional approaches either cannot keep up with the
high update rate, or cannot scale well to handle the large volume of
data.

We propose Pollux, a system that provides distributed real-time
indexing and search service on microblogs. It adopts the distributed
stream processing paradigm advocated by the recently developed
platforms that are designed for real-time processing of large vol-
ume of data, such as Apache S4 and Twitter Storm. Although those
open-source platforms have found successful applications in pro-
duction environments, they lack some critical features required for
real-time search. In particular: (1) they only implement partial fault
tolerance, and do not provide lossless recovery in the event of a
node failure, and (2) they do not have a facility for storing global
data, which is necessary in efficiently ranking search results.

Addressing those problems, Pollux extends current platforms in
two important ways. First, we propose a failover strategy that
can ensure high system availability and no data/state loss in the
event of a node failure. Second, Pollux adds a global storage fa-
cility that supports convenient, efficient, and reliable data storage
for shared data. We describe how to apply Pollux to the task of
real-time search. We implement Pollux based on Apache S4, and
show through extensive experiments on a Twitter dataset that the
proposed solutions are effective, and Pollux can achieve excellent
scalability.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Processing; D.4.5
[Operating Systems]: Reliability—Fault Tolerance

⇤Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT’13, March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ...$15.00.

General Terms
Algorithms, Performance, Experimentation

Keywords
Distributed processing, data stream, search, microblog, fault toler-
ance

1. INTRODUCTION
Microblogging services have gained tremendous momentum dur-

ing the past few years. Twitter, the world’s largest microblogging
service provider, is estimated to have 500 million accounts as of
January 2012, and this number is increasing at a rate of 10 accounts
per second [9]. On average, there are over 200 million microblogs
(hereinafter also referred to as tweets following Twitter’s terminol-
ogy) posted per day on Twitter alone, consitituting a huge volume
of data. Much of the microblogging service’s daily content is of
a short temporal span (i.e., real-time content) but can contain sig-
nificant societal, cultural, and commercial implications because of
its diverse sources [23]. It is therefore highly desirable to provide
real-time search capabilities over microblogs.

However, providing real-time search service over microblogs is
a challenging task. First, the service must be able to deal with a
vast amount of highly dynamic data. A peak rate of 25,088 tweets
per second has been reported [5]. Massive indexing work therefore
needs to be done continuously in order to make every tweet search-
able. Conventional indexing methods adopted by DBMSs cannot
handle the high frequency of data arrival and index update, because
of the noticeable latency caused by frequent locking operations and
disk I/Os. Second, the query results must be continuously updated
when new tweets arrive, rendering it infeasible to simply adopt the
methods developed for conventional Web search. Designed mainly
for batch processing, Hadoop and other MapReduce variants can-
not handle real-time processing well. Although there have been
recent efforts on adapting Hadoop to real-time tasks [13], many
technical challenges still remain [30].

The leading microblogging platforms and search engines, such
as Twitter and Google, have started to offer real-time search ser-
vices. Unfortunately, there is still very little work in the public
domain. TI [15] is the first work that addresses the indexing and
ranking issues for microblogs. However, TI only indexes a subset
of the tweets (called the distinguished tweets) due to resource con-
straints, which may lead to inaccurate search results. More impor-
tantly, the inherently centralized architecture of TI makes it very
difficult to scale out for managing the ever-increasing volume of
data. Earlybird [14] is the most up-to-date solution deployed at
Twitter; however, as a proprietary solution, some essential archi-

335

tectural issues of Earlybird are not made public (refer to Section
2.1 for details).

We propose Pollux, a scalable distributed search engine as a so-
lution to the problem of real-time search over microblogs. Pollux
performs two tasks: indexing and searching. It maintains a full
index of all incoming tweets in real-time, while at the same time
searches, ranks, and continuously updates the matching tweets for
given queries. Pollux’s architecture allows it to support various
ranking strategies.

Pollux adopts the actor-model based distributed stream process-
ing paradigm common to many recently developed platforms, such
as Twitter Storm [8] and Apache S4 [30], which have found suc-
cessful applications in production environments. Although these
platforms excel at real-time processing of large volume of stream-
ing data, they lack some critical features that are required to support
real-time search. Those features are what Pollux is designed to pro-
vide. In particular:

(1) Fault tolerance: The current platforms only implement par-
tial fault tolerance, and lacks effective failover management. When
one node goes down, a standby node simply takes its place with-
out restoring the data stored in it, resulting in incomplete data and
search results. Since we aim to provide full indexing of tweets
and accurate search results, this simplistic failover strategy does
not suffice. We therefore design and implement a novel lossless
failover management strategy that takes into consideration the spe-
cific requirements and non-requirements of the real-time search
task.

(2) Global storage: Data in the current platforms is stored in-
ternally in each processing unit; they lack a global storage facility
for storing and sharing information commonly used by many pro-
cessing units, which some applications including real-time search
require. We thus introduce in Pollux global storage units, which
offer a simple yet powerful set of APIs that processing units can
use to efficiently store and retrieve information. This new addition
simplifies the task of the processing units, greatly reducing the ex-
cessive message passing when ranking the results. We show that it
can be used to support a wide range of ranking strategies.

We implement Pollux based on Apache S4, but the design can be
adopted to other similar platforms (such as Twitter Storm) as well.
We describe in detail how Pollux can be used to support real-time
search over microblogs.

Our main contributions can be summarized as follows.

• We design and implement Pollux, a real-time index and search
system over microblogs. Pollux is decentralized, scalable,
and elastic; it can be easily expanded to meet higher volume
of data or query loads.

• We propose a failover management strategy to ensure loss-
less recovery, as required by the task of real-time search.

• We propose a global storage facility to supplement the lo-
cal storage available within each processing unit, allowing
search and ranking to be done efficiently.

• We perform extensive experiments with Pollux using real and
synthetic Twitter data. Results demonstrate the effectivenss
of our proposal and the high performance, high availability,
and high scalability of Pollux.

The rest of the paper is organized as follows. In Section 2, we
introduce the necessary background and provide an overview of the
related work. In Section 3, we outline the requirements and non-
requirements of a real-time search system, and present the design of
Pollux. We present the failover strategy in Section 4. In Section 5,

we describe the global storage model. We discuss the implemen-
tation of Pollux to support real-time search in Section 6. Experi-
mental results are presented in Section 7. Section 8 concludes this
paper.

2. BACKGROUND AND RELATED WORK

2.1 Real-time Microblog Search
TI [15] is the first work that publicly tackles the problem of real-

time indexing and search for microblogs. TI essentially classifies
the incoming tweets into two categories, distinguished tweets and
noisy tweets, based on past queries. Tweets matching those past
queries that are expected to appear again in the near future (based
on statistics of past queries) are classified as distinguished. All
other tweets are considered noisy. The distinguished tweets are
indexed in real-time, while the noisy tweets are indexed only peri-
odically in a batch fashion. Making this distinction between distin-
guished and noisy tweets allows the system to focus on the index-
ing of more popular tweets to meet the demands of high-frequency
real-time queries.

However, TI has several drawbacks: (1) The classification is
based on past statistics and may not accurately reflect what is go-
ing to happen in the future, especially in a microblog setting where
things evolve very fast. It is very possible for tweets that will
match future queries to be mis-classified as noisy, thus resulting
in cases where relevant tweets are not returned (because they are
not indexed as distinguished tweets); (2) Queries that do not over-
lap in keywords with previous queries will not be answered prop-
erly, because many of the matching tweets are likely to be classified
as noisy, as they do not contain keywords appearing in previous
queries. (3) The design of TI is inherently centralized; it is unclear
how this design can scale up in a distributed setting to handle the
extremely high volume of data and large number of users. Our pro-
posal, in contrast, provides full indexing of all tweets in a tunable
time window, ensuring that all relevant tweets can be returned in
the search result. Moreover, our design of Pollux as a distributed
stream processing system allows it to scale up really well.

