
Schema Mappings and Data Exchange for
Graph Databases

Pablo Barceló
Department of Computer

Science, Universidad de Chile
pbarcelo@dcc.uchile.cl

Jorge Pérez
Department of Computer

Science, Universidad de Chile
perez@dcc.uchile.cl

Juan Reutter
School of Informatics,

University of Edinburgh
juan.reutter@ed.ac.uk

ABSTRACT
Data exchange and schema mapping management have re-
ceived little attention so far in the graph database scenario,
and tools developed in this context for relational databases
have significant drawbacks in the context of graph-structured
data. In this paper we embark on the study of interoperabil-
ity issues for graph databases, including schema mappings,
data exchange and certain answers computation.

We start by analyzing different possibilities for specifying
mappings in graph databases. Our mapping languages are
based on the most typical graph databases queries, ranging
from regular path queries to conjunctions of nested regular
expressions. They subsume all previously considered map-
ping languages, and let one express many data exchange
scenarios in the graph database context. We study the
problems of materializing solutions and query answering, in
particular, the problem of computing universal representa-
tives and certain answers for various classes of mappings.
We show that both problems are difficult with respect to
combined complexity, and that for the latter problem, even
data complexity is high for some very simple mappings and
queries. We then identify relevant classes of mappings and
queries for which the problems of materializing solutions and
query answering can be solved efficiently.

Categories and Subject Descriptors
H.2.1 [Logical Design]: Data Models; H.2.5 [Heterogeneous
Databases]: Data translation

General Terms
Theory, Languages, Algorithms

Keywords
Graph databases, Schema Mappings, Data Exchange.

1. INTRODUCTION
Graph-structured data has become pervasive in data cen-

tric applications. Social networks, bioinformatics, astro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT ’13, March 18–22 2013, Genoa, Italy.
Copyright 2013 ACM 978-1-4503-1598-2/13/03 ...$15.00.

nomic databases, digital libraries, Semantic Web, and linked
government data, are only a few examples of applications in
which structuring data as graphs is, simply, essential [19].

But while the fundamental problem of querying graph
databases has received considerable attention in the liter-
ature [34, 1, 9, 24], interoperability issues among graph-
structured data sources remain almost unexplored from a
theoretical point of view. Tasks such as data exchange, data
integration and, more generally, schema mapping manage-
ment, have so far received very little attention in the graph
database context compared to its relational and XML coun-
terparts [3]. Some remarkable exceptions can be found in
the work by Calvanese et al. regarding rewriting of views for
graph databases [14], and more recently the study of schema
mapping simplification in the same context [16].

In the present paper we embark on the theoretical study of
schema mapping specification and data exchange for graph
databases, the latter being currently unexplored. Recall that
schema mappings are high-level specifications that permit to
define relationships between two different schemas [12, 30,
3]. Schema mappings have received considerable attention in
the context of relational databases [35, 23, 21]. Regrettably,
the possibility of using relational mappings tools for solving
interoperability tasks is not suitable for graph databases.
We delve into this issue below.

Relational mappings are typically defined in terms of con-
junctive queries, and hence they lack any form of recursion
which is a crucial feature for querying graph databases [1,
37]. Therefore, additional features would need to be in-
cluded in this class of mappings in order to specify more
complex navigational properties. However, this would im-
ply leaving relational data exchange tools behind, since the
study of relational data exchange has been carried out mostly
in terms of mappings defined by non-recursive queries [8].
The problem is that even when navigational properties can
sometimes be expressed in SQL or in other extensions of rela-
tional calculus, such as DATALOG, it is not clear how to de-
fine schema mappings based on those languages. Moreover,
given the high complexity cost associated with performing
simple static analysis tasks for them, such as equivalence or
containment, using mappings based in unrestricted SQL or
DATALOG may leave us without practical algorithms for
even the most simple data exchange tasks.

We thus require a class of mappings that is specifically
tailored for graph databases. The backbone of our mapping
languages are the most common reachability queries over
graph databases, ranging from regular path queries (RPQs)
[1, 37] to conjunctions of nested regular expressions (NREs)

189

[11], a class of queries that extends RPQs with the ability to
traverse edges in both directions and to perform branching
while navigating the data. Our mappings express interesting
exchange properties in the graph database context. Notably,
they can express not only usual exchange properties based
on exporting tuples of elements, but also complex naviga-
tional properties, such as exporting entire paths satisfying
some regular conditions.

We apply our mappings to study data exchange in the
graph database context. Recall that the data exchange prob-
lem is the following: Given a mapping M from a source
schema to a target schema and a source database D, com-
pute a target database that better reflects the source data
in D under M [22, 8, 3]. Such target database is said to
be a solution for D under M. In relational data exchange
one normally computes a universal solution [22], which is
a database with incomplete information that represents the
entire space of solutions for D under M. In graph data ex-
change we face the analog problem of computing a universal
representative, which is an incomplete graph database, with
missing information both at the data and at the structural
level, with the same good properties. We show that universal
representatives enjoy many of the good properties of univer-
sal solutions. In particular, the usual techniques for com-
puting universal solutions in relational data exchange can
be applied to computing universal representatives in graph
data exchange. The procedure works in exponential time
in combined complexity (that is, assuming mappings and
databases to be part of the input), and in polynomial time
in data complexity (that is, assuming mappings to be fixed).

Notice that traditional data exchange analysis has been
carried out in terms of data complexity (save for a few ex-
ceptions [28, 4]). The rationality behind this decision is
the usual one in database theory: Mappings and queries
are often much smaller than the data, and hence a mean-
ingful complexity analysis should not locate databases and
specifications at the same level. While this seems to be a
reasonable assumption for regular size databases, it is no
longer a valid assumption for massive applications of graph
databases (such as, for example, social networks or scientific
databases). For instance, the procedure mentioned above
for constructing universal representatives in graph data ex-
change works in time |G|O(|M|), for a source graph database
G and a mapping M, which can be considered infeasible for
big graph databases, even for small M.

