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ABSTRACT
A shared-nothing architecture is state-of-the-art for deploying a
distributed analytical in-memory database management system: it
preserves the in-memory performance advantage by processing data
locally on each node but is difficult to scale out. Modern switched
fabric communication links such as InfiniBand narrow the perfor-
mance gap between local and remote DRAM data access to a single
order of magnitude. Based on these premises, we introduce a dis-
tributed in-memory database architecture that separates the query
execution engine and data access: this enables a) the usage of a
large-scale DRAM-based storage system such as Stanford’s RAM-
Cloud and b) the push-down of bandwidth-intensive database oper-
ators into the storage system. We address the resulting challenges
such as finding the optimal operator execution strategy and parti-
tioning scheme. We demonstrate that such an architecture delivers
both: the elasticity of a shared-storage approach and the perfor-
mance characteristics of operating on local DRAM.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Distributed databases,
Query Processing

General Terms
Theory, Performance, Experimentation

Keywords
Analytics, In-Memory, Elasticity, RAMCloud

1. INTRODUCTION
The storage and query processing capacity of an analytical in-

memory database management system (DBMS) on a single server
is limited. Overcoming this limitation is especially important for
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analytical applications since they consume large data sets. A shared-
nothing architecture enables the combined usage of the storage and
query processing capacities of several servers in a cluster. Each
server in this cluster is assigned a partition of the overall data set
and processes its locally stored data during query execution. This
architecture is currently state-of-the-art in the context of distributed
analytical in-memory DBMSs [7] as it preserves the performance
advantage of main memory data storage by processing data locally
on each server: this advantage vanishes in a shared-storage ap-
proach where the data has to be constantly shipped over a network
whose performance characteristics are multiple orders of magni-
tude worse in terms of latency and bandwidth than local memory
access.

On the other hand, deploying a shared-nothing architecture comes
at a price: scaling out such a cluster is a hard task [5]. Chosen par-
titioning criteria have to be reevaluated and potentially changed.
While automated solutions exist to assist such tasks, often manual
tuning is required to achieve the desired performance characteris-
tics. Furthermore, such an architecture prohibits the independent
scale-out of storage and query processing capacities. The situation
becomes even more complex when recovery and availability guar-
antees need to be considered. The resulting limitations of such an
architecture in terms of flexibility and elasticity make the adapta-
tion to frequently changing storage and query processing require-
ments – e.g. in a cloud environment – difficult.

Recent developments in the area of high-performance computer
networking technologies narrow the performance gap between lo-
cal and remote DRAM data access to and even below a single order
of magnitude. For example, InfiniBand [8] specifies a maximum
bandwidth of up to 300 Gbit/s and an end-to-end latency of 1-2
µs, an Intel Xeon Processor E5-4650 [9] has a maximum memory
bandwidth of 409.6 Gbit/s and a main memory access latency of
0.1 µs. The research project RAMCloud [17] demonstrates that the
performance characteristics of a high-performance computer net-
work can be exploited in a large distributed DRAM-based storage
system to preserve the narrowed performance gap between local
and remote data access at scale.

Based on these premises, we designed a distributed database ar-
chitecture that separates the query execution engine and the data
access. We implemented AnalyticsDB, a prototypical analytical
in-memory DBMS, which demonstrates that such a separation al-
lows to plug-in a storage system such as RAMCloud instead of
local DRAM. Our experiments in this paper show that a) such an
architecture enables AnalyticsDB to leverage RAMCloud’s elastic-
ity advantages as RAMCloud can be arbitrarily resized while Ana-
lyticsDB executes queries. In addition, AnalyticsDB processes its
queries only 2.6 times slower on RAMCloud than on local DRAM.
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The architecture of AnalyticsDB also allows to push down the
execution of bandwidth-intensive operators into RAMCloud. Our
experiments demonstrate that b) this reduces the AnalyticsDB query
execution time penalty on RAMCloud to 11% in comparison to an
execution on local DRAM. While this measurement is based on a
push down of the AnalyticsDB operators to a single RAMCloud
node, we illustrate that c) the operator push down allows a paral-
lel execution of AnalyticsDB operators across multiple RAMCloud
nodes resulting in an additional acceleration of the query execution.

Consequently, we show that the introduced architecture com-
bines the advantages of a shared-storage approach (maximum elas-
ticity) with the advantages of a shared-nothing approach (maximum
performance by executing operations as close to the data as possi-
ble) for an analytical in-memory DBMS: the narrowed performance
gap between local and remote DRAM access is the enabler of ap-
plying such an architecture. Specifically we make the following
contributions:

i We introduce the analytical in-memory DBMS AnalyticsDB
that defines an API between query execution engine and data
access. The API provides two strategies for operator execution:
data pull and operator push.

ii Besides the advantages of an operator push execution strategy,
there are scenarios where a data pull execution strategy is ben-
eficial. We provide an operator execution cost model to decide
on the optimal strategy.

iii We investigate the different data partitioning options in RAM-
Cloud and show the optimal partitioning schemes.

iv We provide an extensive performance evaluation of Analyt-
icsDB on RAMCloud with the Star Schema Benchmark as work-
load. We show that AnalyticsDB on RAMCloud preserves the
in-memory performance advantage and provides an elastic work-
load adaption at the same time.

The remainder of the paper is structured as follows: Section 2
presents an overview on the architecture in this paper and describes
AnalyticsDB and RAMCloud in more detail. Section 3 explains
the involved data storage and partitioning mechanisms and covers
aspects such as the mapping from AnalyticsDB columns to objects
in RAMCloud. Section 4 describes the identification and imple-
mentation of AnalyticsDB operators which are eligible for being
pushed into RAMCloud. Section 5 introduces an AnalyticsDB ex-
ecution cost model that describes the impact of system- and query-
related parameters on the operator execution time. It also covers
the discussion of data pull vs. operator push execution strategies.
Section 6 presents a performance evaluation. Section 7 lists the
related work and Section 8 closes with a conclusion.

