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ABSTRACT
People spend a significant amount of time in indoor spaces
(e.g., office buildings, subway systems, etc.) in their daily
lives. Therefore, it is important to develop efficient indoor
spatial query algorithms for supporting various location-
based applications. However, indoor spaces differ from out-
door spaces because users have to follow the indoor floor
plan for their movements. In addition, positioning in indoor
environments is mainly based on sensing devices (e.g., RFID
readers) rather than GPS devices. Consequently, we cannot
apply existing spatial query evaluation techniques devised
for outdoor environments for this new challenge. Because
particle filters can be employed to estimate the state of a
system that changes over time using a sequence of noisy mea-
surements made on the system, in this research, we propose
the particle filter-based location inference method as the ba-
sis for evaluating indoor spatial queries with noisy RFID
raw data. Furthermore, two novel models, indoor walking
graph model and anchor point indexing model, are created
for tracking object locations in indoor environments. Based
on the inference method and tracking models, we develop in-
novative indoor range and k nearest neighbor (kNN) query
algorithms. We validate our solution through extensive sim-
ulations with real-world parameters. Our experimental re-
sults show that the proposed algorithms can evaluate indoor
spatial queries effectively and efficiently.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Application—
spatial databases

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Today most people spend a significant portion of their

time daily in indoor spaces such as subway systems, office
buildings, shopping malls, convention centers, and many
other structures. In addition, indoor spaces are becoming
increasingly large and complex. For instance, the New York
City Subway has 468 stations and contains 209 miles (337
km) of routes [28]. In 2011, the subway system delivered
over 1.64 billion rides, averaging approximately 5.3 million
rides on weekdays [15]. Therefore, users will have more and
more demand for launching spatial queries for finding friends
or Points Of Interest (POI) in indoor places. However, ex-
isting spatial query evaluation techniques for outdoor en-
vironments (either based on Euclidean distance or network
distance) [18, 6, 16, 19, 12] cannot be applied in indoor
spaces because these techniques assume that user locations
can be acquired from GPS signals or cellular positioning,
but the assumption does not hold in covered indoor spaces.
Furthermore, indoor spaces are usually modelled differently
from outdoor spaces. In indoor environments, user move-
ments are enabled or constrained by entities and topologies
such as doors, walls, and hallways.

Radio Frequency Identification (RFID) technologies have
become increasingly popular over the last decade with ap-
plications in areas such as supply chain management [20],
health care, and transportation. In indoor environments,
RFID is mainly employed to support track and trace ap-
plications. Generally, RFID readers are deployed in critical
locations while objects carry RFID tags. When a tag passes
the detection range of a reader, the reader recognizes the
presence of the tag and generates a record in the back end
database. However, the raw data collected by RFID readers
is inherently unreliable [21, 8], with false negatives as a result
of RF interference, limited detection range, tag orientation,
and other environmental phenomena [26]. In addition, read-
ers cannot cover all areas of interest because of their high
cost or privacy concerns [24]. Therefore, we cannot directly
utilize RFID raw data to evaluate commonly used spatial
query types (e.g., range and kNN) for achieving high accu-
racy results in indoor environments.

In this research, we consider the setting of an indoor en-
vironment where a number of RFID readers are deployed in
hallways. Each user is attached with an RFID tag, which
can be identified by a reader when the user is within the
detection range of the reader. Given the history of RFID
raw readings from all the readers, we are in the position to
design a system that can efficiently answer indoor spatial
queries.
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Particle filters are sequential Monte Carlo methods based
on point mass representations of probability densities, which
can be applied to any state-space model [1]. Particle fil-
ters can be employed to estimate the state of a system that
changes over time using a sequence of noisy measurements
made on the system. In this paper we propose the particle
filter-based location inference method, the indoor walking
graph model, and the anchor point indexing model for infer-
ring object locations from noisy RFID raw data. On top of
the location inference, indoor range and kNN queries can be
evaluated efficiently by our algorithms with high accuracy.
The contributions of this study are as follows:

• We design the particle filter-based location inference
method as the basis for evaluating indoor spatial queries.

• We propose two novel models, the indoor walking graph
model and the anchor point indexing model, and an
RFID-based system for tracking object locations in in-
door environments.

• Indoor spatial query evaluation algorithms for range
and kNN queries are developed based on the proposed
system.

• We demonstrate the efficiency and effectiveness of our
approach by comparing the performance of our system
with the symbolic model-based solution [30] through
extensive simulations using real-world parameters.

The rest of this paper is organized as follows. In section 2,
we survey previous works for indoor object monitoring and
spatial queries. Background knowledge of particle filters and
the symbolic model-based location inference is provided in
Section 3. In Section 4 we introduce our particle filter-based
indoor spatial query evaluation system. The experimental
validation of our design is presented in Section 5. Section 6
concludes this paper with a discussion of future work.

2. RELATEDWORK
In this section, we review previous work related to indoor

spatial queries and RFID data cleansing.

2.1 Indoor Spatial Queries
Outdoor spatial queries, e.g., range and kNN queries, have

been extensively studied both for Euclidean space [18, 6] and
road networks [16, 19, 12]. However, due to the inherent
differences in spatial characteristics, indoor spatial queries
need different models and cannot directly apply mature tech-
niques from their outdoor counterparts. Therefore, indoor
spatial queries are drawing more and more research atten-
tions from industry and academia. For answering continu-
ous range queries in indoor environments, Jensen et al. [9]
proposed using the positioning device deployment graph to
represent the connectivity of rooms and hallways from the
perspective of positioning devices. Basically, entities that
can be accessed without having to be detected by any po-
sitioning device are represented by one cell in the graph,
and edges connecting two cells in the graph represent the
positioning device(s) which separate them. Based on the
graph, initial query results can be easily processed with
the help of an indexing scheme also proposed by the au-
thors [29]. Query results are returned in two forms: cer-
tain results and uncertain results. To reduce the workload