It is thus important for the study of graph data exchange
to identify relevant classes of mappings for which basic com-
putational tasks can be solved efficiently, not only in data
but also in combined complexity. In the paper we intro-
duce a class of mappings, called NRE-restricted mappings,
for which the combined complexity of computing universal
representatives is tractable, and even given by low-degree
polynomials. These mappings allow to define views over the
source based on single NREs. Despite their simplicity we
show that they allow to express important graph data ex-
change properties.

Another important problem in data exchange is query an-
swering. Typically, one is interested in computing the cer-
tain answers of a query [30, 8, 3], that is, those answers that
hold in all possible solutions. Just as in relational data ex-
change [22, 6], we do this in a two-step fashion: First, we
compute a universal representative, and then we evaluate
the query over the representative. We show that the prob-

lem of computing certain answers in graph data exchange is
inherently difficult in combined complexity, and that even
in data complexity (that is, assuming queries and mappings
to be fixed) we easily face intractability. This motivates the
search for relevant classes of mappings and queries for which
the problem of computing certain answers is tractable. We
study this problem in terms of both combined and data com-
plexity.

We start by showing that we need to further restrict the
class of NRE-restricted mappings in order to obtain efficient
query answering in combined complexity for queries defined
by NREs. This restriction defines a new class of rigid NRE-
restricted mappings, that disallows the use of disjunction
and recursion for views over the target. The complexity of
query evalution for this class is quadratic in the size of the
data. We also show that the certain answers of NREs can
be computed in linear time, if one restricts to mappings that
can only define symbols over the target, the so-called NRE-
GAV mappings. These good properties follow from query
rewriting [30] results that are of independent interest. In
particular, we use those results to show that the class of
NRE-GAV mappings has good properties also in terms of
composition, a typical schema mapping management task
that has received considerable attention in the literature for
relational and XML databases [31, 33, 23, 35, 7, 2].

Finally, we study the data complexity of the problem of
computing certain answers. We start by showing that for
mappings that disallow the use of disjunction and recursion
when defining views over the target, we can compute cer-
tain answers of a very general class of queries in polynomial
time. For mappings that define arbitrary views over the tar-
get the situation is more complicated, and we need to find
structural restrictions not only on mappings and queries, but
also on the interaction between universal representatives and
queries, in order to obtain a tractable class. We also show
that our restrictions are, in a sense, optimal, since lifting
any one of them leads to intractability.

Organization. The rest of the paper is organized as follows.
In Section 2 we define graph databases, and present a quick
summary of usual query languages for graph databases. In
Section 3 we introduce our class of graph mappings and show
that they can express interesting navigational properties. In
Section 4 we apply those mappings to graph data exchange,
and study the problems of computing universal representa-
tives and certain answers. Afterwards, in Sections 5 and 6,
we present classes of mappings and queries for which uni-
versal representatives and certain answers can be computed
efficiently in combined complexity. We take a brief detour
in Section 7, and quickly analyze the good properties of a
particular class of mappings with respect to composition.
Finally, in Section 8 we study the problem of efficient query
answering in data exchange in terms of data complexity, and
in Section 9 we establish our concluding remarks.

2. GRAPH DATABASES AND QUERIES
Graph databases. Let V be a countably infinite set of
node ids, and Σ a finite alphabet. A graph database G over
Σ is a pair (V,E), where V is a finite set of node ids (that
is V is a finite subset of V) and E ⊆ V × Σ × V . That
is, G is an edge-labeled directed graph, where the fact that
(u, a, v) belongs to E means that there is an edge from node

190

:Jeffrey_D._Ullman

:Ronald_FagininPods:83

:John_E._HopcroftinFocs:FOCS8

conf:pods

conf:focs inFocs:HopcroftU67a

inJacm:HopcroftT74journal:jacm

:Moshe_Y._Vardi

:Pierre_Wolper

dct:partOf

dct:partOf

sw:journal

:Robert_Endre_Tarjan

inPods:FaginUV83

inIandc:VardiW94

sw:journal

sw:series

sw:series

dc:creator

dc:creator

dc:creator

dc:creator

dc:creator

dc:creator

dc:creator

dc:
cre

ato
r

dc:
cre

ato
r

journal:iandc

sw:series

inPods:95
dct:partOf

inPods:Vardi95
dc:creator

<http://swrc.ontoware.org/ontology#>
dc:
sw:

dct: <http://purl.org/dc/terms/>
<http://purl.org/dc/elements/1.1/>

Figure 1: A fragment of the RDF Linked Data representation of DBLP [20] available at http://dblp.l3s.de/d2r/

u into node v labeled a. For a graph database G = (V,E),
we write (u, a, v) ∈ G whenever (u, a, v) ∈ E.

Regular path queries. Queries over graph databases are
typically navigational, in the sense that they allow to tra-
verse the edges of the graph while checking for the existence
of paths satisfying certain conditions [37]. For instance, one
of the most basic querying mechanisms for graph databases
is the class of regular path queries (RPQs) [34, 1, 37], that
retrieve all pairs of nodes in a graph database that are linked
by a path labeled with a string satisfying some regular ex-
pression. Formally, given a finite alphabet Σ, the class of
RPQs r over Σ is defined by the grammar of regular expres-
sions as follows:

r := ε | a (a ∈ Σ) | r + r | r · r | r∗

We formalize the semantics of an RPQ r over a graph
database G as a binary relation !r"G defined as follows,
where a is a symbol in Σ, r, r1 and r2 are arbitrary RPQs
over Σ, and G is a graph database over Σ:

!ε"G = {(u, u) | u is a node id in G}
!a"G = {(u, v) | (u, a, v) ∈ G}

!r1 + r2"G = !r1"G ∪ !r2"G
!r1 · r2"G = !r1"G ◦ !r2"G

!r∗"G = !ε"G ∪ !r"G ∪ !r · r"G ∪ !r · r · r"G ∪ · · ·

Here, the symbol ◦ denotes the usual composition of binary
relations, that is, !r1"G ◦ !r2"G = {(u, v) | there exists w s.t.
(u, w) ∈ !r1"G and (w, v) ∈ !r2"G}. As it is customary, we
use r+ as a shortcut for r · r∗.