2. ARCHITECTURAL OVERVIEW
In our system a set of AnalyticsDB nodes access a shared storage

layer established by a RAMCloud storage system.
Figure 1 depicts the architectural overview of our system: Ana-

lyticsDB nodes receive application queries dispatched by a central
federator node. Every query is assigned to a single AnalyticsDB
node, while a local query processor controls its execution. Each
AnalyticsDB node holds the meta data describing the relational
structure of all data contained in the storage layer to allow for query
validation and planning. The query processor accesses the RAM-
Cloud storage system through a RAMCloud client component that
transparently maps the AnalyticDB API to operations on specific
RAMCloud nodes.
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Figure 1: Architectural Overview

The RAMCloud in-memory storage system consists of multiple
nodes and takes care of transparently distributing the stored data
among participating nodes and manages replication, availability
and scaling of the cluster. To allow for push-down of operations
to the storage layer, each RAMCloud node is extended with a set
of AnalyticsDB operators.

In the following subsections the AnalyticsDB and RAMCloud
systems are described in more detail.

2.1 AnalyticsDB
AnalyticsDB is our prototypical analytical in-memory DBMS

written in C++. It is built based on the common design principles
for online analytical query engines such as MonetDB [2] or SAP
HANA [7]. Data is organized in a column-oriented storage format
and dictionary compressed. AnalyticsDB uses dictionary compres-
sion for non-numeric attributes (e.g. string) and encodes them to
int64 values. This results in only integer values being stored in
RAMCloud. The dictionary is kept on the AnalyticsDB nodes. The
operators of our execution engine are optimized for main memory
access and allow to achieve a high scan speed. In addition, our
system defers the materialization of intermediate results until it be-
comes necessary following the pattern of late materialization [1].
The biggest difference from our prototype system to a text-book
analytical database system is how the execution engine operates on
main memory. Instead of directly accessing the memory, e.g. by
using the memory address, we introduced the AnalyticsDB API to
encapsulate storage access. This API can be implemented by e.g.
using a local data structure or by using the client of a separate stor-
age system such as the RAMCloud client.

AnalyticsDB is designed for online analytical processing (OLAP)
allowing data analysts to explore data by submitting ad-hoc queries.
This style of interactive data analysis requires AnalyticsDB to ex-
ecute arbitrary queries on multi-dimensional data in sub-seconds
[25]. For performance evaluation we therefore use the Star Schema
Benchmark (SSB) [15] [14] as workload later in Section 6. The
Star Schema Benchmark data model represents sales data and con-
sists of Customer, Supplier, Part, and Date dimension tables and a
Lineorder fact table.
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Figure 2: Mapping from AnalyticsDB columns to objects in
RAMCloud. Partitioning of two columns across four storage
nodes with server span=3.

2.2 RAMCloud
RAMCloud is a general-purpose storage system that keeps all

data entirely in DRAM by aggregating the main memory of mul-
tiple of commodity servers at scale [17]. All of those servers are
connected via a high-end network such as InfiniBand which pro-
vides low latency [21] and a high bandwidth. RAMCloud employs
randomized techniques to manage the system in a scalable and de-
centralized fashion and is based on a key-value data model: in the
remainder of the paper we refer to the data items in RAMCloud
as key-value pairs or objects. RAMCloud scatters backup data
across hundreds or thousands of disks, and it harnesses hundreds
of servers in parallel to reconstruct lost data. The system uses a
log-structured approach for all its data, in DRAM as well as on
disk; this provides high performance both during normal operation
and during recovery [16].

3. STORAGE AND DATA PARTITIONING
While AnalyticsDB logically works on columnar-structured data,

our storage layer RAMCloud persists data in a key-value data model.
How key-value pairs are allotted to specific RAMCloud nodes de-
termines how column data is partitioned across multiple storage
nodes. Since the size of data partitions significantly affects the per-
formance of operators pushed down to the storage system, this pro-
cess is critical for the overall system performance.

Using the example depicted in Figure 2, we first describe how
columns are logically split into key-value pairs and, afterwards,
how they are physically stored on RAMCloud nodes. In the end
we present a micro benchmark to demonstrate the influence of par-
tition sizes on scan performance.

3.1 Mapping of Column Data to
Key-Value Pairs

RAMCloud provides the concept of namespaces. A namespace
defines a logical container for a set of objects, where each object
key occurs only once. To map an AnalyticsDB table, we create a
namespace for each database table attribute with the naming con-
vention “dbname::dbtablename::attributename”. In each names-
pace we create a number of objects, while each object stores a
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Figure 3: Micro benchmark showing the impact of consecu-
tive memory size and scan performance in main memory for
10 million 8-byte data items. The benchmark shows that the
same scan performance can be reached on randomly in mem-
ory placed blocks with 1000 consecutive data items each as on
a single block with 10 million consecutive data items.

chunk of the corresponding attribute column. How many column
values are held by a single object is configurable via a parameter
object size. The object size parameter and the actual size of the
column determine how many objects have to be created for storing
the complete column. Figure 2 depicts this concept for a table con-
sisting of two columns id and name with object size=3. To store the
complete example table we create a namespace for each attribute
and create three objects with keys 0-2 for every column.