Twitter has developed a distributed system called Earlybird [14,
3] enabling real-time search, but they reveal only the index organi-
zation mechanism (optimizations of inverted index) and the control
of concurrent reads and writes in a single Earlybird server. Issues
related to distributed search are not discussed in detail. In partic-
ular, these include (1) what to do when node failures occur; (2)
how different ranking strategies are supported; and (3) how well
the system performs as a whole. Pollux tackles all these issues.

2.2 Stream Data Processing Platforms
Multiple stream data processing platforms have been proposed

in the literature [29, 12, 11, 10, 6]. Amini et al. [12] provides a
review of the various systems, projects and commercial engines.
Unfortunately, the use of those platforms is still restricted to highly
specialized applications [30].

The recently developed Apache S4 [30] is a general-purpose,
distributed, scalable stream-processing platform. In S4, the basic
logical computing unit is called a PE (processing element). PEs
are very light-weight; thus thousands of PEs may reside on a sin-
gle node (usually a commodity PC). They interact with each other
through event emission and consumption. A PE does one or both
of the following after consuming an event: 1) emitting one or more
events to other PEs, 2) publishing the results. Concisely speaking,
an event in S4 is a 3-ary tuple: hevent type, a key-value pair, mes-
sage entityi. As illustrated in Figure 1(a), after PE A emits an event
to the data bus, two identical copies are routed to PE B and PE D

336

respectively, where the event copies are consumed. At startup, PEs
register to listen to particular types of events. One can also specify
PEs to listen to particular sub-sets of the same event type via more
detailed key-value pairs. A message entity is an object that rep-
resents the message data. Event passing usually forms a pipe-line
(see Figure 1(b)), through which events flow from top to bottom.
Loops are not technically forbidden in S4, but are seldom needed.

Storm [8], open-sourced by Twitter, is another distributed stream
processing engine serving similar purposes as S4. Both Storm and
S4 lack support of lossless failover management and global stor-
age, which are required to support real-time search. In our work,
although we focus on extending S4 with these new capabilities, we
expect that similar ideas could also be applied to extending Storm.

2.3 Distributed Key-Value Store
Various distributed key-value stores have been proposed in re-

cent years. Dynamo [17], Cassandra [27] and PNUTS [16] are
all distributed, high-available stores. However they are disk-based,
and thus have considerable latencies. RAMCloud [31] is online,
but utilizes disks to store replicas, causing noticeable downtime in
the event of a failure. In [32], Paxos is used to build a strongly con-
sistent distributed data store, but the resource utilization is too low
to be acceptable for our task: up to k node failure is tolerable when
2k+1 replicas are deployed, e.g., 3 replicas to tolerate 1 node fail-
ure and 5 replicas to tolerate 2 node failures. MemCached [4] is
a distributed memory object caching system, which lacks effective
fail-over management.

Compared with existing key-value stores, Pollux’s global storage
are online and highly available, tailor-made for the task of real-time
search to support a wide range of ranking strategies.

2.4 Failover Management for Stream Process-
ing

A number of proposals for failover management in stream pro-
cessing exist. Fast-recovery-based strategy [31] causes noticeable
downtime. The work in [34, 20] focuses on precise recovery, but
it incurs high run-time overhead as it aims at strict synchronization
of nodes and their backups (in the sense that they always have the
same states). Passive stand-by, upstream recovery and active stand-
by are failover strategies that provide lossless recovery, but they
rely on order preservation to ensure their correctness [20]. Multi-
upstream to multi-downstream flow [21] is introduced to overcome
network problems but again relies on order-preservation. In con-
trast, Pollux utilizes a failover strategy that works without requiring
order preservation.

3. REQUIREMENTS AND SYSTEM DESIGN

3.1 Requirements for Real-Time Search
Before deciding on a particular software stack to provide a so-

lution, we first look at the requirements for real-time search over
microblogs1, which are summarized as follows.

• Real-time processing: The microblogs should be indexed in
real-time, and queries should be answered promptly. In ad-
dition, query results must be updated when new microblogs
arrive.

• High availability: The service must be highly available, cov-
ering both scheduled and unscheduled downtime.

1In what follows, microblogs are also referrred to as tweets using
Twitter’s terminology.

Data Bus

PE A PE B PE C PE D

(a) Data-bus view

PE A

PE B

PE C

PE D

(b) Pipeline view

Figure 1: Data-bus view and pipeline view of the S4 event flow

• Lossless recovery: While having imprecise results (such as
the appearance of irrelevant microblogs in the results) is a
fact of life in information retrieval systems as it is unlikely
to have a “perfect" ranking function, losing a whole chunk of
data (and therefore leaving them unsearchable) due to hard-
ware failure is unacceptable.

• Scalability and elasticity: We need to be able to add in-
cremental capacity to our system to handle growing amount
of requests for the applications. System performance should
improve proportionally to the hardware capacity added and
the expansion should bring minimal overhead and no down-
time.

• Ranking support: We should provide a framework for real-
time indexing and search that supports the implementation of
various ranking functions, as the search results should be ef-
fectively sorted to present information relevant to the queries.

It is also worth pointing out the non-requirements:

• Transient inconsistencies: There is a trade-off between avail-
ability, performance and consistency. We argue that for mi-
croblog search, it is acceptable to have some transient incon-
sistencies in the search results. For example, if two tweets
ta, tb and a query searching for ta and tb arrive almost si-
multaneously, then it is acceptable that tb is instantly search-
able and returned while ta is not for the moment and will
be returned after a very short delay. As will be shown in
the sequel, by relaxing the requirement on consistency, it is
possible to achieve higher performance and availability.

• Order preservation: This is derived from the non-require-
ment on consistency. Messages do not need to be processed
in exactly the same order as they arrive; nor do they have to
arrive at a processing element in the same order as they are
emitted.

3.2 Design of Pollux: Architectural Overview
Pollux consists of two components: a faster in-memory real-time

processing component, which takes care of indexing and search of
recent tweets (within a configurable time threshold), and a slower
on-disk batch processing component, which is responsible for tweets
from the more distant past. For a given query, only recent tweets
returned by the real-time component are first presented to the user,
who then has the option of viewing older tweets (to be returned
by the batch component) should he/she so wish. This two-tier de-
sign is based on the observation that in most cases, users of mi-
croblogging services focus more on recent tweets [25, 18]. The
batch component can be implemented in a traditional fashion using
full-text search engine such as Apache Lucene. The cutoff point

337

Processing Nodes

Input
Stream

Output

Pollux

...

...

Global Storage Nodes

PEs

Replica

PEs

Replica

GS
Node

ZooKeeper
Node

ZooKeeper
Node

...

PEs PEs PEs

GS
Node

GS
Node

Entry Point

Entry Point

Idle Node

Idle Node

...Network

...

Figure 2: Pollux’s architectural overview: processing nodes,
global storage (GS) nodes, entry points, ZooKeeper nodes, and
idle nodes

(in time) between the two components can be configured based on
the amount of available system resources, user requirements, etc.
In this paper, we only focus on the discussion of the real-time com-
ponent, as it presents more technical challenges. Unless otherwise
pointed out, the term Pollux refers to specifically the real-time com-
ponent in the rest of the paper.

Pollux is built based on the S4 platform (an overview of S4 is
provided in Section 2.2), but the ideas could also be applied to ex-
tend other stream processing systems such as Storm. Pollux em-
ploys a decentralized architecture, i.e., there is no master node; all
jobs are done through the coordination between processing nodes,
sometimes with the help of ZooKeeper [2]. There are four types
of functioning nodes in Pollux: the processing node, the global
storage node (or GS node for short), the entry point node, and the
ZooKeeper node. The processing nodes hold the PEs, while the
GS nodes hold the global data. The entry point nodes receive input
streams, and distribute them to the processing nodes. ZooKeeper
monitors the status of the system, reports node failures, and records
system running statistics. There are some idle nodes waiting in a
pool; if a failure occurs to a node of type X , an idle node immedi-
ately joins and serves as a node of type X . All nodes are connected
through high-bandwidth network to ensure performance.