of maintaining and updating the query results, Yang et al.
further proposed the concept of critical devices. Only from
the ENTER and LEAVE observations of its critical devices
can a query’s results be affected. However, the probabil-
ity model utilized in Yang’s work is very simple: a moving
object is uniformly distributed over all the reachable loca-
tions constrained by its maximum speed in a given indoor
space. This simple probability model is incapable of taking
advantage of the moving object’s previous moving patterns,
such as direction and speed, which would make the location
prediction more reasonable and precise. In addition, Yang
et al. [30] also addressed the problem of kNN queries over
moving objects in indoor spaces. Unlike another previous
work [14] which defines nearest neighbors by the minimal
number of doors to go through, they proposed a novel dis-
tance metric, minimum indoor walking distance, as the un-
derlying metric for indoor kNN queries. Moreover, Yang et
al. provided the formal definition for Indoor Probabilistic
Threshold kNN Query (PTkNN) as finding a result set with
k objects which have a higher probability than the threshold
probability T . Indoor distance-based pruning and probabil-
ity threshold-based pruning are proposed in Yang’s work to
speed up PTkNN query processing. Similarly, the paper
employs the same simple probabilistic model as in [29], and
therefore has the same deficiencies in probability evaluation.

2.2 RFID-Based Track and Trace
RFID is a very popular electronic tagging technology that

allows objects to be automatically identified at a distance us-
ing an electromagnetic challenge-and-response exchange of
data [23]. An RFID-based system consists of a large num-
ber of low-cost tags that are attached to objects, and readers
which can identify tags without a direct line-of-sight through
RF communications. RFID technologies enable exceptional
visibility to support numerous track and trace applications
in different fields [31]. However, the raw data collected by
RFID readers is inherently noisy and inconsistent [21, 8].
Therefore, middleware systems are required to correct read-
ings and provide cleansed data [7]. In addition to the un-
reliable nature of RFID data streams, another limitation
is that due to the high cost of RFID readers, RFID read-
ers are mostly deployed such that they have disjoint activa-
tion ranges in the settings of indoor tracking. Furthermore,
privacy (i.e., readers are deployed in hallways rather than
rooms in office buildings) is also an important concern [26].

To overcome the above limitations, RFID data cleansing
is a necessary step to produce consistent data to be utilized
by high-level applications. Tran et al. [22] used a sampling-
based method called particle filtering to infer clean and pre-
cise event streams from noisy raw data produced by mobile
RFID readers. Three enhancements are proposed in their
work to make traditional particle filter techniques scalable.
However, their work is mainly designed for warehouse set-
tings where objects remain static on shelves, which is quite
different from our setting where objects move around in a
building. Therefore, Tran’s approach of adapting and apply-
ing particle filters cannot be directly applied to our settings.
Another limitation of [22] is that they did not explore fur-
ther utilization of the output event streams for high-level ap-
plications. Chen et al. [3, 10] employed a different sampling
method called Markov Chain Monte Carlo (MCMC) to infer
objects’ locations on shelves in warehouses. Their method
takes advantage of the spatial and temporal redundancy of
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raw RFID readings, and also considers environmental con-
straints such as the capacity of shelves, to make the sampling
process more precise. Their work also focuses on warehouse
settings; thus is not suitable for our problem of general in-
door settings. The works in [17, 25, 13] target settings such
as office buildings, which are similar to our problem. They
use particle filters in their preprocessing module to gener-
ate probabilistic streams, on which complex event queries
such as “Is Joe meeting with Mary in Room 203?” can be
processed. However, their goal is to answer event queries
instead of spatial queries, which is different from the goal
of this research. Furthermore, a hot research topic of the
robotics research community, simultaneous localization and
mapping (SLAM), also makes extensive utilization of parti-
cle filters [27, 2].

3. PRELIMINARY
In this section, brief introductions to the mathematical

background of particle filters, particle filter-based location
inference, and symbolic model-based location inference [29]
are provided. Particle filters are the main technique utilized
in this paper to infer the posterior probability distributions
of objects’ locations. We first introduce the mathemati-
cal derivation of particle filters. Then, we present particle
filter-based location inference for supporting indoor spatial
queries. To the best of our knowledge, symbolic model-based
location inference is the only method of drawing the prob-
ability distribution of an object’s location for the purpose
of indoor spatial queries in the literature. Therefore, we
describe it here in order to compare it with our methods.
Table 1 summarizes the notations used in this paper.

3.1 Particle Filters
In this subsection, we describe the formal mathematical

statements of the Sampling Importance Resampling (SIR)
filter (the original particle filtering algorithm) [5], which pro-
vides a technical context for later sections.

A particle filter is a method that can be applied to non-
linear recursive Bayesian filtering problems [1]. The system
under investigation is often modelled as a state vector, which
contains all relevant information about the system. At least
two models are critical in analyzing and making inferences

Symbol Meaning

q An indoor query point
oi The object with ID i
C A set of candidate objects
D A set of sensing devices
G The indoor walking graph
pi A probability distribution function for oi in

terms of all possible locations
api An anchor point with ID i
Ns The total number of particles for an object

umax The maximum walking speed of a person
lmax The maximum walking distance of a person

during a certain period of time
UR(oi) The uncertain region of object oi

si The minimum shortest network distance
li The maximum shortest network distance

Areai The size of a given region i

Table 1: Symbolic notations.

about a dynamic system: the system model and the mea-
surement model, which are given by Equations (1) and (2),
respectively.

xk = fk(xk−1, vk−1) (1)

Equation (1) describes how the system evolves from the
state vector xk−1 at time k− 1 to state vector xk at time k.
fk is a possible nonlinear function, and vk−1 is an indepen-
dently identically distributed (i.i.d.) process noise sequence.

zk = hk(xk, uk) (2)

Equation (2) describes how observation zk relates to the
true state xk of the system, where hk is a possible nonlinear
function and uk is an i.i.d. measurement noise sequence.