3.2 Distribution of Key-Value Pairs in RAM-
Cloud

Upon the creation of a new namespace, the parameter server
span is set to define how many storage nodes will be used to store
the objects of the namespace. These namespaces are assigned to
nodes in a round robin manner. Assignment of key-value pairs
across nodes is done by partitioning the range of the hashes of the
object keys contained in that namespace.

In the example depicted in Figure 2 we define server span=3
for namespace “db1::cust:id" and “db1:cust:name" resulting in the
shown distribution for a four node RAMCloud cluster.

Putting this partitioning mechanism in context with the afore-
mentioned data mapping has the following implications: the par-
tition granularity is on AnalyticsDB column level. This means it
is not possible to enforce placing e.g. an entire AnalyticsDB ta-
ble that consists of several columns on a single RAMCloud storage
node (except when the RAMCloud cluster has only one node).

3.3 Performance Impact of Object Size
A column-oriented data storage provides a fast sequential mem-

ory scan speed because of high data locality and thus the possibil-
ity to exploit hardware data prefetching. This raises the question
how the splitting of columns into small partitions impacts the scan
speed. Figure 3 presents a micro benchmark where 10 million 8-
byte data items are stored in DRAM and traversed on an Intel Xeon
E5450. The x-axis indicates how many of those data items are
placed consecutively in DRAM. On the left end of the x-axis is one
data item at a time placed consecutively in DRAM. On the right end
of the x-axis 10 million data items are placed consecutively which
means the complete dataset is stored sequentially in DRAM. The
y-axes depict the number of occurring data cache misses and the
number of required CPU cycles for completing the traversal. The
micro benchmark illustrates that the required number of CPU cy-
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Listing 1: Simplified AnalyticsDB Column API

C o l u m n P o s i t i o n append ( ColumnValue v a l u e ) ;
ColumnValue g e t ( C o l u m n P o s i t i o n p o s i t i o n ) ;
void s e t ( C o l u m n P o s i t i o n p o s i t i o n , ColumnValue v a l u e ) ;

C o l u m n P o s i t i o n L i s t s can (SCAN_COMPARATOR compara to r ,
ColumnValue va lue ,
C o l u m n P o s i t i o n L i s t p o s i t i o n L i s t ) ;

Array <ColumnValue > m a t e r i a l i z e ( C o l u m n P o s i t i o n L i s t
p o s i t i o n L i s t ) ;

C o l u m n P o s i t i o n L i s t j o i n P r o b e ( ArrayRef dimens ionTablePKs ,
P o s i t i o n L i s t R e f
v a l i d F a c t T a b l e P o s ) ;

s i z e _ t s i z e ( ) ;
void r e s t o r e ( ArrayRef v a l u e s ) ;

cles becomes minimal if a relatively small amount of data items are
placed consecutively in DRAM [27] and therefore the maximum
scan speed has already been reached.

In the evaluation of our system we choose the allowed upper
limit of 1MB for RAMCloud objects which results in an object size
of 131.072 (as an AnalyticsDB column value is 8 bytes). Given the
results of our benchmark above we conclude that we still achieve
maximum scan performance with this partitioning schema: this
will be validated in Section 5 in a scan operation micro benchmark
shown in Figure 4(a).

4. QUERY EXECUTION AND OPERATOR
PUSH DOWN

So far we described how RAMCloud is used as the shared stor-
age layer in our system. With a standard configuration of RAM-
Cloud, query execution can only happen on an AnalyticsDB node
by loading the required data from the storage layer into the query
processing engine of an AnalyticsDB node. In this section we de-
scribe how we extended the RAMCloud system to allow for exe-
cution of database operators directly in the storage layer close to
the data. Specifically, we first identify which operators are most
significant for a database system designed for analytical workloads
such as AnalyticsDB and secondly describe how we designed and
implemented these operators in RAMCloud.

4.1 Identifying Operators for Push Down
We analyzed the queries of the SSB benchmark to identify the

operators which are suitable for and benefit from a push down to
the storage layer. Table 1 shows the AnalyticsDB operator break-
down for one execution cycle of the SSB with a scale factor of 10
in local main memory on an Intel Xeon E5620. We normalized
the complete execution time to highlight the contribution of each
operator to the total execution time and ranked the operators ac-
cordingly.

To choose promising operators two aspects are relevant: a) to
what extent does an operator contribute to the overall execution
time and b) does the operator usually work on data as stored in the
persistence layer or on intermediate results. Since we do not want
to rebuild a complete query processor in the storage system, but to
push-down the execution of stateless and data intensive operators,
we do not consider operators for push down that normally work on
intermediate result sets.

Table 1 shows that the Hash-Join and Scan operator accumulate
82% of the total execution time in the SSB. From our query execu-

Table 1: AnalyticsDB Operator break-down when executing
the Star-Schema Benchmark, normalized by the contribution
of the operator to the overall query runtime

Hash-
Join

Scan Group-
By

Materi-
alization

Merge-
Posi-
tions

Sort Arith-
metic

% 0.6657 0.1594 0.0754 0.0693 0.0283 0.0017 0.0003

tion plans for the SSB we derived that these operators are always
the first that touch the raw data and consume it sequentially. The
Materialization operator works also directly on the data as stored in
the persistence, e.g. when retrieving the actual values in a column
based on a position list. Consequently, we decided to implement
support for these operators on the storage layer.

The Hash-Join operator in AnalyticsDB is optimized for star-
schemas and operates on database table level and therefore cannot
be entirely executed on the storage level. To support Hash-Join op-
erations on the storage layer we added support for the join probing
and materialization sub-operator of the Hash-Join.