The failover strategy, the design and usage of the global storage,
and the implementation of real-time search over microblogs are the
three key issues we shall explore in the following sections.

4. FAULT TOLERANCE
The current implementations of the stream processing platforms

(S4, Storm, etc.) simplify the task of failover management by as-
suming that lossy failover is acceptable. Take S4 for an example.
Upon a node failure, the PEs running on that node are automati-
cally re-allocated on a standby node. The states of the PEs, which
are stored in memory, are lost during the hand-off. This leads to
incorrect and unacceptable output. We therefore have to come up
with a failover strategy to ensure timely output of correct results in
the event of a node failure.

As analyzed in Section 3, the task of real-time search requires
high availability and lossless recovery, while transient inconsisten-
cies can be tolerated and order-preservation is not required. These
characteristics must be taken into consideration when designing
the failover strategy. Moreover, the structure of Pollux is sym-
metric, meaning that every processing node hosts a mixture of dif-
ferent types of PEs. Compared with an asymmetric design where
each processing node is dedicated to a particular type of PE, this

symmetric design provides better load balancing in that different
types of PEs exhibit different resource usage profiles (e.g., some
PEs are CPU-intensive whereas some PEs are memory-intensive).
This structure of Pollux must also be taken into account for failover
management.

4.1 Existing Failover Strategies
The existing failover management methods (e.g., [34, 20, 22, 21,

26, 33]) roughly fall into three categories:

• Disk-based recovery. Work such as [26, 33] saves check-
points of PEs’ states on a distributed, replicated file system
such as Hadoop HDFS, and restores them upon a node fail-
ure.

• Online-standby-pairs recovery. Hwang et al. [20] propose
three types of online recovery: active standby, passive standby
and upstream recovery. Active standby ([34, 20, 21]) utilizes
a secondary processing node for each processing node (the
primary). A secondary node receives the same events as the
primary to update its state, but never emits events. Upon
failure of the primary, the secondary node becomes the pri-
mary. Passive standby ([20, 22]) utilizes a same secondary
node, but differs from active standby in that the secondary
is updated through checkpoints periodically by the primary.
Upstream recovery keeps those events in the upstream nodes
which are not thoroughly processed by the whole system and
removes them otherwise.

• Reliable WAL-based recovery. Some systems employ Book-
Keeper [1], a reliable WAL service, for recovery. A sec-
ondary node reads and performs the update from the WAL
and upon the primary’s failure becomes the primary.

Among the above methods, active standby fits into our setting.
First, for disk-based recovery, data cannot be seamlessly recovered
without noticeable delay. Kwon et al. [26] notes “it could thus
recover a 128MB HA unit in under two seconds”, and that is ba-
sically one minute for every 4GB of data. Second, the problem
with upstream recovery is that the state updated by the events that
are already removed can never be restored. Third, reliable WALs
themselves requires extra nodes as inner replication and performs
no better than active standbys. Lastly, secondary nodes as active
standby can be altered to produce output events as well (in order
to achieve better over-all performance) while secondary nodes as
passive standbys cannot.

We need to come up with a new active standby failover strat-
egy because: (1) some active standby strategies focus on precise
recovery ([34, 20]), which is too strict for our task and may lead to
performance degradation; (2) other active standby strategies ([20,
21]) rely on order-preservation to ensure their correctness. Our
approach aims at lossless recovery over orderless events, working
quite differently from these strategies.

4.2 Overview of the Failover Strategy
We propose a novel failover strategy matching our requirements

for the stream platforms (S4, Storm, etc.), using S4 as the basis
for our implementation. For the failure model, we assume that a
failure can take one of the following two forms: a node failure, or
a failure of the connection between a node and the network switch.
We do not consider Byzantine failures where faulty components
can behave in arbitrarily erroneous ways.

The intuition behind Pollux’s failover strategy is that, if we run
two (or more) isolated sets of identical online nodes (both pro-
cessing nodes and GS nodes), then if a node in one set fails, its

338

entry point e3

timestamp

entry point e1

entry point e2
node y'

timestamp

timestamp

PE X

PE Y

PE X’

PE Y’

node z

node y’
(leader)

node z'
(leader)

domain 1

domain 2 peer
nodes

Figure 3: Illustration of entry points, domains, peer nodes, and
the leader for each set of peer nodes

peer node in the other set can take over the work of the failed one
and help recover the data. Here we refer to such a set of pro-
cessing nodes (or GS nodes) as a domain. For example, nodes
shown in Figure 7 can constitute a domain. A domain does not
contain ZooKeeper nodes as ZooKeeper nodes are self-replicated.
Domains are self-contained; events do not flow across domains ex-
cept during recovery.

A Pollux instance can be configured to have k domains and thus
can withstand k�1 node failures. Note that the domains are all on-
line; thus they are redundant. This is a trade-off we make between
resource usage and high-availability. Without loss of generality, in
the following discussion we focus on the case of k = 2 and denote
a PE (or node) x’s peer PE (or node) as x0.

We introduce entry points, which serve as the starting points for
reliable stream processing. An entry point receives input streams
and replicates them to k copies. It then stamps the copies with the
same time and emits the copies into k different domains so that
each domain gets one. Entry points are stateless; if one fails, an
idle node simply becomes an entry point and starts to serve.

In the next subsection, we shall explain the failover strategy in
detail.

4.3 Failover Strategy
Pollux utilizes the always-online replica strategy for PEs: peer

PEs serve as online replica for each other. At start-up, every set
of peer nodes, with the help of ZooKeeper, elect a leader, which
is responsible for collecting state information among peer nodes.
If such a leader fails, the remaining peer nodes quickly (typically
within a few milliseconds) elect a new leader. One leader is elected
among each set of peer nodes; thus multiple leaders exist for dif-
ferent sets, as shown in Figure 3.

The failover process is non-trivial because the parallel domains
may not have exactly the same state. We use the following typical
sample scenario with two domains to illustrate this. The system
state at the moment of node failure is shown in Figure 4(1). PE U

is about to send event a to PE Y which has already received event
b; PE X has received event h. In the other domain, PE V

0 is about
to send event b to PE Y

0 which has already received event a; PE
X

0 has received event h. When a failure occurs, both node 1 and
event a are lost. Replicate only node 10 back to be the new node
1 could not get event a back for PE Y . Under the assumption of
order-preservation, a comparison between the order number of the
last event from PE Y and PE Y

0 can immediately reveal how many
and exactly what events are lost. When it is orderless, however, lots
of work need to be done.

PE V

node 2

PE Y
[b]

PE U '

node 1'

PE V '

node 2'

PE X '
[h]

PE Y '
[a,b]

PE U

node 1

PE V

node 2

PE X
[h]

PE Y
[b]

PE U '

node 1'

PE V '

node 2'

PE X '
[h]

PE Y '
[a]

(1) Failure Occurs

(2) Recovering

a b

PE V

node 2

PE Y
[a,b]

PE U '

node 1'

PE V '

node 2'

PE X '
[h]

PE Y '
[a,b]

(3) After Recovery

a

PE U

node 1

PE X
[h]

domain 1 domain 2

Figure 4: A typical failure-recovery process (illustrated with
two domains): (1) PE U is about to send event a to PE Y when
failure occurs to node 1; PE U , PE X and event a are lost; (2)
node 10 replicates its internal state to the new node 1, and PE
Y

0 remedies event a to PE Y via slot-reconciliation; (3) after
recovery, no data is lost.