The objective of the particle filter method is to construct
a discrete approximation to the probability density function
(pdf) p(xk|z1:k) by a set of random samples with associ-
ated weights. The weights are determined by the princi-
ple of importance sampling with the importance density to
be p(xk|xk−1) for the SIR filter [1]. Given {xi

k−1, w
i
k−1}Ns

i=1

where {xi
k−1, i = 1, . . . , Ns} is a set of support points (par-

ticles) with associated weights {wi
k−1, i = 1, . . . , Ns}, the

support points update formula and weight update formula
for the SIR filter are:

xi
k ∼ p(xk|xi

k−1) (3)

wi
k ∝ wi

k−1p(zk|xi
k) (4)

From Equation (3), we can see that the particle xi
k at

time k is sampled from the conditional pdf p(xk|xi
k−1) with

xi
k−1 being its parent particle from time k − 1. Theoreti-

cally, p(xk|xi
k−1) is related to and can be inferred from the

system model (1). Equation (4) means that the new weight
wi

k is proportional to the old weight wi
k−1 augmented by

the observation likelihood p(zk|xi
k), which can be inferred

from the measurement model (2). Thus, particles which are
more likely to cause an observation consistent with the true
observation result zk will gain higher weights than others.

The posterior filtered density p(xk|z1:k) can be approxi-
mated as

p(xk|z1:k) ≈
Ns∑

i=1

wi
kδ(xk − xi

k) (5)

Equations (3) and (4) are conceptual processes of how
to iteratively calculate particles and their weights; however,
in many applications it is hard to derive analytical forms
of p(xk|xi

k−1) and p(zk|xi
k). In our application, particles

update their locations according to the object motion model
employed in our work. Simply put, the object motion model
assumes objects move forward with constant speeds, and
can either enter rooms or continue to move along hallways.
Weights of particles are updated according to the device
sensing model [3] used in this research.

Resampling is a method to solve the degeneration prob-
lem in particle filters. Degeneration means that with more
iterations only a few particles would have dominant weights
while the majority of others would have near-zero weights.
The basic idea of resampling is to eliminate low weight par-
ticles, replicate high weight particles, and generate a new
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Algorithm 1 Resampling Algorithm

1. {{xj∗
k , wj

k}Ns
j=1

=RESAMPLE[{xi
k, wi

k}Ns
i=1

]}
2. Initialize the CDF: c1 = 0
3. for i = 2 to Ns do
4. Construct CDF: ci = ci−1 + wi

k
5. end for
6. Start at the bottom of the CDF: i = 1
7. Draw a starting point: u1 ∼ ⋃

[0, N−1
s ]

8. for j = 1 to Ns do

9. Move along the CDF: uj = u1 + N−1
s (j − 1)

10. while uj > ci do
11. i = i + 1
12. end while
13. Assign sample: xj∗

k = xi
k

14. Assign weight: wj
k = N−1

s

15. end for

set of particles {xi∗
k }Ns

i=1
with equal weights. In SIR filters,

the resampling step is performed at every time index. The
algorithm of resampling is shown in Algorithm 1.

3.2 Particle Filter-Based Location Inference
Now we are ready to explain how we apply particle filters

to the problem of RFID-based indoor location inferences.
We will use Figure 1 as an example.

In Figure 1, d1, d2 and d3 are RFID readers which par-
tition the hallway into four different sections labelled H1,
H2, H3, and H4, respectively. Suppose from raw readings
we know that a tag is first seen at d2 at time t0, then later
is seen at d3 at time t1. We want to predict its location in
a probabilistic form after the tag leaves the activation range
of d3. After leaving d3, the person carrying the tag is more
likely to keep his/her original moving direction and move
towards H4 rather than backward to H3. By their very na-
ture, particle filters will produce filtered results consistent
with our expectation. The rest of this subsection will explain
why particle filters are able to predict this trend.

We assume particle filters start running at t0. At first,
particles represent samples drawn from the initial pdf p(x0)
of the person’s location. In other words, each particle rep-
resents a hypothesis of the person’s state with its own loca-
tion, moving direction, and speed. At t0 the person’s tag is
detected by d2, which means that the person must be some-
where within the detection range of d2. Initially, particles

(a) Particles Distribution at t0

(b) Particles Distribution at t1

Figure 1: An example of particle filtering.

are distributed randomly within the detection range of d2

as shown in Figure 1(a). Every particle randomly picks its
moving direction and speed. For simulating people’s indoor
movements, we set particles’ speed to be a Gaussian distri-
bution of μ = 1 m/s and σ = 0.1.

After the initial distribution, particles update their loca-
tions according to their own speeds and directions. Some
particles may move right to H3 or possibly enter rooms R3

and R7; some particles may move left to H2, R2, and R6.
Up to time t1, particles already become dispersed as shown
in Figure 1(b). At t1 a new reading is generated by d3, when
the person entered d3’s activation range. At every new ob-
servation, particle filters are going to perform the steps of
reweighting and resampling. For readings from d3, parti-
cles that are within the detection range of d3 are assigned
high weights, while particles elsewhere are assigned a very
low weight. Next in the resampling step, particles are sam-
pled with a probability proportional to their weights. Thus
after resampling, most particles are replicates of previous
highly-weighted particles; that is, the ones within the detec-
tion range of d3. The newly generated particles maintain the
moving direction of those highly weighted particles, which is
from left to right. Therefore, at this step after analyzing two
devices’ readings, particle filters already gain some knowl-
edge of the true moving direction and speed of the person.
After the person leaves d3’s activation range but before any
new observation, particle filters are going to predict the per-
son’s location to be more likely in H4 rather than in H3 or
H2, because most particles now are moving in the direction
of the hallway from left to right.

3.3 SymbolicModel-Based Location Inference
Symbolic models are different from traditional geometric

coordinate models, which are able to capture the seman-
tics associated with indoor entities [9]. In symbolic models,
a base graph describes the topology of an indoor space in
which each separate partition such as a room, a staircase, or
a hallway is represented as a vertex. All the space outside
of the whole indoor space is also represented as one vertex,
while edges capture the connectivity (undirected, such as a
door connecting two rooms) or accessibility (directed, such
as a one way entrance/exit) between two vertices.

On the foundation of a base graph model for an indoor
space, a deployment graph can be constructed according to
the deployment of a particular positioning technology [9].
Basically, entities that can be accessed without having to
be detected by any device are represented by one cell in the
graph, and edges connecting two cells in the graph represent
the device(s) which separate them. We refer readers to [9] to
see the detailed algorithm of the RFID reader deployment
graph construction. Below, an example of a possible RFID
reader deployment in an indoor space and its corresponding
deployment graph is shown in Figure 2.