A typical join operation in AnalyticsDB joins a fact table with
a number of dimension tables and is executed by the AnalyticsDB
query engine as follows: first, the join paths are being evaluated
using the join probing sub-operator to probe the foreign keys in the
respective columns of the fact table (line orders in SSB) against
the keys provided in the join path. The keys provided by the join
path (primary keys of a dimension table) are normally derived by a
preceding scan operation on that dimension table. The evaluation
of each join path results in a list of line order positions indicating
at which position the join condition is met. This position list acts
as additional input for the evaluation of the next join path. The re-
sult of the evaluation of all join paths is a list with the fact table
positions that fulfill all join conditions. Based on that list, the ma-
terialization of the requested attributes for the result table is done.
Thus, our Hash-Join implementation accepts three parameters: a)
the name of the table that will be joined with n other tables; b) a
number of join paths where each join path defines a join with an-
other table by providing a list of foreign keys as join condition; and
c) a list of table and attribute names which define the attributes of
the result table.

Due to the operation on database table level, the AnalyticsDB
Hash-Join operator cannot be pushed down into RAMCloud in its
entirety, but instead we push down its join probing sub-operator
and materialization sub-operator. During a SSB execution, the exe-
cution time ratio between join-probing and materialization is 9.6:1
in the context of a hash-join execution. Consequently, we added
support for the Scan, Materialization, and Join-Probing operator in
RAMCloud.

The Group-By, Merge-Positions, Sort, and Arithmetic operators
work mostly on intermediate results which are processed inside
the query engine of an AnalyticsDB node and therefore cannot be
pushed down to the storage layer.

4.2 Implementation of AnalyticsDB Operators
in RAMCloud

To allow for the push-down of Scan, Materialization, and Join-
Probing operators to RAMCloud nodes, we implemented support
for these operators in RAMCloud and added the operator signatures
to the AnalyticsDB storage API as shown in Listing 1. The scan,
materialize, and joinprobe operations operate on column-level and
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take a condition and optionally a position list as input parameters.
The condition parameterizes the operation itself (e.g. to scan for
which values or to hash probe against which probing data). The
optional position list defines at which column positions the oper-
ator should be executed. If the position list is empty, the entire
column will be processed. Depending on the operator, the result of
an operator execution is either a list of column values or column
positions.

To implement the AnalyticsDB storage API for RAMCloud, we
added RAMCloud client code in AnalyticsDB for invoking the op-
erators in RAMCloud. The RAMCloud client component is re-
sponsible for mapping the columnar data to RAMCloud names-
paces and objects. It resolves what column chunks are stored on
which node in the RAMCloud storage system and sends the re-
spective operator input parameters to the relevant nodes. At the
RAMCloud node the operator is invoked locally and processes the
data specified by the input parameter. In RAMCloud, this speci-
fication is either on object granularity (e.g. materialize all values
that are contained in the objects 10 and 11) or on value granularity
(e.g. materialize the first three values inside object 10). Finally, the
RAMCloud client component in AnalyticsDB receives the results
from all RAMCloud nodes, merges them, and returns the operator
result to the query engine on the AnalyticsDB node. The operators
have the following properties:

4.2.1 Scan
The Scan operator expects a scan comparator (e.g. less than,

equal) and the comparative value. It is possible to provide two
comparators and comparative values for doing a range-based scan
(e.g. greater than 10 and smaller than 20). Additionally, an optional
position list can be passed.

4.2.2 Materialization
The Materialize operator takes a position list as input and returns

all values at the defined positions. If no position list is supplied, the
Materialize operator returns the values of the the entire column.

4.2.3 Join-Probing
The join probing operator takes the probing data set and a posi-

tion list to indicate at which positions it should perform the probing.
If the position list is empty, it performs the probing on all values in
the column. The join probing operator returns a list of positions
that indicate where the probing succeeded.

5. ANALYTICSDB EXECUTION
COST MODEL

In this section we introduce an execution cost model for Analyt-
icsDB to analyze the impact of different parameters that have been
induced by the data mapping, column partitioning and the design
of the operators itself. We first derive an abstract system model
which is later used to predict execution costs analytically for dif-
ferent scenarios. Afterwards we use our cost model to evaluate
operator push down and data pull execution strategies and show
how the cost model can be used to decide on different execution
strategies.

5.1 System Model
We abstract the following system model: a column C is de-

fined by the number of contained records SC and the size of a
single record Sr in bytes. It may be partitioned among n RAM-
Cloud nodes RN1, . . . , RNn, resulting in disjoint non-overlapping
partitions C1, . . . , Cn with sizes SC,1, . . . , SC,n. All nodes are

connected by network channels with constant bandwidth BWNet,
measured in bytes per second.

As described in Subsection 4.2, execution of an operation O for a
column C is coordinated by a single AnalyticsDB node AN , while
O is executed by evaluating the position list P and condition D on
C. Our system allows for two execution strategies:

i ship all partitions C1, . . . , Cn from nodes RN1, . . . , RNn to
AN and evaluate P and D locally at AN . We denote this
strategy data pull (DP).

ii ship P and D to RAMCloud nodes and evaluate them remotely
at RN1, . . . , RNn. Here, P has to be split-up into sub-partition
lists P1, . . . , Pn to ship a specific position lists to each RAM-
Cloud node. We denote this strategy by operator push-down
(OP).

To push down an operation O to RAMCloud nodes, it is split-up
into sub-operations O1, . . . , On. These sub-operations Oi take a
condition D and a specific position list Pi as input to be evaluated
on all values in Ci. Since we measure the network traffic in bytes
we have to distinguish different cases for each operator: for a scan
operation, D is the selection condition and usually only a few bytes
large (e.g. the size of two scan comparators and two comparative
values). In case of a materialization operation we set D = ; to
return all values defined in P . For a join operation, D denotes the
probing data and has a significant size. We denote the size of D in
bytes by SD . The output of Oi is a list of column values or column
positions where D evaluates to true. In our model the fraction of
values referenced in Pi for which D evaluates to true is defined by
the selectivity parameter s. In case Pi = ;, then D is applied to all
values at Ci. We denote the number of entries in P by SP and the
size of one entry in bytes by Sp.