RPQs are often enhanced with the ability to traverse edges
backwards, i.e. with the atomic formula a−, for each a ∈ Σ,
such that (u, v) ∈ !a−"G iff (v, a, u) ∈ G, for every graph
database G over Σ. The resulting class of queries is known
as two-way RPQs, or simply 2RPQs [14].

Example 2.1. Let G be the graph database in Figure 1.
This graph contains a fragment of theRDF Linked Data rep-
resentation of DBLP [20]. The following is a simple 2RPQ
that matches all pairs (x, y) such that x is an author that
published a paper in conference y (for simplicity, we omit
prefixes dc:, dct:, and sw: in edge labels):

r1 = creator
− · partOf · series

For example, the pairs (:Jeffrey_D._Ullman, conf:focs) and
(:Ronald_Fagin, conf:pods) are in !r1"G.

Nested regular expressions. It is well-known that the
expressive power of 2RPQs is limited in several ways. An
obvious limitation is that 2RPQs allow only for linear nav-
igation of the graph database, i.e. they are not capable of
branching while traversing the data. In order to overcome
this limitation, 2RPQs have been extended with an existen-
tial test operator [(·)], also known as nesting operator, a la
XPath [25]. The extension gives rise to the class of nested
regular expressions (NREs) [36, 11]. Formally, NREs ex-
tend 2RPQs with expressions of the form [exp], for exp an
NRE, such that for each graph database G it is the case that
![exp]"G = {(u, u) | (u, v) ∈ !exp"G, for some v ∈ G}.

Example 2.2. The following NRE matches, in the graph
database G shown in Figure 1, all pairs (x, y) such that x
and y are connected by a coauthorship sequence that only
considers conference papers:

exp = (creator− · [partOf · series] · creator)+

Let us give the intuition of the evaluation of this expres-
sion. Assume that we start at node u. The (inverse) edge
creator− forces us to navigate from u to a paper v created
by u. Then the existential test [partOf · series] is used to
check that from v we can navigate to a conference (and thus,
v is a conference paper). Finally, we follow edge creator

from v to an author w of v. The (·)+ over the expres-
sion allows us to repeat this sequence several times. For
instance, (:John_E._Hopcroft, :Moshe_Y._Vardi) is in !exp"G,
but (:John_E._Hopcroft, :Pierre_Wolper) is not in !exp"G. It
can be proved that the use of nesting is essential for express-
ing this query.

Conjunctive 2RPQs. A second limitation of the class of
2RPQs is that it is not closed under conjunction and pro-
jection, and thus it is not able to accommodate the expres-
sive power of usual conjunctive queries. This lead to the
introduction of conjunctive 2RPQs [18, 1, 13, 37], defined
as follows. Let x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , ym) be
(possibly empty) tuples of distinct variables. We denote by
x̄ ∪ ȳ the set {x1, . . . , xn, y1, . . . , ym}. A conjunctive 2RPQ
(C2RPQ), with free variables x̄, is a formula ϕ(x̄) of the
form

∃ȳ
(
(z1, r1, z

′
1) ∧ (z2, r2, z

′
2) ∧ · · · ∧ (zk, rk, z

′
k)

)
(1)

where ri is a 2RPQ for every 1 ≤ i ≤ k, z1, z
′
1, . . . zk, z

′
k are

not necessarily distinct variables, and {z1, z′1, . . . , zk, z′k} =
x̄∪ ȳ. The arity of a C2RPQ is the number of free variables

191

in the formula (n in this case). A CRPQ is a C2RPQ of the
form (1), in which each ri is an RPQ.

Given a tuple c̄ = (c1, . . . , cn) and a graph database G,
we say that G satisfies ϕ(c̄), denoted by G |= ϕ(c̄), if there
exists a mapping h from x̄∪ ȳ to the node ids in G such that
h(xj) = cj for every 1 ≤ j ≤ n, and (h(zi), h(z

′
i)) ∈ !ri"G

for every 1 ≤ i ≤ k. The evaluation of ϕ(x̄) over G, denoted
by !ϕ(x)"G, is the set of tuples {c̄ | G |= ϕ(c̄)}.

Example 2.3. Consider the binary C2RPQ

ϕ(x, y) = ∃u, v, w
(
(x, creator−, u) ∧ (u, partOf, v)∧

(v, series, w) ∧ (u, creator, y)
)
.

It is not hard to see that ϕ(x, y) is equivalent to the NRE

exp = creator
− · [partOf · series] · creator.

This means that for each graph database G over alphabet
Σ = {creator, partOf, series}, it is the case that !ϕ(x, y)"G =
!exp"G.

Notice that by replacing the role of 2RPQs with NREs
in the definition of C2RPQs, we obtain a new class of con-
junctive NREs (CNREs), that will take a prominent role in
our definition of mappings for graph databases. Formally, a
CNRE is a formula of the form (1), in which each expression
ri is an NRE, for 1 ≤ i ≤ k. The semantics of this CNRE
is defined exactly as the semantics of a C2RPQ of the same
form, with the slight difference that now we ask each pair
(h(zi), h(z

′
i)) to belong to the interpretation of the NRE ri

in G. Despite its naturalness, CNREs have been completely
overlooked in the literature until now, and we present them
here for the first time.