In Figure 2(a), since one can enter the hallway in the
middle from the room on the right through door1 without
being detected by any RFID reader, they are represented as
Cell9 in Figure 2(b); the same is true for the two rooms on
the top left corner of Figure 2(a) as Cell4. Cell3 represents
the staircase and is separated from other rooms or hallways
by a pair of RFID readers (reader1 and reader1′). All the
outside space is represented by Cell10.

The work in [29] defines three types of positioning devices:

• Undirected Partitioning Device: it separates two cells
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but cannot differentiate the moving directions of ob-
jects, such as reader4.

• Directed Partitioning Device: it consists of an entry/exit
pair of devices, and is able to not only partition cells
but also infer the moving directions of objects by the
reading sequence. An example is reader1 and reader1′
in Figure 2.

• Presence Device: it simply senses objects within its
detection range, but does not partition the space into
different cells. For example, reader3 is such a device
in Figure 2.

Symbolic model-based location inference assumes an ob-
ject’s position is uniformly distributed over all possible lo-
cations. More specifically, we discuss several cases here to
better explain how this probability model works:

Case 1: If an object is currently being observed by an RFID
reader, then its possible location is anywhere in the
detection range of the reader.

Case 2: If an object leaves a presence device, it must still be
in the same cell as the presence device. For example, in
Figure 2, if an object leaves reader3, it must be inside
cell9 before being detected by any other reader.

Case 3: If an object leaves a directed partitioning device
pair, the cell the object is entering can be inferred from
the reading sequence. For example, if an object is seen
at reader1′ and then reader1, it must enter cell3.

Case 4: If an object leaves an undirected partitioning de-
vice, it can be in either of the cells that the device
partitions. For example, if an object leaves reader4, it
can either be in cell4 or cell9.

Note that this inference method is very conservative in
the sense that it will identify all the possible locations an
object can be, but is unable to further differentiate an ob-
ject’s location within all possible cells. Therefore, we choose
to apply the more effective particle filter-based location in-
ference technique in our design.

(a) Reader deployment in
an indoor space.

(b) Reader deployment
graph.

Figure 2: An example of the symbolic model.

Figure 3: Overall system structure.

4. SYSTEM DESIGN
In this section, we will introduce the design of an RFID-

based indoor range and kNN query evaluation system, which
incorporates five modules: event-driven raw data collector,
query aware optimization module, particle filter-based pre-
processing module, cache management module, and query
evaluation module. In addition, we introduce the underlying
framework of two models: indoor walking graph model and
anchor point indexing model. We will elaborate the function
of each module and model in the following subsections.

Figure 3 shows the overall structure of our system de-
sign. Raw readings are first fed into and processed by the
event-driven raw data collector module, which then provides
aggregated readings for each object at every second to the
query aware optimization module, particle filter-based pre-
processing module, and cache management module. The
query aware optimization module filters out non-candidate
objects according to registered queries and objects’ most re-
cent readings, and outputs a candidate set C to the particle
filter-based preprocessing module. The particle Filter-based
preprocessing module cleanses the noisy raw data for each
object in C, stores the resulting probabilistic data in a hash
table, and passes the hash table to the query evaluation
module. At the same time, particle filter-based preprocess-
ing module and the cache management module communi-
cates data when necessary. The cache management module
also requests data from the event-driven raw data collector
module in order to age out old entries. At last, the query
evaluation module answers registered range and kNN queries
based on the hash table that contains filtered data.

4.1 Event-Driven Raw Data Collector
In this subsection, we describe the event-driven raw data

collector which is the front end of the entire system. The
data collector module is responsible for storing RFID raw
readings in an efficient way for the following query process-
ing tasks. Considering the characteristics of particle filter-
ing, readings of one detecting device alone cannot effectively
infer an object’s moving direction and speed, while readings
of two or more detecting devices can. We define events in
this context as the object either entering (ENTER event)
or leaving (LEAVE event) the reading range of an RFID
reader. To minimize the storage space for every object, the
data collector module only stores readings during the most
recent ENTER, LEAVE, ENTER events, and removes ear-
lier readings. In other words, our system only stores readings
of up to the two most recent consecutive detecting devices
for every object. For example, if an object is previously
identified by di and dj , readings from di and dj are stored
in the data collector. When the object is entering the detec-
tion range of a new device dk, the data collector will record
readings from dk while removing older readings from di.
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The data collector module is also responsible for aggregat-
ing the raw readings to more concise entries with a time unit
of one second. The reasons are twofold: RFID readers usu-
ally have a high reading rate of tens of samples per second.
However, particle filters do not need such a high observation
frequency. An update frequency of once per second would
provide a good enough resolution. Therefore, aggregation
of the raw readings can further save storage without com-
promising accuracy. Another advantage of aggregating is to
significantly mitigate the effects of missing readings. With
tens of samples per second, as long as an object is detected
at least once during a second, an entry marking that event is
inserted into the aggregated results. It is very unlikely that
all the readings of an object during one second are totally
missed by a reader. Thus aggregation can greatly reduce the
detecting errors of false negatives.

It is worth noting that since this research focuses on snap-
shot queries launched at the present time, the data collector
module can be designed as above to save storage space. For
systems which are required to answer historical queries, the
data collector module needs to be modified accordingly to
keep a longer reading history.

4.2 IndoorWalking GraphModel and Anchor
Point Indexing Model

This subsection introduces the underlying assumptions
and backbone models of our system, which forms the ba-
sis for understanding subsequent sections. We propose two
novel models in our system, indoor walking graph model and
anchor point indexing model, for tracking object locations
in indoor environments.

Indoor Walking Graph Model: we assume our system
setting is a typical office building where the width of hall-
ways can be fully covered by the detection range of sensing
devices (which is usually true since the detection range of
RFID readers can be as long as 3 meters), and RFID readers
are deployed only along the hallways. In this case the hall-
ways can simply be modelled as lines, since from RFID read-
ing results alone, the locations along the width of hallways
cannot be inferred. Furthermore, since no RFID readers are
deployed inside rooms, the resolution of location inferences
cannot be higher than a single room.