The basic idea of our strategy is to use an auxiliary data struc-
ture maintained at each node to facilitate periodic synchronization
between peer nodes. That is, a processing node not only applies
events that can change the state of a PE, but also captures them in
slots. A slot is a 5-ary tuple:h time period, event count, hash value,
identifiers, eventsi, where time period specifies a range of times-
tamps, and any event with a timestamp falling in that range should
be directed to the same slot; event count is the number of events
received during that time period; hash value is 512-bit long and is
the XOR of the current hash value and the hash value of the new
incoming event; the field identifiers keeps track of additional flags;
events is a set of the events associated with this slot. The slot digest
of a slot tuple consists of all fields except events.

For synchronization between peers, periodically (the interval is
configurable) slot-reconciliation is initiated by a leader. It requests
and compares the slot digests from all peer nodes. If all digests are
identical, the corresponding slots are cancelled (erased), as shown
by Figure 5. If there is at least one digest that is different from the
others, then the slots remain. Normally this is due to the latency
of event passing through the PEs: an event may have been received
at some peers but not the others. However, if the problem persists
for a considerable amount of time, then it is clearly an indication
of possible problems with the system. We use a configurable la-
tency threshold for this purpose. If some slot lives longer than this
threshold, then during slot-reconciliation, Pollux performs a round
of forced synchronization, where the leader will compute a union
of all events associated with this slot from all peer nodes, and then
send them to each peer (modulo the events already in there: note
event a in Figure 4(2)). This ensures that all slots are now back to
the same page; see Figure 4(3).

Two notes about the strategy: (1) It is possible that a slot for the
same period re-appears after its being cancelled (because another
event from the same period arrives), but its digest and event data
should differ from the previous one’s; (2) If two identical events

339

slot

digest

events

slot

digest

slot

digest

node x node x’

slot

digest

slot

digest

slot

digest

slot

digest

events events events events events events

Figure 5: Slots-reconciliation: two of the slots can be cancelled;
the others cannot

arrive, only the first one should be buffered in the slots and the
other discarded.

In our example above, when node 1 fails, node 10 replicates its
internal state to the new node 1. The next rounds of slot-reconciliation
between node 2 and node 20 would discover that, for node 20, the
slot containing event a lives longer than the latency threshold and
is not cancelled. Thus, events including a in the slot are emitted to
node 2, and the two slots can then be cancelled. In the end, no data
are lost.

The following theorem formally justifies the correctness of the
proposed failover strategy. Interested readers are referred to [28]
for the proof.

THEOREM 1. For a given time window w � tlast � tfirst,
where tfirst and tlast are the arrival timestamps of the first event
and the last event in any slot respectively, a given filter function
filterw(e), discarding an event e if it has appeared in w, a given
number of domains k, and a number of failed peer nodes f < k,
the failover strategy described above ensures that all peer nodes
will process the same set of events.

In summary, Pollux utilizes two or more domains in which the
replicas are distributed. PEs are backed by the always-online-replica
strategy, and no event or data are lost due to slots-reconciliation.
At the expense of more resource usage, Pollux manages to react
promptly to node failures, leading to no downtime and preventing
data loss.

5. GLOBAL STORAGE
5.1 The Problem

Existing stream processing platforms (such as S4, Storm, etc.)
store data locally in each processing unit; they lack a global stor-
age facility for storing and sharing information commonly used
by many processing units, which the task of real-time search re-
quires. For example, to effectively rank a list of tweets matching
a query, the author’s information for each of the tweets may be
needed. Such information is shared by many processing units, and
it is unwise to store them locally in each unit, because doing so
would cause huge update overhead and potentially many consis-
tency problems. As such, there is a need for a global storage facil-
ity to store the shared data. Without this facility, ranking strategies
except for the most straightforward one, which orders the tweets
by their timestamps, are either impossible or too complicated to
implement.

A global storage meets our requirements: PEs read the globally
shared data from or if necessary write the shared data to the global
storage. Key principles that must be considered are:

• Efficient data access: Since data is accessed at high rates
during the computing process of PEs in real-time, storing
data in main memory is preferrable to disk-based solutions
to reduce latencies.

• High availability: It would conflict the whole system’s vi-
sion if the storage fails and cannot resume serving within a
very short period of time.

• Scaling well: Data that need to be kept in the storage might
be of large volume, making a distributed model desirable.

• Simple data models: Real-time search on microblogs does
not rely on complex data model such as relational data mod-
els. Simple data models would suffice.

One possible solution is to implement such a global storage as a
set of regular S4 PEs. For example, we can add several StoragePEs,
serving data-access requests. PEs emit events to StoragePEs re-
questing data, and StoragePEs emit data back to the requesting PEs.
However, this solution is not the best choice due to the following
problems: (1) Many rounds of event passing are required in or-
der to accomplish a single process of multiple point data access.
This leads to more network traffic overhead and increased latency
for data fetching; (2) Since a requesting PE may receive multiple
events from different StoragePEs, each event containing a piece of
the data, the requesting PE has to constantly check whether all data
needed have arrived before the computation continues; (3) Stor-
agePEs are exposed to the application layer, and the application
has to explicitly manage the failover and load balancing issues of
the StoragePEs.

5.2 The Solution
We propose a data store solution with potentially unbounded

storage space (only limited by the amount of available memory in
the cluster), and is accessible to every PE in S4. The entire store is
partitioned and reside on multiple GS (global storage) nodes with
no data overlap; but externally the global storage is exposed to the
application PEs as a whole. We adopt the key-value data model as
it is general enough to handle different types of data.

The API of the proposed global storage is fairly simple, consist-
ing of the following methods:

• test-and-put(key, value, version)

• test-and-put-all(keys, values, versions)

• get(key)

• get-all(keys)

• increase(key, value, identifier)

• increase-all(keys, values, identifiers)

Some notes about the API. The test-and-put() method requires a
version, and simply returns if a newer version already exists. The
increase() method requires an identifier, which identifies the source
of the increment. Increments caused by the same source to the same
key will be executed only once. The test-and-put-all() method is a
short-cut that combines many test-and-put() calls. Any call to the
global storage is a standalone call, and does not rely on any prior
calls.

Those six methods are all synchronized, meaning that when a PE
makes a call to any of the six methods, it would block until the data
is written to or read from the storage. This is reasonable because
data is essential for a PE to continue its execution. In addition,
this simplifies the programming model, freeing programmers from
writing callbacks.

340

5.3 Implementation Issues

Processing Node

Processing Element Container

…

Communication Layer

Event
Listener Dispatcher Emiter

Rerouting

Failover Management

Load Balancing

Transport Protocols

ZooKeeper

GS Request
Sender

GS Response
Collector

PE PE PE PE

GS Communication Layer

Data PartitioningFailover
Management

Transport Protocols

ZooKeeper

Figure 6: The modified processing node in Pollux: the global
storage components are marked with shaded background

Figure 6 shows the modification made to the original processing
node. The original communication layer sends packages containing
the event messages, and a similar structure is employed in imple-
menting the global storage communication layer. The Pollux global
storage is implemented partially in a client and partially in a server.
Each client has the over-all information on the GS nodes forming
the global storage, and thus can forward a PE’s request to the ap-
propriate nodes. Sometimes, a get-all() request involves data from
more than one GS node. In such cases, the GS response collector
combines the data retrieved from different nodes, and hands them
as a whole to the PE that has originated the request. The global
storage communication layer delivers messages back and forth to
the corresponding GS nodes. On each GS node, all data are kept in
memory and all operations are atomic.

A design choice that has to be made is the relationship between
the GS node and the processing node. One possibility is to integrate
the GS node into the processing node. However, it is important to
note that processing nodes and GS nodes usually have very differ-
ent needs for scaling, and the integration of the two types of nodes
would make it inflexible for them to scale independently. There-
fore, Pollux keeps processing nodes and GS nodes separate (see
Figure 2). We use the same failover strategy proposed in Section 4
for both PE and GS nodes.