Two queries Q1(x̄) and Q2(x̄) over the same alphabet
Σ are equivalent, if !Q1(x̄)"G = !Q2(x̄)"G for each graph
database G over Σ. Sometimes we abuse notation, and iden-
tify the NRE exp with the CNRE Q(x, y) = (x, exp, y). No-
tice that the two queries are equivalent.

Expressiveness and complexity. Interestingly, C2RPQs
and NREs are incomparable in terms of its expressive power.
That is, C2RPQs and NREs correspond to two orthogonal
ways of extending the class of 2RPQs [11]. In particular, the
NRE exp = (creator− · [partOf · series] · creator)+ in Ex-
ample 2.2 is not equivalent to a C2RPQ. This immediately
implies that the class of CNREs properly extends the class
of C2RPQs.

With respect to complexity of query evaluation, NREs are
not only polynomial in combined complexity (i.e. when both
the database and the query are given as input), but they can
be evaluated linearly in both the size of the database and
the expression. Given a graph database G and an NRE exp,
we use |G| to denote the size of G (in terms of the number
of egdes (u, a, v) ∈ G), and |exp| to denote the size of exp.

Proposition 2.4. [36] Checking, given a graph database
G, a pair of nodes (u, v), and an NRE exp, whether (u, v) ∈
!exp"G, can be done in time O(|G| · |exp|).

On the other hand, query evaluation for C2RPQs is NP-
complete in combined complexity [17, 9]. In terms of data
complexity, that is, assuming the query to be fixed, query
evaluation for C2RPQs can be solved inNLOGSPACE [18].
It is not hard to prove that exactly the same complexity
bounds hold for the CNREs.

3. SCHEMA MAPPINGS FOR GRAPH DATA
Schema mappings have been studied both in the relational

[22] and the XML [5] scenario (see [3], for a recent general
presentation of the area). In a very high level way, schema
mappings are tuples of the form M = (S1,S2, T), where S1

and S2 are appropriate schemas, and T is a finite set of rules
of the form

φs1(x̄) → ψs2(x̄), (2)

with φs1(x̄) and ψs2(x̄) logical formulas over S1 and S2,
respectively, that specify the relationship between the two
schemas.

Traditional rule specification has been carried out assum-
ing that φs1 and ψs2 are suitable conjunctive queries for the
data model at hand. This is because this class of rules al-
lows to express how the schema S2 is defined in terms of
the existence of certain patterns over the schema S1. For
instance, in the relational case both φs1 and ψs2 correspond
to usual conjunctive queries [22], while in the XML case
they correspond to tree pattern queries [5], which are essen-
tially acyclic conjunctive queries over XML trees including
recursion at the atomic level.

In the same spirit, it seems completely natural to define
mappings for graph databases by allowing rules of the form
φs1(x̄) → ψs2(x̄), with φs1(x̄) and ψs2(x̄) suitable conjunc-
tive queries over graph alphabets Σ1 and Σ2, respectively.
Among all the query languages introduced in Section 2, we
have chosen the most general one, CNREs, as the default for
specifying mappings. However, in the paper we consider all
possibilities, from the most expressive CNREs to the least
expressive RPQs.

Definition 3.1 (graph mapping). Let Σ1 and Σ2 be
finite alphabets. A graph mapping M (or, simply, mapping,
from now on) from Σ1 to Σ2 is a tuple (Σ1,Σ2, T), where
T is a finite set of rules of the form φs1(x̄) → ψs2(x̄), with
φs1(x̄) and ψs2(x̄) CNREs over Σ1 and Σ2, respectively.

If for each rule in M both φs1 and ψs2 are specified in
some proper subclass L of the CNREs, such as the class of
C2RPQs, CRPQs, NREs, 2RPQs, or RPQs, we say that M
is an L-mapping.

Example 3.2. Consider again the alphabet Σ1 = {creator,
partOf, series}, over which the graph database in Figure 1
is defined. Let Σ2 be the alphabet {makes, inConf}. The
mapping M12 = (Σ1,Σ2, T12), with T12 consisting of

(x, creator, y) ∧ (x, partOf · series, w) →
(y, makes, x) ∧ (x, inConf, w),

is a CRPQ-mapping from Σ1 to Σ2. Consider now the al-
phabet Σ3 = {confConnected}, and T23 defined by the rule

(
x, (makes · makes−)+, y

)
→ (x, confConnected, y).

Then M23 = (Σ2,Σ3, T23) is a 2RPQ-mapping, this time
from Σ2 to Σ3. Finally, M13 = (Σ1,Σ3, T13), where T13 is
given by the single rule

(
x, (creator− · [partOf · series] · creator)+, y

)

→ (x, confConnected, y),

is an NRE-mapping from Σ1 to Σ3.

192

:Jeffrey_D._Ullman

:Ronald_Fagin

:John_E._HopcroftinFocs:HopcroftU67aconf:focs

conf:pods

:Moshe_Y._Vardi

inPods:FaginUV83

makes

makes

mak
es

makes

makesinConf

inConf

inConf
makes

inPods:Vardi95

Figure 2: Result of exchanging the graph in Figure 1
under mapping M12

C2RPQ-mappings have been studied in contexts different
from data exchange, such as query answering using views
[15], and, more recently, in terms of its optimization prop-
erties [16], but so far none of these classes has been studied
from a data exchange point of view. It is worth remarking
that the use of (C)NREs in mappings is important, since
(C)NRE-based mappings let one express relevant graph data
exchange properties that mappings based on C2RPQs can-
not express (see e.g. Example 3.3). Moreover, the results in
the paper show that the increase in expressive power comes
at no computational cost.