Based on the above assumptions, we propose an indoor
walking graph model. The indoor walking graph G〈N, E〉
is abstracted from the regular walking patterns of people
in an indoor environment, and can represent any accessible
path in the environment. The graph G comprises a set N
of nodes together with a set E of edges. By restricting ob-
ject movements and particle movements to be only on the
edges E of G, we can greatly simplify the object movement
model while at the same time still preserving the inference
accuracy of particle filters. Also, the distance metric used
in this paper, e.g., in kNN query evaluations, can simply be
the shortest spatial network distance on G, which can then
be calculated by many well-known spatial network shortest
path algorithms [16, 19] as shown in Figure 4.

Anchor Point Indexing Model: the indoor walking
graph edges E are by nature continuous. To simplify the
representation of an object’s location distribution on E, we
propose an effective spatial indexing method: anchor point-
based indexing. We define anchor points as a set AP of
predefined points on E with a uniform distance (such as 1

meter) to each other. An example of anchor points is shown
in Figure 4. In essence, the model of anchor points is a
scheme of trying to discretize objects’ locations. After par-
ticle filtering is finished for an object oi, every particle of oi

is assigned to its nearest anchor point, so that the inferred
object location can only be on discrete locations instead of
anywhere on E. For an anchor point apj with a nonzero
number n of particles, pi(oi.location = apj) = n/Ns, where
pi is the probability distribution function that oi is at apj

and Ns is the total number of particles for oi.
A hash table APtoObjHT is maintained in our system with

the key to be the coordinates of an anchor point apj and
returned value the list of each object and its probability at
the anchor point (〈oi, pi(apj)〉). For instance, an entry of
APtoObjHT would look like: (8.5, 6.2), {〈o1, 0.14〉, 〈o3, 0.03〉,
〈o7, 0.37〉}, which means at the anchor point with coordi-
nate (8.5, 6.2), there are three possible objects (o1, o3, and
o7), with probabilities of 0.14, 0.03, and 0.37, respectively.
With the help of the above anchor point indexing model, the
query evaluation module can simply refer to the hash table
APtoObjHT to determine objects’ location distributions.

4.3 Query Aware Optimization Module
To answer every range query or kNN query, a naive ap-

proach is to calculate the probability distribution of every
object’s location currently in the indoor setting. However,
if query ranges cover only a small fraction of the whole area,
then there will be a considerable percentage of objects who
are guaranteed to be not in the result set of any query. We
call those objects that have no chance to be in any result set
“non-candidate objects”. The computational cost of running
particle filters for non-candidate objects should be saved. In
this subsection we present two efficient methods to filter out
non-candidate objects for range query and kNN query, re-

q

Figure 4: Example of filtering out kNN query non-
candidate objects. Note that si(li) is the minimum
(maximum) shortest network distance from q to the
uncertain region of oi.
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Figure 5: Example of filtering out range query non-
candidate objects.

spectively.

Range Query: to decrease the computational cost, we
employ a simple approach based on the Euclidian distance
instead of the minimum indoor walking distance [30] to fil-
ter out non-candidate objects. An example of the opti-
mization process is shown in Figure 5. For every object
oi, its most recent detecting device d and last reading time
stamp tlast are first retrieved from the data collector mod-
ule. We assume the maximum walking speed of people to
be umax. Within the time period from tlast to the present
time tcurrent, the maximum walking distance of a person
is lmax = umax ∗ (tcurrent − tlast). We define oi’s uncer-
tain region UR(oi) to be a circle centered at d with radius
r = lmax + d.range. If UR(oi) does not overlap with any
query range then oi is not a candidate and should be filtered
out. On the contrary, if UR(oi) overlaps with one or more
query ranges then we add oi to the result candidate set C.
In Figure 5, the only object in the figure should be filtered
out since its uncertain region does not intersect with any
range query currently evaluated in the system.

kNN Query: by employing the idea of distance-based
pruning in [30], we perform a similar distance pruning for
kNN queries to identify candidate objects. We use si(li) to
denote the minimum (maximum) shortest network distance
(with respect to the indoor walking graph) from a given
query point q to the uncertain region of oi:

si = min
p∈UR(oi)

dshortestpath(q, p), li = max
p∈UR(oi)

dshortestpath(q, p).

(6)
Let f be the k-th minimum of all objects’ li values. If si

of object oi is greater than f , object oi can be safely pruned
since there exist at least k objects whose entire uncertain
regions are definitely closer to q than oi’s shortest possible
distance to q. Figure 4 is an example pruning process for a
2NN query: There are 3 objects in total in the system. We
can see l1 < l2 < l3 and consequently f = l2 in this case; s3

is greater than f , so o3 has no chance to be in the result set
of the 2NN query. We run the distance pruning for every
kNN query and add possible candidate objects to C.

Finally, a candidate set C is produced by this module,
containing objects that might be in the result set of one or
more range queries or kNN queries. C is then fed into the
particle filter preprocessing module which will be explained
in the next subsection.

4.4 Particle Filter-Based Preprocessing Mod-
ule

We design a particle filter-based algorithm (Algorithm
2) with the prior knowledge of the indoor walking graph

Algorithm 2 Particle Filter(C)

1. for each object oi of C do
2. retrieve oi’s aggregated readings from the data collector

module
3. t0, td = the starting/ending time of the aggregated readings
4. di, dj = the second most/most recent detecting devices for

oi //dj may not exist
5. generate particles for oi within di.activationRange
6. tmin = min(td + 60, tcurrent)
7. for every second tj from t0 to tmin do
8. for every particle pm of oi do
9. Let pm move along graph edges E with pm.speed and

pm.direction
10. if pm meets intersection then
11. pm randomly choose a direction
12. end if
13. if pm resides in a room node of G then
14. pm moves out of room with probability 0.1
15. end if
16. end for
17. retrieve the aggregated reading entry reading of tj
18. if reading.Device=null then
19. continue
20. else
21. for every particle pm of oi do
22. if pm ∈ reading.Device.activationRange then
23. assign a high weight to pm

24. else
25. assign a low weight to pm

26. end if
27. end for
28. normalize the weights of all particles of oi

29. Resampling() // Algorithm 1
30. end if
31. end for
32. assign particles of oi to their nearest anchor points
33. for each anchor point ap with a nonzero number of parti-

cles n do
34. calculate probability pi(oi.location = ap) = n/Ns

35. update Hash Table APtoObjHT
36. end for
37. end for

G〈N, E〉, anchor points set AP , and the deployment infor-
mation of sensing devices D. This algorithm receives the
output candidates set C from the query aware optimiza-
tion module as input, infers the probability distribution of
candidate objects’ locations, and smooths out the result by
assigning particles’ locations to the nearest anchor point.