6. SUPPORTING REAL-TIME SEARCH
In this section, we discuss how real-time search is supported by

Pollux. In particular, we discuss how tweets are indexed in real-
time, how queries are answered in real-time, and how the tweets
are ranked with the support of global storage.

6.1 Real-Time Indexing
TweetEntrancePEs and WordPEs are built to index the tweets

for later search. TweetEntrancePEs serve as the entrances where
tweets flow in, and WordPEs maintain the inverted indices.

Exactly one TweetEntrancePE is deployed on each processing
node. A tweet is wrapped in a TweetEntityEvent, whose event fields
(event type, key-value pair and message, introduced in Section 2.2)
are shown in Table 1. When a TweetEntityEvent arrives (indicated
by 1� in Figure 7; similar notations are used hereinafter), the Twee-
tEntrancePE consumes it by splitting the content of that tweet into
unique words, then wraps each of the words into a WordEvent, and

finally emits all of the WordEvents (2�). Then the TweetEntracePE
saves the full content of a tweet into the global storage (3�).

Many WordPEs may exist on a processing node. When a WordE-
vent arrives, the corresponding WordPE fetches the tweet id (tid)
from the event and adds it into the inverted index maintained in
local memory. Thanks to S4’s fast and smart PE-creation, no pre-
defined vocabulary has to be setup in advance. WordPEs can be
created on demand when the words are seen for the first time. As
time elapses, the list in each WordPE keeps growing. Cleaning-
up can be done periodically to keep the lists in the WordPEs slim,
as Pollux focuses only on recent tweets. Efficient index organiza-
tion and concurrent read/write control are not the focus of Pollux;
interested readers can refer to [14] for details.

6.2 Query Processing
We now explore the event flow for query processing. Each pro-

cessing node hosts one QueryEntrancePE to serve queries wrapped
in QueryEntityEvents. A QueryEntrancePE emits QueryPieceEvents
describing the query piece after splitting the queries into words;
each word forms a query piece (5�). Unlike words in a tweet, query
pieces need to be aware of each other so that later during query pro-
cessing their search results can be combined. Therefore we mark
each query piece by the query id (qid) along with with an n/m no-
tation, where m is the number of keywords in the query, and n is
the position of the keyword in the original query.

Upon receiving a QueryPieceEvent, the WordPE wraps the query
id, user id(uid), n/m notation from QueryPieceEvent together
with the list of tids into a MergeEvent and then emits it. A
MergeEvent is defined in Table 1.

The m lists associated with the m pieces of the query are col-
lected and merged by a MergePE. The MergePEs are evenly spread
to each node in order to better distribute the load across server
nodes and/or processors in the cluster. We ensure that all m pieces
(MergeEvents) of the same query flow into the same MergePE(6�)
through hashing. Currently we use the “AND” semantics for cal-
culating the intersection of the m lists in the MergePE, but other
semantics such as “OR” can be adopted as well. After the MergePE
merges the m lists into a final list, it emits a RankEvent if the list
contains more than one tweet. If the final list contains no tweet or it
has been reported that at least one of the m lists is empty (and thus
the final list must also be empty), then an OutputEvent is emitted.
In the latter case, a MergePE does not even have to wait for all of
the m lists before emitting the OutputEvent.

A RankPE receives a RankEvent (7�) and ranks the tweets ac-
cording to some pluggable strategy. The RankPE resorts to global
storage to retrieve the information needed (8�). This may happen
several times if the ranking procedure is iterative.

Finally the RankPE emits its result in an OutputEvent for some
OutputPE to report the list (9�). RankEvent and OutputEvent are
also defined in Table 1.

To summarize, for a given query, QueryPieceEvents are gener-
ated and flow into WordPEs, leading them to emitting MergeEvents
containing the ids of the tweets matching the keywords. Then
at MergePEs the tweet ids are merged into a single list and at a
RankPE the list is ordered. Finally the results are reported by Out-
putPEs.

6.3 Supporting Ranking Strategies
Various ranking functions can be supported by Pollux with global

storage. Example strategies for ranking tweets or users include
those presented in TI [15], Ranking Twitter Users [25] and Learn-
ing to Rank of Tweets [19]. Without global storage, all strategies
except for the naive one that orders tweets by time, are too compli-

341

① TweetEntityEvent

⑤ QueryPieceEvent

⑥ MergeEvent

⑦ RankEvent

⑨ OutputEvent

Tweet
Entrance

PE

Query
Entrance

PE

Word
PE

MergePE

PageRank
Update

PE

Following
ListUpdate

PE

RankPE

OutputPE

Word
PE

Word
PE

Word
PE

Word
PE

Tweet
Entrance

PE

Query
Entrance

PE

Word
PE

MergePE

PageRank
Update

PE

Following
ListUpdate

PE

RankPE

OutputPE

Word
PE

Word
PE

Word
PE

Word
PE

Tweet
Entrance

PE

Query
Entrance

PE

Word
PE

MergePE

PageRank
Update

PE

Following
ListUpdate

PE

RankPE

OutputPE

Word
PE

Word
PE

Word
PE

Word
PE

 ② WordEvent

GS
Node

GS
Node

GS
Node

GS
Node

④ QueryEntityEvent

⑧ RPC

ⓐ PageRank
UpdateEvent

ⓑ FollowingList
UpdateEvent

ⓒ RPC
③ RPC

Figure 7: Event flow in Pollux

Table 1: Events in Pollux
Section Event Type Keyword-value Pair Message Entity

6.1 TweetEntityEvent null TweetEntityhtid, uid, tree_root_node_tid, time_stamp, contenti
6.1 WordEvent h“word”,some wordi htid, time_stampi
6.2 QueryEntityEvent null QueryEntityhqid, uid, time_stamp, contenti
6.2 QueryPieceEvent h“keyword”,some keywordi huid, qid, n/m notation, time_stampi
6.2 MergeEvent h“queryID”,qidi hqid, uid, n/m notation, list of tidsi
6.2 RankEvent h“queryUID”,uidi hqid, uid, list of tidsi
6.2 OutputEvent h“queryID”,qidi hqid, uid, list of tidsi
6.3 PageRankUpdateEvent null huid, PageRank, versioni
6.3 FollowingListUpdateEvent null huid, following_list, versioni
6.4 QueryEntityEvent null QueryEntityhqid, uid, time_stamp, expiry, contenti

cated to implement, as discussed in Section 5.1. In what follows,
we shall briefly mention some of the strategies, and list (but not
explain in detail for every strategy due to space limitation) in Ta-
ble 2 how information can be retrieved or updated to support those
strategies.

TI: the Twitter Index. TI [15] proposes a ranking function
to sort the result list of tweets. It considers four factors: 1) the
tweet author’s PageRank: tweets from authoritative authors should
rank higher; 2) the popularity of the topic: hotly-discussed tweets
should rank higher; 3) the timestamp: more recent tweets should
rank higher; 4) the textual similarity between the query and the
tweet. If we choose to support TI’s ranking strategy, then two types
of pluggable ranking-assistant PEs, i.e., the PageRankPE(a�) and
the FollowingListUpdatePE(b�) in Figure 7 can be introduced in
Pollux. PageRankPEs update the users’ PageRank information in
the global storage (c�); FollowingListUpdatePEs update the users’
following list information in the global storage(c�). A topic tree’s
popularity is updated by TweetEntrancePEs. Scores are calculated
in RankPEs following the score function proposed in TI; any global
information needed are retrieved from the global storage.

Ranking Twitter Users. In [25], Twitter users are ranked by
the number of followers (RF), their PageRank values (RPR), and
the total number of retweets (RRT). Interestingly, ranking results
by RF and by RPR are similar, but RRT is different, indicating a
gap between the number of followers and the popularity of one’s
tweets, which brings forward a new perspective on influence in
Twitter [25]. RF and RRT are essentially counters, which can be
perfectly supported by the GS’s atomic increase() operation.