5.2 Execution Cost
To derive the overall time EO required to execute an operation

O for DP and OP analytically, we first derive the delay induced
by network transfers and afterwards the times required to execute
operators in local DRAM.

For operation O applied to a column C partitioned over n RAM-
Cloud nodes, we derive network costs M as follows: For DP the
network cost are simply given by

MDP = SC · Sr/BWNet (1)

because their only dependency is the amount of data that is pulled
from RN1, . . . , RNn to the local execution on AN .

For OP network costs MOP depend on the size of D and P , as
well as the selectivity of the predicate s. We derive MOP in (2):

MOP = ((SP · Sr + SD · n) + (SP · s · Sr))/BWNet (2)

The time required to execute a Oi on a RAMCloud node RNi

in case of OP depends on the scan speed in DRAM at RNi, and in
case of DP on the scan speed at AN . In our system model we define
the scan speed by parameter BWMem. We abstract the execution
time of an operation TO as the sum of the time required to traverse
the data and the time to write results as follows:

TO = (SP · Sr + SP · Sr · s)/BWMem (3)

If the operation is a sub-operation Oi the execution time TO,i at
RNi is derived similar to (3) by using node specific position list
sizes SP,i instead of SP .

In case of OP we have to consider the overhead time Tovh re-
quired to split P and later merge results received from RAMCloud
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Figure 4: Modeling and validating the execution times for different storage options and operator execution strategies with the
following fixed parameters: SC=60 Mio., Sr=Sp=8bytes, BWNet=2.2GB/s. The diagrams show how the variation of the parameters
impacts the execution time for the different operator execution strategies. I.a. Figure 4(c) and 4(d) illustrate that a data pull execution
can become preferable to an operator push execution.

nodes RN1, . . . , RNn. This results in an in-memory traversal over
the operators input and out put data. We define Tovh as

Tovh = SP · n/BWMem/Sp + (SP · s · Sr)/BWMem (4)

We now derive the overall execution time EO in seconds of op-
eration O by the sum of required network transfer time M and the
time for operator execution, distribution and merge overhead. For
DP we derive (5).

EO,DP = MDP + TO (5)

For OP we have to consider the overhead for computing n specific
position lists as well as the merge of Oi results. Hence, we derive
(6) as execution time for OP.

EO,OP = MOP + Tovh +max(TO,i) (6)

While our cost model abstract from numerous system parameters,
we found this abstraction accurate enough to evaluate the impact of
our operator execution parameters.

5.3 Evaluating Operator Execution Strategies
After introducing the AnalyticsDB execution cost model, we val-

idate it with a set of micro benchmarks. Each micro benchmark
represents a single operator execution. We vary the previously de-
scribed cost model parameters throughout the micro benchmarks,
so that they allow for a discussion about the relation of the execu-
tion strategies data shipping and operator push down. We execute
the micro benchmarks on a cluster of 50 nodes in total where each
node has an Intel Xeon X3470 CPU, 24GB DDR3 DRAM, and
a Mellanox ConnectX-2 InfiniBand HCA network interface card.
The nodes are connected via a 36-port Mellanox InfiniScale IV (4X
QDR) switch. We use one node for running AnalyticsDB and vary
the number of RAMCloud nodes between one and 20. The chosen
number of nodes is sufficient for demonstrating the impact of the
cost model parameters on the operator execution, we will use the
full cluster capacity in the subsequent Performance Evaluation Sec-
tion. In addition, we provide a baseline where the respective micro
benchmark is executed on local DRAM on a single AnalyticsDB
node.

Figure 4 depicts our micro benchmarks. There are three param-
eters which are fixed throughout all benchmarks: the column size
SC=60 Mio. and the size of a single column record Sr=8 bytes.

The effective network bandwidth is BWNet=2.2GB/s: the theoret-
ical maximum network bandwidth is 4GB/s with the particular In-
finiBand hardware, but it is limited by the PCI Express bandwidth
in the nodes.

Figure 4(a) shows a scan operation on the entire column with an
increasing selectivity and a fixed RAMCloud cluster size of one.
The operator push execution time for a scan with a low selectivity
is close to the local DRAM variant, data pull takes almost twice
as long due to the initial full column copy over network. With an
increasing selectivity, the execution time of the operator push down
strategy approaches the data pull variant as the same amount of data
travels over the network.

Figure 4(b) illustrates a full column scan with a fixed selectiv-
ity of 0.5, but with a varying number of nodes in the RAMCloud
cluster. One can see that with an increasing number of nodes, the
operator push down execution gets accelerated due to the parallel
execution of the scan operator, but reaches a limit at around 10
nodes: at that point TO,i is minimized and the execution time is
dominated by MOP + Tovh which cannot be reduced by adding
more nodes. Tovh even grows with an increasing number of nodes
which causes the operator execution time to slightly increase to-
wards a cluster size of 20 nodes. The execution time of data pull is
not affected by a larger cluster size and is constant.

Figure 4(c) depicts a materialization operation with an increasing
position list size. The operator push down execution time increases
gradually with a growing position list size and exceeds at some
point the execution time of data pull. This is caused by the addition
of the size of the position list and the returned column values which
exceeds the column size. In such a case, the data pull execution
time is faster than the operator push execution time.