Solutions. If G1 and G2 are graph databases over Σ1 and
Σ2, respectively, then the pair (G1, G2) satisfies the mapping
M, denoted (G1, G2) |= M, if the following holds for each
rule in T of the form φs1(x̄) → ψs2(x̄) and each tuple ū of
node ids in G1 such that |ū| = |x̄|:

ū ∈ !φs1(x̄)"G1 =⇒ ū ∈ !ψs2(x̄)"G2 . (3)

Recall that φs1(x̄) and ψs2(x̄) are CNREs, and hence
they are of the form ∃ȳα(x̄, ȳ) and ∃z̄β(x̄, z̄), where α(x̄, ȳ)
and β(x̄, z̄) are conjunctions of NREs over Σ1 and Σ2, re-
spectively. Therefore, statement (3) means that whenever
(ū, v̄) ∈ !α(x̄, ȳ)"G1 , for some tuple v̄ of nodes in G1 such
that |v̄| = |ȳ|, it is also the case that there is a tuple w̄ of
nodes in G2 such that |w̄| = |z̄| and (ū, w̄) ∈ !β(x̄, z̄)"G2 .

Following the usual data exchange terminology, we say
that G2 is a solution for G1 under M (or simply a solution,
if M is clear from the context) whenever (G1, G2) |= M.
The set of solutions for G1 under M, denoted SolM(G1),
is {G2 | (G1, G2) |= M}. Finally, the semantics !M" of
mapping M is the set {(G1, G2) | (G1, G2) |= M}. Two
mappings M and M′ are equivalent if !M" = !M′".

Example 3.3. Consider again the mappings M12, M23

and M13 in Example 3.2. The graph database G1 shown
in Figure 2 is a solution for the graph database G shown in
Figure 1 under M12, and the graph database G2 shown in
Figure 3 is a solution for G1 under M23.

Solutions for G under M13 are graph databases that con-
tain all triples of the form (u, confConnected, v), such that
(u, v) are in the coauthorship sequence of conference papers
defined by NRE (creator− · [partOf · series] · creator)+ in
G. Mapping M13 is not equivalent to a C2RPQ-mapping,
which shows that CNRE-mappings can express interesting
properties beyond the class of C2RPQ-mappings.

In the following section we present an illustrative example
of the kind of properties graph mappings can express.

3.1 Navigational exchange properties
The mappings we study in the present paper are designed

for exchanging tuples of node ids from source to target. But

:Ronald_Fagin

:John_E._Hopcroft

:Moshe_Y._Vardi

:Jeffrey_D._Ullman

confConnected

confConnectedconfConnected confConnectedconf
Conn

ecte
d

confConnected confConnected

confConnected confConnected

confConnected

Figure 3: Result of exchanging the graph in Figure 2
under mapping M23.

what about more sophisticated navigational exchange tasks,
that are relevant in the graph database context, such as ex-
porting entire paths of data satisfying certain conditions on
the source side? We show that graph mappings can express
some interesting exchange properties of this type. We do
it by means of an example, but the techniques that we use
can be generalized to show that graph mappings are capable
of expressing a broad class of exchange properties based on
the idea of exporting entire paths in the source graph that
satisfy certain regular conditions.

Assume that we have source and target alphabets ΣS =
{a, b, c, d} and ΣT = {a′, b′, c′, d′}, respectively. We wish
to exchange data according to the following intuitive rule:
Copy each path from the source to the target that starts and
ends with an edge labeled c, and has at least two consecutive
edges labeled a or at least one edge labeled b. Clearly, the
RPQ r = c · Σ∗ · (aa + b) · Σ∗ · c extracts from the source
the pairs of nodes that are linked by a path satisfying the
regular condition mentioned above. But how can we express
our desired copying rule as a graph mapping?

We start by posing the following question: Under which
circumstances do we have to copy an edge labeled a from the
source as an edge labeled a′ in the target, while navigating
the source data? This is the case if one of the following
holds:

1. Two consecutive edges labeled a, or one edge labeled
b, is yet to appear. That is, we have read exp1

1 = c ·Σ∗

and have yet to read exp1
2 = Σ∗ · (aa+ b) · Σ∗ · c.

2. We are reading the first of the consecutive edges la-
beled a. That is, we have read exp2

1 = c · Σ∗ and have
to read exp2

2 = a · Σ∗ · c.

3. We are reading the second of the two consecutive edges
labeled a. That is, we have read exp3

1 = c · Σ∗ · a and
need to read exp3

2 = Σ∗ · c.

4. We already read two consecutive edges labeled a or an
edge labeled b, but are waiting for the final edge labeled
c. In this case we have read exp4

1 = c ·Σ∗ · (aa+ b) ·Σ∗

and are waiting to read exp4
2 = Σ∗ · c.

The pairs (expi
1, exp

i
2), for 1 ≤ i ≤ 4, have the following

property: A word of the form w1 ·a ·w2, for w1, w2 ∈ (ΣS)∗,
belongs to the language defined by r if and only if it belongs
to L(expi

1) · a · L(expi
2), for some 1 ≤ i ≤ 4. We say then

that the set {(expi
1, exp

i
2) | 1 ≤ i ≤ 4} is a remnant of r with

respect to a. This remnant allows us to create the rules that
will copy the edges labeled a as edges labeled a′, precisely
when it is needed. In the same way we can define remnants
of r with respect to b, c and d, respectively.

193

Then the mapping that defines our desired copying rule
consists of the rules:

∃z∃w
(
(z, expi

1 , x) ∧ (x, a, y) ∧ (y, expi
2 , w)

)
→ (x, a′, y),

for 1 ≤ i ≤ 4, together with similar rules for the remnants
of b, c and d. The intuition behind this is clear, and follows
from the explanation above.