For every candidate in C, the Particle Filter algorithm
first retrieves its most recent readings detected by up to
two RFID readers (this number can be adjusted by users
for supporting other query types) from the data collector
module. If the object has just entered the system and is
only detected by one sensing device, the algorithm still runs,
although one device’s readings alone can hardly determine
the object’s moving direction.

If the object is undetected by any device for a long time, it
is highly likely that the object stays in a room. In this case if
the particle filter continues running for a while without any
observation, particles will become dispersed over a large area
and the filtering result will become unusable. Line 6 restricts
the particle filter from running more than 60 seconds beyond
the last active reading.

The particle filter method consists of 3 steps: initializa-
tion, particle updating, and particle resampling. In the first
step, a set of particles are generated and uniformly dis-
tributed on the graph edges within the detection range of di,
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and each particle picks its own moving direction and speed
as in line 5. In our system, particles’ speeds are drawn from
a Gaussian distribution with μ = 1 m/s and σ = 0.1. In the
updating step, lines 8 to 16 are particles’ location updates;
at every time interval (1 second), particles move along the
graph edges according to their speed and direction. Parti-
cles pick a random direction at intersections; if particles are
inside rooms, they continue to stay inside with probability
0.9 and move out with probability 0.1. After location up-
dating, lines 21 to 27 update particles’ weights according
to their consistency with reading results. In other words,
particles within the detecting device’s range are assigned a
high weight, while others are assigned a low weight. In the
resampling step, particles’ weights are first normalized as in
line 28. We then employ the Resampling algorithm to repli-
cate highly weighted particles and remove lowly weighted
particles as in line 29.

Lines 33 to 36 discretize the filtered probabilistic data and
build the hash table APtoObjHT as described in Section 4.2.

4.5 Cache Management Module
The cache management module is optional for the system

functionality, but will improve the query evaluation perfor-
mance if queries are frequent and geographically adjacent to
previous queries. We design the cache management module
to store the particle states of objects from the Particle Filter
algorithm. Consequently, insertion to the cache happens ev-
ery time when Algorithm 2 is done for an object oi. In case
near future queries need to determine the location distribu-
tion for the same object oi again, we do not need to run the
Particle Filter algorithm from the start; instead, previous
computation is reused by retrieving the particles of oi from
the cache and resuming the Particle Filter algorithm from
the cache-stored time stamp.

We also need to design a proper life time for entries in
the cache. Intuitively, we know that moving patterns from a
distant past provide little help to current location inferences.
The same is true for particle filtering. Suppose for an object
oi, the cache stores its particles due to a previous query at
time tprev. In addition, assume the situation in the period
from tprev to tcurrent, oi is detected by two or more readers.
According to Algorithm 2, the old particles in the cache are
useless since we only focus on readings of the most recent
two readers after tprev. Furthermore, in order to make the
filtering process among objects consistent (i.e., the particle
filtering for each object is based on the readings of the most
recent two devices), we decide to discard processed particles
of oi from the cache every time oi is detected by a new
device. Otherwise the particle filtering for some objects will
be based on readings of more than two devices.

If the cache management module is implemented, the Par-
ticle Filter algorithm needs to be slightly modified by looking
up the cache first before running from t0. If there is a cache
hit, then particle filters should run from the cache-stored
time stamp. After the particle filtering step in the Particle
Filter algorithm, the object ID, particle states, and current
time stamp are inserted into the cache.

4.6 Query Evaluation
In this subsection we are going to discuss how to evaluate

range and kNN queries efficiently with the filtered proba-
bilistic data in the hash table APtoObjHT. For kNN queries,
without loss of generality, the query point is approximated

Algorithm 3 Indoor Range Query(q)

1. resultSet=∅
2. cells=getIntersect(q)
3. for every cell in cells do
4. if cell.type=HALLWAY then
5. anchorpoints=cell.getCoveredAP(q)
6. ratio=cell.getWidthRatio(q)
7. else if cell.type=ROOM then
8. anchorpoints=cell.getInsideAP()
9. ratio=cell.getAreaRatio(q)

10. end if
11. result=∅
12. for each ap in anchorpoints do
13. result=result+APtoObjHT.get(ap)
14. end for
15. result=result*ratio
16. resultSet=resultSet+result
17. end for
18. return resultSet

to the nearest edge of the indoor walking graph for simplic-
ity.

4.6.1 Indoor Range Query
To evaluate indoor range queries, the first thought would

be to determine the anchor points within the range, then
answer the query by returning objects and their associated
probabilities indexed by those anchor points. However, with
further consideration, we can see that since anchor points are
restricted to be only on graph edges, they are actually the
1D projection of 2D spaces; the loss of one dimension should
be compensated in the query evaluation process. Figure 6
shows an example of how the compensation is done with
respect to two different types of indoor entities: hallways
and rooms.

In Figure 6, query q is a rectangle which intersects with
both the hallway and room R1, but does not directly con-
tain any anchor point. We denote the left part of q which
overlaps with the hallway as qh, and the right part which
overlaps with R1 as qr. We first look at how to evaluate
the hallway part of q. The anchor points which fall within
q’s vertical range are marked red in Figure 6, and should be
considered for answering qh. Since in our assumptions no
differentiation along the width of hallways can be inferred
about an object’s true location, objects in hallways can be
anywhere along the width of hallways with equal probabil-
ity. With this assumption, the ratio of wqh (the width of qh)
and wh (the width of hallway) will indicate the probability

Figure 6: Example of indoor range query.
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of objects in hallways within the vertical range of q being
in qh. For example, if an object oi is in the hallway and
in the vertical range of q with probability p1, which can be
calculated by summing up the probabilities indexed by the
red anchor points, then the probability of this object being
in qh is pi(oi.location ∈ qh) = p1 ∗ wqh/wh.