Figure 4(d) shows a join probing with an increasing probing
data size on a RAMCloud cluster with 20 nodes. BWMem is here
smaller than in the previous micro benchmarks since the creation
of and the probing against a hash map takes longer than a scan or a
materialization operation. The graph illustrates that operator push
down can benefit from parallel execution on 20 nodes and is faster
than execution on local DRAM when the probing data is small.
When the probing data gets bigger, the operator push down exe-
cution time increases as the probing data has to be sent to all 20
nodes. At a certain probing data size, the operator push down ex-
ecution time exceeds the data pull execution time and makes data
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Listing 2. SQL Query
s e l e c t sum ( l o r e v e n u e )
from l i n e o r d e r , p a r t
where l o p a r t k e y = p p a r t k e y
and p mfgr between ’MFGR#1 ’
and ’MFGR#5 ’ ;

(b)

Figure 5: Execution of a SQL query on the SSB dataset with
SF=1 (SC=6 Mio., Sr=8bytes), N=10 and different execution
strategies. Figure 5(a) illustrates that for this query a mix of
data pull and operator push execution strategies is preferable.

pull preferable.
Summarizing the gained insights based on the micro benchmarks,

the data pull execution strategy is two to three times slower than
operating on local DRAM. The performance of the operator push
strategy varies: if the to be accessed data is on a single RAMCloud
node, the performance is only a few percent worse than operating
on local DRAM if e.g. the selectivity or the number of entries in
the position list is small. If those parameter grow, the operator push
performance gradually approximates the data pull performance and
can even become worse. If the to be processed data is partitioned
across several nodes, the operator push execution time can be up to
five times faster than local DRAM. But node parallelism can also
worsen the operator push execution time to an extent that it be-
comes slower than data pull: this is the case if the input parameter
Sd becomes large and must be dispatched to all involved nodes.

5.4 Optimizing Operator Execution
The previous subsection demonstrated that the optimal operator

execution strategy depends on a set of parameters. In this subsec-
tion, we show that the optimal execution strategy within a single
query can vary for each involved operator. We use the same cluster
setup as in the previous subsection.

The Figure 5(a) depicts the execution times for different execu-
tion strategies based on the query shown in 5(b). The join probing
operation (Sd=200.000, SP =6 Mio., s=1) can benefit from the par-
allelism of the ten nodes and is fastest with a operator push strat-
egy. The materialization operation (Sd=0, SP =6 Mio., s=1) has a
position list size that is as large as the column itself: the data pull
strategy performs better for this operator execution. Consequently,
the optimal execution time can be reached with a mix of the data
pull and operator push strategies as illustrated by the last column in
Figure 5(a).

6. PERFORMANCE EVALUATION
In this section we present a detailed performance evaluation by

executing the Star Schema Benchmark that has been described in
Subsection 2.1. We describe how the execution time is impacted
by the different operator execution strategies, by an increasing data
scale factor, and by the different data partitioning options. In ad-
dition, we inspect the elasticity of the presented architecture by
changing the number of RAMCloud nodes, changing the number
of AnalyticsDB nodes and combining both aspects by showing how
to maintain a constant response time under a variable load. We use
the same cluster setup as described in Subsection 5.3. Since RAM-

Cloud supports currently only a single-threaded operator execution
per node, we also execute the queries in the AnalyticsDB nodes
single-threaded.

Figure 6 shows an AnalyticsDB operator breakdown for each
query of the SSB. Each query is executed on local DRAM and on
RAMCloud. AnalyticsDB runs on a single node, the RAMCloud
cluster has size of 20 nodes. The execution on RAMCloud happens
either via data pull or operator push strategy and each AnalyticsDB
column is either being stored on one storage node (server span=1)
or partitioned across all nodes (server span=20). The figure illus-
trates that the partitioning criteria has only very little impact (2.8%)
on the data pull execution strategy and that data pull is in average
2.6 times slower than the execution on local DRAM. With a server
span of one, the operator push execution strategy is in average 11%
slower than the execution on local DRAM. With a server span of
20, the operator execution strategy can be accelerated by a factor
of 3.4: the next subsection discusses the impact of data partitioning
on the SSB execution time in detail. The figure does not show the
execution times of the local AnalyticsDB operators such as Sort in
detail, but summarizes them as Other Operators. Due to the overall
low selectivity of the SSB, there is no case where a Scan, Material-
ize, or Join Probing Operator execution is slower with an operator
push than with a data pull execution strategy.

6.1 Data Partitioning
As seen in the previous subsection, the partitioning criteria in-

fluences the execution time of the SSB with an operator push exe-
cution strategy. As explained in Subsection 5.3, an operator push
execution can benefit from a parallel execution on several nodes
until the execution time of the operation time is minimized and the
execution time is dominated by the data transfer over network and
overhead costs such as merging the results from all nodes. The mi-
cro benchmark in Figure 4(b) illustrated this with a column size of
SC=60 Mio. values. The SBB data set has different tables with
different column lengths. Figure 7 shows the combined execution
times of all scan operations on the SSB Lineorder, Part, and Date
tables during a single SSB cycle. At a SSB data scale factor of
10, each column in the Lineorder table has a size of SC=60 Mio.
values, each column in the Part Table has a size of SC=800.000
values, and each column in the Date table has a size of SC=2.556
values. Figure 7 depicts that the scan operations on the Lineorder
table benefit up to a factor 5 from being distributed, the scan op-
erations on the Part table get accelerated up to factor 1.6, but the
scan operations performance on the Date table decreases with ev-
ery additional node up to a factor 4.5. This raises the question if
the chosen partition criteria should not be derived from the optimal
partitioning layout for the biggest table, but being done indepen-
dently for each table or column, depending on the respective col-
umn length: we disregard this idea as the introduction of a column
specific partitioning a) makes the data migration during a scale out
more complex (as discussed in the next Subsection 6.3) and b) only
brings a comparatively small performance benefit (e.g. 3.8% in the
example in Figure 7). In addition, we have so far only covered the
aspect of data partitioning when one AnalyticsDB instance oper-
ates exclusively on a RAMCloud cluster. We will cover the aspect
of multiple AnalyticsDB instances in the upcoming Subsection 6.4.