Learning to Rank of Tweets. Duan et al. [19] explores several
features that might affect the rank of a tweet, and determines using
learning to rank algorithms the best set of features. It is demon-
strated that the best combination is whether a tweet contains URL
or not, the length of the tweet, and the account’s authority. The ac-
count authority feature in [19] contains many aspects which all can
be well supported by our global storage model, but only PageRank
is demonstrated in Table 2. It is pretty straightforward to obtain
the length of a tweet or whether URLs exist if such information is
stored as hlength, IURLi pairs (where IURL is a 0/1 indicator for
the presence of any URL) in the GS when the tweet is indexed.

6.4 Resumed Query and Continuous Query
If node failures occur when a query is in progress, some queries

are interrupted, and thus must be resumed. Upon a node failure,
one of the remaining domains resumes the query by restarting it
from the very beginning. This can be done without further data ex-
change between domains as long as the node failure is detected by
Pollux, as all queries are essentially replicated into all k domains
(although initially only in one domain the QueryEntrancePE con-
ducts the event flow to answer that query). Query states inside other
PEs, including MergePEs, RankPEs, and OutputPEs, do not need
to be recovered because the query is replayed at another place and
query states are “recovered” along the way at those PEs.

Pollux also offers support for continuous queries, i.e., the query
results can be updated as new tweets arrive. To achieve this, we
redefine the QueryEntityEvent, as shown in Table 1, by adding an
expiry attribute to indicate the time of expiry for a query. Query re-

342

Table 2: Example ranking strategies supported by Pollux
Work Feature Retrieval Update Notes

[15] PageRank get(“pr”+uid) test-and-put(“pr”+uid, PageRank, version)
TreePopularity get(“pr”+uid) no operation if tree_rootnode_tid is null

get(“tp”+tree_rootnode_tid) increase(“tp”+tree_rootnode_tid, PageRank, tid) if tree_rootnode_tid is not null
Timestamp tweet.getTimestamp() no operation
Similarity tweet = get(“tc”+tid) test-and-put(“tc”+tid, tweet, 1) cos(tweet, query)

[25] RF get(“rf”+uid) increase(“rf”+uid, follower uid)
RPR same as PageRank in [15] same as PageRank in [15]
RRT get(“rrt”+uid) increase(“rrt”+uid, tid)

[19] AccountAuthority same as PageRank in [15] same as PageRank in [15]
TweetLength tweet = get(“lurl”+tid) test-and-put(“lurl”+tid, len+0/1, 1) length and 0/1 indicator

URL tweet = get(“lurl”+tid) test-and-put(“lurl”+tid, len+0/1, 1) length and 0/1 indicator

sults will be continuously updated until its expiry. We also modify
WordPE’s inner data structure by adding a query set keeping track
of the queries that are still active. When new matching tweets ar-
rive, Pollux appends them to the original result of the active queries.

6.5 Load Balancing and Elasticity
We adopt Constant Hashing[24, 17] to make Pollux very elastic,

i.e., Pollux is able to automatically add or remove nodes from the
cluster depending on the system load. Intuitively, Consistent Hash-
ing is based on mapping each object to a point on the edge of a
circle, and mapping each node to many arcs separated by the some
pseudo-randomly-chosen points. A node stores an object if the ob-
ject “falls” on the node’s arc. New nodes joined “steal” arcs from
other nodes, benefiting load balancing and elasticity in the follow-
ing way: a overloaded node can disperse its load to other nodes,
and if most nodes are overloaded, new nodes can be added. Under
the coordination of ZooKeeper, processing or GS nodes join and
participate in the circle; all information about the circle are stored
in ZooKeeper. In our implementation, we set up some threshold
exceeding which a certain number of nodes would join. It is our
on-going work to develop some sophisticated load balancing strate-
gies, such as one that is aware of hot topics.

7. EXPERIMENTAL EVALUATION

7.1 Experiment Setting
We carry out experiments to evaluate the performance of Pol-

lux as well as the effectiveness of the failover strategy and the GS
facility. Since a full Twitter feed is unavailable to us, we use a
dataset provided by Twitter for academic research [7]. This dataset
contains approximately 16 million tweets sampled between Jan-
uary 23rd and February 8th, 2011, which are reduced to 7,847,176
tweets by filtering out non-English contents. We further synthet-
ically generate the user graph and the tweet graph following the
distributions reported in [25]. The user graph contains 3,040,392
users. To boost the volume of data, tweets are repeatedly fed to the
system (but each time with a different tweet id and user id). We
form the queries by randomly drawing keywords from the tweets
and combining them, with the number of keywords in a query fol-
lowing Zipf’s Law: the percentage of 1-keyword queries, 2-keyword
queries and multi-keyword (3 to 10 keywords) queries are 60%,
30% and 10%, respectively.

We deploy Pollux on a cluster of 13 Dell R210 servers with Gi-
gabit Ethernet interconnect. Each node has one 2.4GHz Intel Xeon
X3430 processor and 8GB of RAM. Out of the 13 nodes, 10 nodes
serve as processing nodes or GS nodes according to different exper-

iment settings, and the remaining 3 nodes serve as the entry points
and host the ZooKeeper. Unless otherwise specified, we adopt TI’s
ranking function in the experiments. Each experiment is repeated
ten times and the average result is reported.

In the experiments below, we shall evaluate how well Pollux
scales, the effectiveness of the failover strategy, the performance
of the global storage, and the over-all performance of query pro-
cessing with Pollux. We do not make a quantitative comparison
to Earlybird [14] for the following reasons: (1) Earlybird is a pro-
prietary solution, and not enough details are made public for us to
replicate its implementation or to make a meaningful comparison;
(2) The paper [14] itself only presents the performance results on a
single server; it does not present any evaluation results in a cluster
setting except for briefly mentioning that “... typically observe a
10 second indexing latency (from tweet creation time to when the
tweet is searchable) and around 50 ms query latency” without any
details on the number of servers, etc.; in contrast, we focus on the
scalability, failover managment, support of various ranking strate-
gies and query performance.

7.2 Scalability
To evaluate the scalability for one domain, we start with 3 pro-

cessing nodes, and add more processing nodes to the cluster one by
one until all 6 processing nodes available are used. The number of
GS nodes is fixed at 4. We record both the maximum sustainable
tweet arrival rate (with the query arrival rate fixed at 0.4kqps) and
the maximum query arrival rate (with the tweet arrival rate fixed
at 2.5ktps) for varying number of nodes, and the results are shown
in Figure 8(a) and Figure 8(b). The maximum sustainable rates
are determined by observing whether an overflow has occurred in a
processing node’s buffer queue which is used to buffer events yet to
be processed by the PEs on that node. It can be observed that both
the maximum tweet and query arrival rates increase at a linear rate
as more nodes are added, demonstrating the superior scalability of
Pollux.

For comparison, we have implemented TI, an inherently central-
ized solution. We test TI to obtain the maximum query arrival rate
and the maximum tweet arrival rate under the same conditions out-
lined above. The two optimizations[15] for TI are turned on, and
the configurable number of tweets in the query result are set to 50
and 100 respectively. The experiments are performed on one of the
servers. Since the architecture of TI is inherently centralized, the
dotted lines of TI in Figure 8(a) and Figure 8(b) are flat. While TI
is able to sustain a higher level of tweet and query arrival rate then
Pollux when the number of nodes is low, it is outperformed by Pol-
lux when the number of nodes increases, as Pollux is able to scale
out to handle larger volume of tweets/queries.