Interestingly, we can express this mapping without using
conjunctions in the left-hand side of rules, by taking advan-
tage of the power of NREs. In order to define the rules we
need the notion of inverse of an NRE exp, which is an NRE
(exp)−1 such that for each graph database G and pair of
node ids (u, v) in G it is the case that (u, v) ∈ !exp"G if and
only if (v, u) ∈ !(exp)−1"G. It is easy to prove that the class
of NREs is closed under inverse, and hence that (exp)−1 is
well-defined. We can now express our mapping with rules:

(x, [(expi
1)

−1] · a · [expi
2] , y) → (x, a′, y), for 1 ≤ i ≤ 4,

together with similar rules for the remnants of b, c and d.
Notice that allowing NREs in mappings is crucial for ex-
pressing this kind of rules without conjunction, as we do
when studying more restricted classes of mappings in the
rest of the paper.

4. GRAPH DATA EXCHANGE
Data exchange is one of the main applications of schema

mappings [22, 27, 8, 3]. In this section we study graph data
exchange under the mappings we defined in the previous
section, that is, we use graph mappings for specifying how
to translate graph data from a source into a target schema.
More precisely, assume we have a mapping M from a source
alphabet ΣS to a target alphabet ΣT, and a source graph
database GS. The data exchange problem consists in com-
puting a target graph database GT that is a solution for GS

under M (i.e. GT ∈ SolM(GS)).

4.1 Universal representatives
Given the semantics of mappings, we know that there are

infinitely many solutions for a given graph database GS.
This phenomenon also occurs in relational and XML data
exchange [22, 5]. Thus, in data exchange one usually wants
to compute a “universal representative” [22, 3, 6], which is
(in very broad terms) a finite representation of the set of all
solutions. In this section we show how a universal represen-
tative can be computed for each source graph database and
mapping. This universal representative will turn out to be
crucial also for answering queries in graph data exchange.

As it is customary in data exchange, we use databases with
“incomplete” information as universal representatives [22, 3].
In particular, in order to represent the set of solutions under
a graph mapping, we need graph databases that combine
missing information both at the data level (missing node ids)
and at the structural level (missing the precise relationship
between nodes). Objects that combine these two types of
incompleteness are called graph patterns [10]. Next we define
the patterns used in our context.

Assume N is a countably infinite set of labeled null values.
A graph pattern π over a finite alphabet Σ is a pair (N,D),
where N is a finite set of node ids and null values (that is,
N ⊆ V ∪ N), and D ⊆ N × NRE(Σ) ×N , where NRE(Σ)
denotes the set of all NREs over Σ. That is, a graph pattern
is essentially a graph database whose edges are labeled by

NREs (which represents the idea that the precise relation-
ship between the terminal nodes of an edge labeled by an
NRE has been lost), and that admits some node ids to be
missing and replaced by unknown (null) values.

As usual, we define the semantics of graph patterns in
terms of homomorphisms. Let π = (N,D) be a graph pat-
tern over Σ. A homomomorphism from π into the graph
database G = (V,E) is a mapping h : N → V such that:
(i) h is the identity over N ∩V (i.e. over the node ids men-
tioned inN), and (ii) for each edge (u, exp, v) ∈ D (u, v ∈ N ,
exp ∈ NRE(Σ)), it is the case that (h(u), h(v)) ∈ !exp"G.
Whenever there is a homomorphism from π to G, we write
π → G. The set of all graph databases represented by π
over Σ, denoted by RepΣ(π), is defined as RepΣ(π) = {G |
G is a graph database over Σ, and π → G}. If Σ is clear
from the context we simply write Rep(π).

We are now ready to formalize the notion of a universal
representative for graph data exchange.

Definition 4.1 (Universal representative). Let M
= (ΣS,ΣT, T) be a mapping and GS a graph database over
ΣS. A graph pattern πT is a universal representative of GS

under M, if SolM(GS) = RepΣT
(πT).

Example 4.2. [Example 3.3 cont.] The graph database
G1 shown in Figure 2 is a a universal representative of the
graph database G shown in Figure 1 under M12. The graph
database G2 shown in Figure 3 is a universal representative
of G1 under M23.

Universal representative computation. The standard
techniques for constructing universal representatives in re-
lational data exchange are based on the chase [22]. Those
techniques can be adapted in a very simple way to design a
procedure that constructs universal representatives also in
the graph database context. Such procedure works in poly-
nomial space (and, thus, in single exponential time) when
the input consists of a mapping and a source graph database
(that is, in combined complexity). It works in nondetermin-
istic logarithmic space (and, thus, in polynomial time) when
the mapping is fixed and the input consists of the source
graph database only (thus, in data complexity).

Proposition 4.3. There is a procedure that, given a map-
ping M = (ΣS,ΣT, T) and a graph database GS over ΣS,
computes a graph pattern πT that is a universal representa-
tive of GS under M in PSPACE. The procedure works in
NLOGSPACE if the mapping M is assumed to be fixed.

Traditional data exchange analysis has been carried out
in terms of data complexity (save for a few exceptions [28,
4]). But as we mentioned in the Introduction, this analy-
sis is no longer appropriate for graph data exchange, due
to the vast volumes of data stored by graph data applica-
tions. For instance, it is not difficult to construct a family of
mappings Mn and source graph databases Gn of size O(n),
such that any universal representative of Gn under Mn is of
size comparable to |Gn||Mn|. Computing this representative
is prohibitively expensive for big source databases, even for
small mappings. Furthermore, the problem remains com-
putationally hard in combined complexity even when this
exponential blowup can be avoided. Recall that FPNP[log] is
the class of functions that can be computed in polynomial
time using a logarithmic number of calls to an NP oracle

194

[29]. The proof of the following theorem is by a reduction
from the Chromatic Number problem.