Then we look at the room part of q. The anchor points
within room R1 should represent the whole 2D area of R1,
and again we assume objects inside rooms are uniformly
distributed. Similar to the hallway situation, the ratio of
qr’s area to R1’s area is the probability of an object in R1

happening to be in qr. For example, if oi’s probability of
being in R1 is p2, then its probability of being in qr is
pi(oi.location ∈ qr) = p2 ∗ Areaqr /AreaR1

, where p2 can
be calculated by summing up the indexed probabilities of oi

on all the anchor points inside R1 and Areai stands for the
size of a given region i.

Algorithm 3 summarizes the above procedures. In line
15, we define the multiply operation for resultSet to ad-
just the probabilities for all objects in it by the multiplying
constant. In line 16, we define the addition operation for
resultSet to be: if an object probability pair 〈oi, p〉 is to
be added, we check whether oi already exists in resultSet.
If so, we just add p to the probability of oi in resultSet;
otherwise, we insert 〈oi, p〉 to resultSet. For instance, sup-
pose resultSet originally contains {(o1, 0.2), (o2, 0.15)}, and
result stores {(o2, 0.1), (o3, 0.05)}. resultSet is updated to
be {(o1, 0.2), (o2, 0.25), (o3, 0.05)} after the addition in line
16.

4.6.2 Indoor kNN Query
For indoor kNN queries, we present an efficient evaluation

method with statistical accuracy. Unlike previous work [30,
4], which involves heavy computation and returns multiple
result sets for users to choose, our method is user friendly
and returns a relatively small number of candidate objects.
Our method works as follows: starting from the query point
q, anchor points are searched in ascending order of their dis-
tance to q; the search expands from q one achor point for-
ward per iteration, until the sum of the probability of all ob-
jects indexed by the searched anchor points is no less than k.
The result set has the form of 〈(o1, p1), (o2, p2), ...(om, pm)〉
where

∑m
i=1

pi ≥ k. The number of returned objects will be
at least k. From the sense of statistics, the probability pi

associated with object oi in the result set is the probability
of oi being in the kNN result set of q. The algorithm of the
indoor kNN query evaluation method in our work is shown
in Algorithm 4.

In Algorithm 4, lines 1 and 2 are initial setups. Line 3
adds two entries to a vector V , whose elements store the
edge segments expanding out from query point q. In the
following for loop, line 5 finds the next unvisited anchor
point further away from q. If all anchor points are already
searched on an edge segment e, lines 6 to 11 remove e and
add all adjacent unvisited edges of e.node to V . Line 12
updates the result set by adding 〈object ID, probability〉
pairs indexed by the current anchor point to it. In lines 13
to 16, the total probability of all objects in the result set is
checked, and if it equals or exceeds k, the algorithm ends
and returns the result set. Note that the stopping criteria
of our kNN algorithm do not require emptying the frontier
edges in V .

An example kNN query is shown in Figure 7, which is a

Algorithm 4 Indoor kNN Query(q, k)

1. resultSet=∅
2. ninj=find segment(q)
3. vector V=〈(ni, q), (nj , q)〉 // elements in V have the form

(node, prevNode)
4. for every entry e in V do
5. anchorpoint=find nextAnchorPoint(e) // return the next

unsearched anchor point from e.prevNode to e.node
6. if anchorpoint=∅ then
7. remove e from V
8. for each unvisited adjacent node nx of e.node do
9. add (nx, e.node) to V

10. end for
11. continue
12. end if
13. resultSet=resultSet+APtoObjHT.get(anchorpoint)
14. probtotal=resultSet.getTotalProb() //calculate the proba-

bility sum of all objects in resultSet
15. if probtotal >= k then
16. break
17. end if
18. end for
19. return resultSet

snapshot of the running status of Algorithm 4. In Figure 7,
red arrows indicate the searching directions expanding from
q, and red anchor points indicate the points that have al-
ready been searched. Note that the edge segment from q to
n3 is already removed from V and new edges n3n4, n3n5 are
currently in V as well as n3n2. The search process is to be
continued until the total probability of a result set is no less
than k.

5. EXPERIMENTAL VALIDATION
In this section, we evaluate the performance of the pro-

posed RFID and particle filter-based indoor spatial query
evaluation system using the data generated by real-world pa-
rameters, and compare the results with the symbolic model-
based solution [30]. We implemented the proposed algo-
rithms and related experimental components in C++. All
the experiments were conducted on an Ubuntu Linux server
equipped with an Intel Xeon 2.4GHz processor and 16GB
memory. The settings of our experiment validation include
30 rooms and 4 hallways on a single floor, in which all rooms
are connected to one or more hallways by doors. A total of
19 RFID readers are deployed on hallways with uniform dis-
tance to each other.

Figure 7: Example of indoor kNN query.
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Figure 8: The simulator structure.

5.1 Simulator Implementation
The whole simulator consists of seven components, includ-

ing true trace generator, raw reading generator, particle fil-
ter module, symbolic model module, ground truth query
evaluation, top-k success module, and KL divergence mod-
ule. Figure 8 shows the relationship of different components
in the simulation system. The true trace generator module
is responsible for generating the ground truth traces of mov-
ing objects and records the true location of each object ev-
ery second. We let each object randomly select a room as its
destination, and walk along the shortest path on the indoor
walking graph from its current location to the destination
node. We simulate the objects’ speeds using a Gaussian dis-
tribution with μ = 1 m/s and σ = 0.1. At the same time,
the raw reading generator module checks whether each ob-
ject is detected by a reader according to the deployment of
readers and the current location of the object. Whenever a
reading occurs, the raw reading generator will feed the read-
ing, including detection time, tag ID, and reader ID, to the
two probabilistic query evaluation modules (particle filter
module and symbolic model module). We also implemented
the ground truth query evaluation module in order to form
a basis to evaluate the accuracy of the results returned by
the two probabilistic query evaluation modules.