343

0

10

20

30

40

3 4 5 6

M
a
x

i
m

u
m

 T
w

e
e
t
 A

r
r
i
v

a
l
 R

a
t
e
(
k

t
p

s
)

Number of Processing Nodes

Pollux

TI(top50)

TI(top100)

(a) Maximum sustainable tweet arrival rates
with query arrival rate fixed at 0.4kqps

0

0.5

1

1.5

2

2.5

3 4 5 6

M
a
x

i
m

u
m

Q

u
e
r
y

 A
r
r
i
v

a
l
 R

a
t
e
(
k

q
p

s
)

Number of Processing Nodes

Pollux

TI(top50)

TI(top100)

(b) Maximum sustainable query arrival rates
with tweet arrival rate fixed at 2.5ktps

0

5

10

15

20

25

30

35

7 8 9 10

T
i
m
e
(
h
)

Number of Nodes

1kqps 5ktps 20ktps

(c) Maximum time window for real-time in-
dexing

Figure 8: Scalability of Pollux

100

101

102

103

104

100 101 102 103 104

R
A

M

O

v
e
r
h

e
a
d

(
%

)

Bandwidth Overhead(%)

(200ms,400ms)

(150ms,300ms)

(100ms,200ms)

(50ms,100ms)

(25ms,50ms)
20ktps

5ktps

1ktps

(a) Runtime overhead for varying slot-
reconciliation interval and latency threshold
values

�

��

��

��

��

���

���

���

� �� �� �� �� �� �� 	� ��
� ���

��
�

��
�

��
��

�

�������������������

��� �!
"#$�%�&� �!��
"#$�'(�!�����

(b) Load dispersion during recovery

�

���

���

���

���

���

���

�	
�� ����� �������

�

�
��
	�

�
��
�

�
�
��

��
������

 ���!�
"!���#
�

(c) Response time of queries: running nor-
mally vs. resumed after failover

Figure 9: Failover performance

Another experiment is conducted to test for how long tweets can
be retained in Pollux’s real-time component. We start with 7 nodes;
nodes are then added one by one. The ratio of the number of pro-
cessing nodes to the number of GS nodes is optimized individually,
i.e. it is 5/2 for 7 nodes available, 5/3 for 8, 6/3 for 9 and 6/4 for
10. We set the tweet arrival rate at 1ktps, 5ktps, and 20ktps, respec-
tively. When the average memory usage of all PE nodes’ and all
GS nodes’ reaches a steady state we track the time a tweet can stay
in memory before having to be removed. As can be observed from
Figure 8(c), the capacity grows roughly linearly with respect to the
number of nodes.

7.3 Failover Performance
Several experiments are conducted to evaluate the performance

of the failover strategy at both runtime and recovery. In this set of
experiments, the 10 nodes are divided into 2 domains, each domain
containing 3 processing nodes and 2 GS nodes.

Figure 9(a) shows the relationship between memory overhead
and bandwidth overhead at runtime as the slot-reconciliation inter-
val and latency threshold pair takes the values of (25ms, 50ms),
(50ms, 100ms), (100ms, 200ms), (150ms, 300ms), and (200ms,
400ms). Apart from having to maintain two domains, slot reconcil-
iation causes very little overhead (0.06% ⇠ 4%).

Figure 9(b) presents the load dispersion at failure and recov-
ery. We conduct the experiments twice and identical input data
are used. For the first experiment, we shut down the S4 process on
a randomly-selected processing node, and monitor the load (mainly
measured by bandwidth) of all remaining nodes over time until all
data are recovered (on a newly joined replacement node). For the

second experiment, no process is shut down and everything runs
normally. We compute the ratio of the load observed from the first
experiment with that from the second and present the results in
Figure 9(b). The loads of the peer node for the failed node, the
other processing nodes, and the GS nodes, are plotted separately.
As shown in Figure 9(b), the peer node’s load increases by about
14.2% on average (not including the load increase due to replicat-
ing its data to the new replacement node), and the other processing
nodes’ load increases by about 11.1%. However, the GS nodes’
load does not increase because the failure is on a processing node.

To evaluate the query performance upon failover, we set the tweet
and query arrival rates at 2.5ktps and 0.4kqps respectively, and
then shut down the S4 process on one of the processing nodes.
Figure 9(c) shows that the interrupted queries typically take one
or two times more time to process, but are still answered in sub-
seconds. These results verify the effectiveness of the proposed
fault-tolerance strategy.

7.4 Performance of Global Storage
Several experiments are conducted to evaluate the effectiveness

and the efficiency of the global storage.
To test the read and write performance, we first deploy 4 GS

nodes and 6 processing node in one domain, and vary the number
of read requests from 1K/sec to 20K/sec. We then vary the num-
ber of write requests again from 1K/sec to 20K/sec. Figure 10(a)
shows that events at a high rate of 20K requests per second, the
global storage still offers very low-latency. This verifies the global
storage’s efficiency.

344

0

5

10

15

20

25

30

1k 5k 10k 20k

A
v

e
r
a
g

e
 L

a
t
e
n

c
y

 (
m

s
)

Number of Requests per Second

reads writes

(a) Average latency for read requests only and
write requests only

10

20

30

40

10

15

20

25

30

3 4 5 6

M
a
x
i
m

u
m

Q

u
e
r
y
 A

r
r
i
v
a
l

R

a
t
e
(
k
q
p
s
)

M
a
x
i
m

u
m

T

w
e
e
t
 A

r
r
i
v
a
l

R

a
t
e
(
k
t
p
s
)

Number of GS Nodes

Maximum Tweet Arrival Rate(Query

Arrival Rate Fixed at 0.4kqps)

Maximum Query Arrival Rate(Tweet

Arrival Rate Fixed at 2.5ktps)

(b) Maximum sustainable tweet and query ar-
rival rate for varying number of GS nodes

0

0.4

0.8

1.2

1.6

2

3 4 5 6

M
a
x

i
m

u
m

Q

u
e
r
y
 A

r
r
i
v

a
l

R

a
t
e
(
k
q

p
s
)

Number of Processing Nodes

Pollux GS StoragePE

(c) A comparison of Pollux GS and Stor-
agePE implementation

Figure 10: Performance of global storage

�

��

���

���

���

���

���

���	
	� ���

�
�	

��
��

	�
��

��
	�

��
�

	�
�

��

����	�������	����	�����

��	 !��"���	��
��� !��"���	��
����� !��"���	��

(a) Response time for queries at 0.4kqps and
2.5ktps

0

10

20

30

40

50

60

70

1k 2.5k 5k 10k 20k

T
i
m
e
(
s
e
c
)

Tweet Arrival Rate(tps)

1.6kqps 1.2kqps

0.8kqps 0.4kqps

(b) Average response time for varying tweet
arrival rates

0

10

20

30

40

50

60

70

0.4k 0.8k 1.2k 1.6k

T
i
m
e
(
s
e
c
)

Query Arrival Rate(qps)

20ktps 10ktps 5ktps

2.5ktps 1ktps

(c) Average response time for varying query
arrival rates

Figure 11: Query response time for varying tweet and query arrival rates

To evaluate how global storage affects the maximum sustainable
tweet and query arrival rates, we start with 4 processing nodes and
3 GS nodes in a domain, and add more GS nodes to the domain
one by one until all 6 GS nodes available are used. We record both
the maximum sustainable tweet arrival rate (with the query arrival
rate fixed at 0.4kqps) and the maximum query arrival rate (with the
tweet arrival rate fixed at 2.5ktps) for varying number of GS nodes,
and the results are shown in Figure 10(b). Neither the tweet arrival
rate nor the query arrival rate increases as GS nodes are added.
This is because the bottleneck lies not in the global storage (the
global storage has provided sufficient bandwidth for data access)
but in the processing nodes. Nonetheless, adding more GS nodes
will increase the maximum time windows for real-time indexing,
as shown in Figure8(c).