Proposition 4.4. The problem of computing a univer-
sal representative for a graph database GS under a mapping
M = (ΣS,ΣT, T) is FPNP[log]-hard, even if restricted to in-
puts GS and M such that there is a universal representative
of GS under M of size p(|GS|), for a fixed polynomial p.

It is thus crucial for the development of graph data ex-
change tools that aim to be applicable, to identify relevant
classes of mappings that allow for efficient universal rep-
resentative computation in combined complexity. We deal
with this important issue in Section 5. Those results are
also used in Section 6 to achieve efficient query answering in
graph data exchange.

4.2 Query Answering
One of the main tasks in data exchange is answering queries

posed over the target schema. In data exchange one is typi-
cally interested in computing the certain answers of queries
[22, 5, 3]. Intuitively, these are the answers that hold re-
gardless of the solution one chooses to materialize. In formal
terms, given a mapping M = (ΣS,ΣT, T), a graph database
GS over ΣS, and a query Q over ΣT, we define the cer-
tain answers of Q with respect to GS under M, denoted by
certainM(Q,GS), as the set

⋂
{!Q"GT | GT ∈ SolM(GS)},

where !Q"GT denotes the evaluation of Q over GT. We are
thus interested in the following problem:

Problem: CertainAnswers
Input: Mapping M from ΣS to ΣT, graph

database GS over ΣS, n-ary query Q
over ΣT, and n-ary tuple v̄ ∈ Vn.

Question: Is v̄ ∈ certainM(Q,GS)?

Notice that the source graph database, the mapping and the
query are part of the input, and thus, we are considering the
combined complexity of the problem.

The next theorem shows that the problem of computing
certain answers in graph data exchange is inherently diffi-
cult, even for simple mappings and queries:

Theorem 4.5.

1. CertainAnswers is EXPSPACE-complete for queries
defined by CNREs. It remains hard even for CRPQs
over CRPQ-mappings.

2. CertainAnswers is PSPACE-complete if restricted
to queries given by RPQs over RPQ-mappings.

The lower bound of the first part of Theorem 4.5 follows
from complexity results on the containment of CRPQs [13].
The second part can be easily obtained from the fact that
containment of regular expressions is PSPACE-complete.
The upper bound of the first part is a new result. It shows
that allowing mappings to be defined in terms of CNREs,
instead of C2RPQs, increases the expressive power but not
the computational cost of query answering.

From Theorem 4.5 we draw the conclusion that it is very
important to identify relevant classes of mappings and queries
that allow for efficient computation of certain answers in
combined complexity. This is, as expected, aligned with the
problem of efficient computation of universal representatives

in combined complexity, mentioned at the end of Section 4.1.
We deal with this issue in Section 6.

Data complexity. Although data complexity is not the
main object of study of the present paper, for the reasons
we explained at the end of Section 4.1, studying the data
complexity of query answering in graph data exchange is still
an interesting problem. For the data complexity analysis
of the problem of computing certain answers, we assume
queries and mappings to be fixed. That is, given a mapping
M from ΣS to ΣT and an n-ary query Q over ΣT, we study
the problem:

Problem: CertainAnswers(M,Q)
Input: Graph database GS over ΣS and n-

ary tuple v̄ ∈ Vn.
Question: Is v̄ ∈ certainM(Q,GS)?

It can be proved that the data complexity of the certain
answers problem is intractable, even for very restricted map-
pings and queries, and that the use of NREs in mappings
and queries does not increase the data complexity of the
problem:

Theorem 4.6.

1. CertainAnswers(M,Q) is in coNP, for every map-
ping M = (ΣS,ΣT, T) and CNRE Q over ΣT.

2. There is an RPQ-mapping M from ΣS to ΣT and an
RPQ Q of the form w, for w ∈ (ΣT)

∗, such that the
problem CertainAnswers(M,Q) is coNP-complete.

The first part of the previous theorem extends known re-
sults on querying RPQs over patterns [10]. The second part
of the theorem essentially tells us that computing certain
answers of usual conjunctive queries over graph mappings
is intractable in data complexity. In fact, it is easy to see
that each RPQ of the form (x,w, y), where w is a word, can
be translated as a conjunctive query over the standard rela-
tional representation of graph databases. This fact shows a
striking difference between relational and graph mappings.
Indeed, it is well-known that for the former the problem of
computing certain answers of conjunctive queries is tractable
in data complexity [22].

It is thus still relevant finding tractable cases in data
complexity of the problem of computing certain answers to
queries over graph mappings. This is the problem we inves-
tigate in Section 8.

5. FEASIBLE UNIVERSAL REPRESENTA-
TIVE COMPUTATION

The standard way of constructing a universal representa-
tive in data exchange is to evaluate the left-hand side of each
rule against the source database, and then populate the tar-
get as defined by the right-hand side of the respective rules.
Hence the most natural way of obtaining restricted classes of
graph mappings, for which universal representatives can be
computed in polynomial time, is by restricting the left-hand
side of rules to queries that allow for efficient computation
of its answer set (instead of CNREs, or even CRPQs, that
are computationally expensive).

Formally, let C be a class of CNREs such that the problem
of computing !Q(x̄)"G, for a given query Q(x̄) ∈ C and a

195

graph database G, can be solved in polynomial time. Then
there is a polynomial time procedure that, given a mapping
M = (ΣS,ΣT, T), in which each left-hand side of a rule
in T is a CNRE in C, and a graph database GS over ΣS,
computes a universal representative of GS under M.