6.2 Data Scale Factor
This subsection evaluates what impact a varying data set size

has on the execution time. Figure 8 shows the execution of the SSB
with a varying data scale factor SF. Scale factor 1 has a Lineorder
table with 6 million rows and a total data size of 600 MB, scale
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Figure 6: Operator breakdown for AnalyticsDB executing SSB queries with a data scale factor of 10 and different storage options and
operator execution strategies. AnalyticsDB runs on a single node, the RAMCloud cluster has size of 20 nodes. The figure illustrates
i.a. that the data pull execution strategy is in average 2.6 times (or 260%) slower than the execution on local DRAM and that the
operator push execution strategy is in average 11% slower than the execution on local DRAM.
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Figure 7: Combined scan operation times on SSB tables with a
data scale factor of 10. Analytics DB runs on a single node with
a operator push execution strategy, the RAMCloud cluster has
a size of 20 nodes, the server span varies.

factor 10 has a Lineorder table with 60 million rows and a total data
set size of 6 GB, and scale factor 100 has 600 million rows in the
Lineorder table and a total data set size of 60 GB. The experiments
with SF 100 could not be executed on local DRAM as the data set
size exceeded the capacity of a single server. Figure 8 illustrates
that the ratio between the data set size and the SSB execution times
of the different execution strategies remain constant with a growing
data set size and with a constant cluster size.

6.3 Elasticity: Variable Number of
RAMCloud Nodes

Throughout previous experiments, we varied the number of nodes
in the RAMCloud cluster and the resulting server span. In this
subsection, we want to perform this variation not in separate ex-
periment executions, but continuously while a single AnalyticsDB
node is executing queries. Therefore, we use a simplistic data mi-
gration manager which distributes the data equally across the avail-
able nodes: if a new node joins the RAMCloud cluster, it gets a
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(c) SF=100

Figure 8: RAMCloud cluster with 20 nodes and a single node
running AnalyticsDB with a varying SSB data scale factor SF.
The figure shows that the ratio between data set size and SSB
execution times remain constant with a growing data set size.

chunk of the data, before a node is removed from the cluster its
contained data is distributed across the remaining nodes. The data
distribution is done via a splitting of the RAMCloud namespaces
(see Section 3.1) and a subsequent migration of the data that is
contained in a part of a namespace: the complexity and execution
time of this mechanism benefits from an equal partitioning of all
namespaces.

Figure 9 illustrates the SSB execution time while RAMCloud
nodes are being added or removed from the cluster. With every
added RAMCloud node, the overall storage capacity increases and
the SSB execution time decreases as previously discussed. With
every removed node the overall storage capacity decreases and the
SSB execution time increases.

6.4 Elasticity: Variable Number of
AnalyticsDB Nodes

In this subsection, we have a constant number of 20 nodes in
the RAMCloud cluster, but vary the number of nodes that execute
AnalyticsDB between 1 and 30. If a new AnalyticsDB node is
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Figure 9: RAMCloud cluster with a varying number of nodes and a single node running AnalyticsDB with a operator push execution
strategy and a SSB data scale factor of 10.
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(a) RAMCloud running on 20 Nodes with Server Span=10
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(b) RAMCloud running on 20 Nodes with Server Span=20

Figure 10: RAMCloud cluster with a constant number of 20 nodes and a varying number (1-30) of nodes running AnalyticsDB with
a operator push execution strategy and a SSB data scale factor of 10.
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Figure 11: RAMCloud cluster with a varying number of nodes that react on workload changes which are imposed by a changing
number of AnalyticsDB nodes. The SSB data scale factor is set to 10, the execution strategy is operator push. The figure illustrates
i.a. that our architecture can utilize resources which have been added due to an increased workload after a short period of time.
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added, it gets instructed by the federator to continuously execute
the SSB: this results in an increase of the load. Figure 10 shows the
corresponding experiment, where in Figure 10(a) the server span
is 10 and in Figure 10(b) the server span is 20. In Figure 10(a)
the throughput increases until 15 AnalyticsDB nodes and then be-
gins to flatten out which means the operator throughput is satu-
rated in RAMCloud. The maximum throughput is 2607 SSB cy-
cles per hour. In Figure 10(b) the throughput increases until 20
AnalyticsDB nodes and then begins to flatten out. The maximum
throughout is 3280 SSB cycles per hour.

The following two insights can be derived from the experiments:
a) we demonstrated in Subsection 6.1 that a server span of 10 de-
livers the optimal SSB execution time when a single AnalyticsDB
node uses a RAMCloud cluster with 20 nodes. This statement is
valid if there are up to ten AnalyticsDB nodes running. Above ten
AnalyticsDB nodes a server span of 20 results in a better SSB ex-
ecution time as the to be accessed data is distributed across more
RAMCloud nodes and therefore the operator throughput in RAM-
Cloud is saturated at a later point. b) Even in the case of over-
provisioning (e.g. 30 AnalyticsDB nodes vs. 20 RAMCloud nodes)
the SSB throughput remains constant, but the execution time in-
creases over linear (due to the operator throughput saturation in
RAMCloud), but it does not result e.g. in a reduction of the SSB
throughput. In addition, the increasing throughput in both experi-
ments can either be leveraged for performing a higher number of
SSB executions in parallel or for reducing the execution time of a
single SSB execution by dispatching its queries across the different
AnalyticsDB nodes via the federator.