The query results are evaluated by the following metrics:
(1) We calculated the top-1 and top-2 success rate of par-
ticle filters inferred objects’ locations with respect to their
true locations. The top-k success rate is a percentage of
the number of objects whose true locations match the top
k predicted locations of the reconstructed distribution over
the total number of objects. Note that this metric only
applies to the particle filter-based method. (2) For range
queries, we employed the metric of Kullback-Leibler (KL)
divergence to measure the accuracy of query results based
on the two different probabilistic models. KL divergence is
a metric commonly used to evaluate the difference between
two probability distributions [11]. KL divergence is defined
in Equation 7 with two probability distributions P and Q
of a discrete random variable. In the following experiments,

Parameters Default Values

Number of particles 64

Query window size 2%

Number of moving objects 200

k 3

Activation range 2 meters

Table 2: Default values of parameters.
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Figure 9: Effects of query window size.

smaller KL divergence indicates better accuracy of the re-
sults with regard to the ground truth query results. (3) For
kNN queries, KL divergence is no longer a suitable met-
ric since the result sets returned from the symbolic model
module do not contain object-specific probability informa-
tion. Instead, we simply count the hit rates of the results
returned by the two probabilistic methods over the ground
truth result set. We only consider the maximum probabil-
ity result set generated by the symbolic model module when
calculating hit rate.

DKL(P ||Q) =
∑

i

P (i) ln
P (i)

Q(i)
(7)

In all the following experimental result figures, we utilize
PF and SM to represent the curves of the particle filter-based
method and the symbolic model-based method, respectively.
The default parameters of all the experiments are listed in
Table 2.

5.2 Effects of Query Window Size
We first evaluate the effects of query window size on the

accuracy of range queries. The window size is measured by
percentage with respect to the total area of the simulated
indoor space. 100 query windows are randomly generated as
rectangles at each time stamp, and the results are averaged
over 50 different time stamps. As shown in Figure 9, the KL
divergence of both methods does not seem to be affected
by the query window size, but the KL divergence of the
particle filter-based method is significantly below that of the
symbolic model-based method.

5.3 Effects of k

In this experiment we evaluate the accuracy of kNN query
results with respect to the value of k. We choose 30 random
indoor locations as kNN query points and issue queries on
these query points at 50 different time stamps. As k goes
from 2 to 9, we can see in Figure 10 that the average hit
rate of the symbolic model-based method grows slowly. As
k increases, the number of objects returned by the method
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Figure 10: Effects of k.
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increases as well, resulting in a higher chance of hits. On
the contrary, the average hit rate of the particle filter-based
method is relatively stable with respect to the value of k,
and the particle filter-based method always outperforms the
symbolic model-based method in terms of the average hit
rate.

5.4 Effects of Number of Particles
From the mathematical analysis of particle filters in Sec-

tion 3.1, it is known that if the number of particles is too
small, the accuracy of particle filters will degenerate due
to insufficient samples. On the opposite, keeping a large
number of particles is not a good choice either since the
computation cost may become overwhelming, as the accu-
racy improvement is no longer obvious when the number of
particles is beyond a certain threshold. In this subsection,
we conduct extensive experiments to exploit the effects of
the number of particles on query evaluation accuracy in or-
der to determine an appropriate size of particle set for the
application of indoor spatial queries.

As shown in Figure 11, we can see that when the number
of particles is very small, the particle filter-based method
has a larger KL divergence for range queries and a smaller
average hit rate for kNN queries than the symbolic model-
based method. As the number of particles grows beyond 8,
the performance of the particle filter-based method begins
to exceed the symbolic model-based method. Another ob-
servation is that when the number of particles is beyond 64,
the top-k success rates of our solution are relatively stable.
In addition, both the KL divergence and the average hit rate
change slowly when the number of particles grows beyond
64. We conclude that in our application, the appropriate
size of particle set is around 60, which guarantees a good
accuracy while not costing too much in computation.

5.5 Effects of Number of Moving Objects
In this subsection, we evaluate the scalability of our pro-

posed algorithm by varying the number of moving objects
from 200 to 1000. All the result data are collected by av-
eraging an extensive number of queries over different query
locations and time stamps. Figure 12 shows a comparison
of the query results from the two probabilistic methods, and
also the top-k success rates of particle filters’ inferred lo-
cations. The KL divergence of the two methods and top-k
success rates of the particle filter-based method are relatively
stable, but the average hit rate of kNN queries decreases for
both methods. The decrease of kNN hit rate is due to more
objects being distributed in the same indoor space. A finer
resolution algorithm is required to accurately answer kNN
queries. In all, our solution demonstrates good scalability in
terms of accuracy when the number of objects increases.

5.6 Effects of Activation Range
Finally, we evaluated the effects of reader’s activation range

by varying the range from 50 cm to 250 cm. The results are
reported in Figure 13. As the activation range increases,
the performance of the two methods gets better because un-
certain regions not covered by any reader essentially get re-
duced. In addition, even when the activation range is small
(e.g., 100 cm), the particle filter-based method is still able
to achieve relatively high accuracy. Therefore, the parti-
cle filter-based method is more suitable than the symbolic
model-based method when the physical constrains limit read-

ers’ activation ranges.

6. CONCLUSION
In this paper, we introduced an RFID and particle filter-

based indoor spatial query evaluation system. In order to
evaluate indoor spatial queries with unreliable data collected
by RFID readers, we proposed the particle filter-based loca-
tion inference method, the indoor walking graph model, and
the anchor point indexing model for cleansing noisy RFID
raw data. After the data cleansing process, indoor range
and kNN queries can be evaluated efficiently and effectively
by our algorithms. Our experiments with data generated by
real-world parameters demonstrate that our solution out-
performs the symbolic model-based method significantly in
query result accuracy.

For future work, we plan to conduct further analysis of our
system with more performance evaluation metrics. In addi-
tion, we intend to extend our framework to support more
spatial query types such as continuous range, continuous
kNN, closest-pairs, etc.
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Figure 11: The impact of the number of particles.
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Figure 12: The impact of the number of moving objects.
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Figure 13: The impact of activation range.
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