Figure 10(c) presents the maximum sustainable query arrival rate
with or without the Pollux’s global storage. Without the global
storage, we have to use a solution based on S4 PEs (called the
StoragePEs in Section 5.1), which can be deployed onto multiple
processing nodes. As shown in Figure 10(c), the GS solution has
a performance advantage of 129% ⇠ 161% over the StoragePE
solultion.

7.5 Performance of Query Processing
In this set of experiments, we focus on the performance of query

processing. Experiments are conducted in one domain with 6 pro-
cessing nodes and 4 GS nodes.

The response times for queries with varying tweet and query ar-
rival rates are shown in Figure 11. We first set the query arrival rate
at 0.4kqps and tweet arrival rate at 2.5ktps, and compare the re-
sponse time for queries with varying lengths (one, two, many) and

result sizes (no result, few results, and many results). If the num-
ber of the results are among the top 20% of the result sizes of all
queries, it is considered “many”, otherwise “few”. The comparison
is shown in Figure 11(a). It can be observed from the figure that
the result size has a notable effect on the response time, because
more processing has to be done at MergePEs and RankPEs. The
number of keywords, on the other hand, does not have a signifi-
cant impact on the response time, although in the case of one-word
queries, response is generally faster as less work has to be done.
Figure 11(b) and Figure 11(c) show that the average response time
increases as with increased tweet or query arrival rate. As can be
observed from Figure 11(c), when the query arrival rate goes be-
yond a certain level, the response time will become unacceptable.
This is because in those cases, the system becomes over-stressed,
coinciding with the results discussed in the preceding subsection.

8. CONCLUSIONS
The quest for real-time indexing of microblogs has recently be-

come pressing due to the inability of traditional indexing and search
methods in providing real-time search. The sheer volume of fast ar-
riving microblog data, along with the large number of concurrent
queries, pose significant technical challenges. We have proposed
Pollux, a distributed, scalable and elastic system enabling real-time
indexing and search. We propose a failover strategy that assists
Pollux with fast and lossless recovery from node failures, and de-
velop a global storage facility that stores shared data and makes
the ranking operation more efficient. The experiments on a Twit-
ter dataset demonstrates the effectiveness of the proposed solutions
and the scalability of Pollux.

345

For future work, we would like to study how to apply Pollux to
other tasks involving real-time processing of social media contents,
such as online clustering and classfication of microblogs, as well as
automated event detection.

9. ACKNOWLEDGMENT
This work was supported in part by National Natural Science

Foundation of China Grants (No. 61272092, No. 60903108), the
Program for New Century Excellent Talents in University (NCET-
10-0532), the Natural Science Foundation of Shandong Province
of China Grant (No. ZR2012FZ004), the Independent Innovation
Foundation of Shandong University (2012ZD012), the SAICT Ex-
perts Program, and NSERC Discovery Grants. The authors would
like to thank the anonymous reviewers, whose valuable comments
helped improve this paper.

10. REFERENCES
[1] Apache bookkeeper.

http://zookeeper.apache.org/bookkeeper/.
[2] Apache zookeeper. http://zookeeper.apache.org/.
[3] The engineering behind twitter’s new search experience.

http://engineering.twitter.com/2011/05/engineering-behind-
twitters-new-search.html.

[4] Memcached. http://memcached.org/.
[5] New tweets per second record – 25,088 tps – set by screening

of japanese movie “castle in the sky". http://techcrunch.com.
[6] Streambase. http://streambase.com.
[7] Tweets2011. http://trec.nist.gov/data/tweets/.
[8] Twitter storm. https://github.com/nathanmarz/storm.
[9] Twopcharts.com. http://www.twopcharts.com.

[10] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.
Aurora: a new model and architecture for data stream
management. The VLDB Journal, 12(2):120–139, 2003.

[11] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,
M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The
design of the borealis stream processing engine. In CIDR,
Asilomar, CA, January 2005.

[12] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King,
P. Selo, Y. Park, and C. Venkatramani. Spc: A distributed,
scalable platform for data mining. In Proceedings of the 4th
international workshop on Data mining standards, services
and platforms, pages 27–37. ACM, 2006.

[13] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan,
N. Spiegelberg, H. Kuang, K. Ranganathan, D. Molkov,
A. Menon, S. Rash, R. Schmidt, and A. Aiyer. Apache
Hadoop goes realtime at Facebook. In SIGMOD, pages
1071–1080, 2011.

[14] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and
J. Lin. Earlybird: Real-time search at twitter. In ICDE. IEEE,
2012.

[15] C. Chen, F. Li, B. Ooi, and S. Wu. Ti: an efficient indexing
mechanism for real-time search on tweets. In SIGMOD,
pages 649–660, 2011.

[16] B. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H. Jacobsen, N. Puz, D. Weaver, and
R. Yerneni. Pnuts: Yahoo!’s hosted data serving platform.
PVLDB, 1(2):1277–1288, 2008.

[17] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: amazon’s highly available
key-value store. ACM SIGOPS Operating Systems Review,
41(6):205–220, 2007.

[18] A. Dong, R. Zhang, P. Kolari, J. Bai, F. Diaz, Y. Chang,
Z. Zheng, and H. Zha. Time is of the essence: improving
recency ranking using twitter data. In WWW, pages 331–340,
2010.

[19] Y. Duan, L. Jiang, T. Qin, M. Zhou, and H. Shum. An
empirical study on learning to rank of tweets. In COLING,
pages 295–303, 2010.

[20] J. Hwang, M. Balazinska, A. Rasin, U. Cetintemel,
M. Stonebraker, and S. Zdonik. High-availability algorithms
for distributed stream processing. In ICDE, pages 779–790,
2005.

[21] J. Hwang, U. Cetintemel, and S. Zdonik. Fast and
highly-available stream processing over wide area networks.
In ICDE, pages 804–813, 2008.

[22] J. Hwang, Y. Xing, U. Cetintemel, and S. Zdonik. A
cooperative, self-configuring high-availability solution for
stream processing. In ICDE, pages 176–185. IEEE, 2007.

[23] B. J. Jansen, G. Campbell, and M. Gregg. Real time search
user behavior. In ACM CHI, pages 3961–3966, 2010.

[24] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,
and D. Lewin. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
world wide web. In STOC, pages 654–663. ACM, 1997.

[25] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a
social network or a news media? In WWW, pages 591–600.
ACM, 2010.

[26] Y. Kwon, M. Balazinska, and A. Greenberg. Fault-tolerant
stream processing using a distributed, replicated file system.
PVLDB, 1(1):574–585, 2008.

[27] A. Lakshman and P. Malik. Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating Systems
Review, 44(2):35–40, 2010.

[28] L. Lin, X. Yu, and N. Koudas. “Pollux: Towards scalable
distributed real-time search on microblogs”. Technical
Report. http://www.yorku.ca/xhyu/ITEC-TR-201203.pdf.

[29] D. Luckham. The power of events: an introduction to
complex event processing in distributed enterprise systems.
Addison-Wesley Longman Publishing Co., Inc., 2001.

[30] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
distributed stream computing platform. In ICDM Workshops,
pages 170–177. IEEE, 2010.

[31] D. Ongaro, S. Rumble, R. Stutsman, J. Ousterhout, and
M. Rosenblum. Fast crash recovery in ramcloud. In SOSP,
pages 29–41. ACM, 2011.

[32] J. Rao, E. Shekita, and S. Tata. Using paxos to build a
scalable, consistent, and highly available datastore. PVLDB,
4(4):243–254, 2011.

[33] Z. Sebepou and K. Magoutis. Scalable storage support for
data stream processing. In Proceedings of IEEE 26th
Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–6. IEEE, 2010.

[34] M. Shah, J. Hellerstein, and E. Brewer. Highly available,
fault-tolerant, parallel dataflows. In SIGMOD, pages
827–838. ACM, 2004.

346