6.5 Elasticity: Constant Execution Time un-
der a Variable Load

In the previous two subsections, we varied either the number of
RAMCloud nodes or we varied the load by changing the number
of AnalyticsDB nodes. In this section we want to put the pieces
together by maintaining a constant SSB execution time by resiz-
ing the RAMCloud cluster online under a changing load which is
represented by a varying amount of AnalyticsDB nodes.

Figure 11 shows that we vary the load in the experiment by
adding and removing a set of one, three, and five AnalyticsDB
nodes at a time over the course of the experiment. Every time an
AnalyticsDB node has been added, it is told by the federator to
constantly execute the SSB. This experiment defines an upper and
lower execution time limit for the average SSB execution time of
30 and 20 seconds. If the load has been increased by adding Ana-
lyticsDB nodes, then a new RAMCloud node is being added to the
cluster for every execution time measuring point that is above the
upper limit. The same approach is used when AnalyticsDB nodes
are being removed and an execution time below the lower limit
results in the removal of RAMCloud nodes. Although the cho-
sen work load adaption strategy is most simplistic, the experiment
shows that a) the architecture can adapt to workload changes of dif-
ferent orders in a short period of time, b) without interrupting the
ongoing query processing and c) that the resulting elasticity allows
the compliance with a performance goal without any adjustments
from a DBMS perspective.

7. RELATED WORK
The most important related work is from Brantner et al. who

demonstrated [4] that a cloud-based storage system can be used
as a shared-storage for a database application by putting MySQL
on Amazon S3. Our paper has the same intent, but differs as it
focuses on performance and elasticity in the context of an analytical
workload and a DRAM-based storage system.

The concepts which influence and made up the different pieces of
our architecture are covered in the distributed systems and database
literature:

• The shared-nothing vs. shared-disk (shared-storage) discus-
sion has been extensively covered e.g. by Wong and Katz
[28], Stonebraker [23] and Rahm [20].

• The aspect of bringing the executing of operations to the data
storage is well established in the field of database and dis-
tributed systems: in the context of database systems, database-
aware storage systems enable the push-down of database op-
erators into the storage system as shown by Sivathanu et.
al. [22] and Raghuveer et. al. [19]. In the context of dis-
tributed systems, e.g. the Hadoop Distributed File System
[3] provides interfaces for applications to move their execu-
tion closer to the data.

• There are several approaches for combining the main mem-
ories of several machines for a centralized application: the
concept of distributed shared memory [13] does this by pro-
viding a virtual memory address space and research projects
such as MEMSCALE [12] adapt this concept to the proper-
ties of modern hardware. However, such an approach is not
intended for a large number of servers with frequent hard-
ware failures, but is rather suited for a small set of highly
reliable servers. In contrast, DRAM-based storage systems
such as RamSan [26] provide high-availability, but are lim-
ited in their maximum storage capacity and do not allow the
invocation of remote operations.

In addition, there is an on-going discussion whether the MapRe-
duce framework [6] or distributed, parallel DBMSs [24] are the
right tool for performing analytics on large data sets: the spec-
trum of this discussion also includes hybrid approaches such as
Google’s Dremel [11]. Our work is positioned in the realm of dis-
tributed DBMSs and utilizes a cloud infrastructure as storage sys-
tem: although the execution of a set of database operators is being
brought closer to the data into the cloud-based storage, the data
model, the query syntax, and the query execution is designed for
and controlled by the DBMS.

8. CONCLUSION
This work presents AnalyticsDB, a system that combines the per-

formance of an in-memory query processor and the elasticity of a
cloud data storage. The technological enabler for this combina-
tion is modern computer networking technology. The conceptual
enabler is the DBMS architecture presented in this paper.

From a performance point of view, we show that a) using a
vanilla RAMCloud instead of local DRAM for data storage results
in a performance penalty of a factor 2.6, but enables already all
the advantages of RAMCloud such as fault-tolerance, availability,
and elasticity. With the enrichment of RAMCloud by a set of data-
intensive operators we demonstrate that b) the performance penalty
can be reduced to 11%. From an elasticity perspective, we illustrate
that c) our architecture can adapt to a changing number of storage
nodes with no efforts from a DBMS perspective, without an inter-
ruption of the query processing, and within a few seconds. In ad-
dition, we point out that this is also d) true for a changing number
of DBMS nodes. Combining both previous statements results in
the illustration of e) the ability to meet a certain performance goal
under a changing workload by adding/removing resources. The
conducted experiments use a widely known analytical benchmark
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with a data size of up to 600 million records and a cluster size of
up to 50 nodes.

Throughout the description of aspects which are unique to our
system we introduce f) a query execution cost model that allows to
decide whether a data pull or an operator push execution strategy is
preferable for a given query. Besides optimizing the query execu-
tion, we also evaluate the implications on finding an optimal parti-
tioning schema. We show that g) the optimal partitioning schema
varies from a single DBMS node and from an overall cluster per-
spective.

Putting all pieces together, our architecture and its API between
query execution engine and data access can use a large-scale DRAM-
based storage system such as RAMCloud as data storage instead of
local DRAM. This enables the preservation of the in-memory per-
formance advantage and the elasticity provided by the cloud storage
at the same time. From our point of view, the closing gap between
local and remote DRAM access performance characteristics will
cause a reevaluation of established concepts and common knowl-
edge in the field of distributed in-memory DBMSs. In this work,
we made a first step towards leveraging the relaxed remote perfor-
mance constraints for providing a greater degree of elasticity.
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