There are several relevant classes C of CNREs that satisfy
the condition mentioned above (i.e. the set !Q"G can be
computed in polynomial time, for each graph database G
and query Q ∈ C). These include, for instance, syntactic
restrictions of CNREs, based on acyclicity [38], for queries
of fixed arity.1 They also include the class of NREs, as shown
in Proposition 2.4.

In the rest of the paper, we focus on a particular class of
mappings that satisfies the condition mentioned above and
allows for a simple definition: The class of mappings such
that the left-hand side of each rule is an NRE. We pinpoint
the precise complexity of the problem of computing universal
representatives for this class, and discuss about the expres-
siveness of the class for graph data exchange purposes. It
is worth remarking that the other natural choice, restricting
left-hand sides of rules to acyclic CNREs, yields essentially
the same class of mappings (modulo a mild restriction on
connectedness), and thus all of the results below hold for
acyclic CNREs as well. This follows from recent results on
the expressiveness of NREs versus CNREs [11].

5.1 NRE-restricted Mappings
A mapping M = (ΣS,ΣT, T) is NRE-restricted, if each

rule in T is of the form (x, exp, y) → ψt(x, y), where exp is
an NRE over ΣS and ψt(x, y) is a binary CNRE over ΣT.

Example 5.1. Consider again the mappings M12, M23

and M13 shown in Example 3.2. Both M23 and M13 are
NRE-restricted mappings. On the other hand, the mapping
M12 is not NRE-restricted. However, it can easily be shown
that the NRE-restricted mapping M′

12, defined by rules

(x, creator− · [partOf · series] , y) → (x, makes, y)

(y, [creator] · partOf · series , w) → (y, inConf, w),

is equivalent to it.

It follows from the comments above that universal repre-
sentatives for NRE-restricted mappings can be computed in
polynomial time. The following theorem states the precise
complexity of the problem:

Theorem 5.2. There is a procedure that, given an NRE-
restricted mapping M = (ΣS,ΣT, T) and a graph database
GS over ΣS, computes a universal representative of GS un-
der M in time O(|GS|2 · |M|).

Thus, by focusing on NRE-restricted mappings, we reduce
the complexity of universal representative computation from
|GS|O(|M|), implicit in Proposition 4.3, to quadratic in the
size of the source graph database. Moreover, we prove that
this bound is tight.

Proposition 5.3. There are families of NRE-restricted
mappings {Mn = (Σn

S,Σ
n
T, Tn)}n≥1 and graph databases

{Gm
S }m≥1, such that |Mn| is O(n), |Gm

S | is O(m), and every
universal representative ofGm

S under Mn is of size Ω(m2·n).
1Being precise, those restrictions have been defined for rela-
tional conjunctive queries, but the same complexity bounds
apply for CNREs, if the structural restrictions are defined
on the underlying undirected graphs of queries.

Hence, this class allows for simple definition of efficient
graph mappings. A natural question is whether the class
also has good expressiveness properties, i.e. if it can ex-
press interesting graph data exchange mappings. Example
5.1 already suggests this. Notice, in addition, that the navi-
gational exchange mapping presented in the example of Sec-
tion 3.1 can be expressed by means of NRE-restricted rules,
as shown at the end of the section, and hence NRE-restricted
mappings allow to express complex navigational properties
in graph data exchange.

6. FEASIBLE QUERY ANSWERING IN
COMBINED COMPLEXITY

So far, we have achieved to identify an expressive class
of mappings (the NRE-restricted mappings) that has good
properties in terms of computation of universal representa-
tives. Unfortunately, this class is still not suitable for query
answering tasks since Theorem 4.6 tells us that the problem
of computing certain answers is hard, even in data complex-
ity, for RPQ queries over RPQ-mappings (and hence over
NRE-restricted mappings). Thus, we need a further restric-
tion on this class of mappings in order to obtain a good class
for query answering purposes.

In the same way, we cannot expect to have efficient query
evaluation algorithms if we allow the whole expressive power
of CNREs, or even CRPQs, as a querying mechanism, since
they are computationally hard in combined complexity. For
this reason we focus solely on queries defined by NREs.

Rigid mappings. The class of mappings we consider re-
strict the right hand side of dependencies to be conjunctive
queries, that is, it prohibits the use of disjunction and re-
cursion in the right-hand side of rules, which are the major
contributors to complexity of query answering (in fact, we
show in Proposition 6.3 below that lifting any of these re-
strictions leads to the intractability of the problem of com-
puting certain answers).

Formally, a mapping M = (ΣS,ΣT, T) is rigid if the rules
in T are of the form φ(x̄) → ∃z̄θ(x̄, z̄), for φ(x̄) a CNRE over
ΣS and θ a conjunction of NREs of the form (z, exp ′, z′),
where z and z′ are variables in z̄ ∪ x̄, and exp ′ is an NRE
over ΣT that makes use of neither disjunction (operator +)
nor Kleene-star (operator ()∗). In this section we focus on
rigid mappings that are also NRE-restricted.

Example 6.1. The mappingsM12, M23 andM13 shown
in Example 3.2 are all rigid, but onlyM23 and M13 are rigid
and NRE-restricted.

The previous example shows that rigid NRE-restricted
mappings are still capable of expressing interesting data ex-
change properties. Furthermore, the next theorem shows
that these mappings are well-behaved in terms of combined
complexity of query evaluation for NREs.

Theorem 6.2. Given a rigid and NRE-restricted map-
ping M from ΣS to ΣT, a source graph database GS and
an NRE exp over ΣT, CertainAnswers can be solved in
time O(|GS|2 · |M| · |exp|).

To prove Theorem 6.2 we use the fact that for a rigid and
NRE-restricted mapping M, the procedure in the proof of
Theorem 5.2 can be modified to yield a universal representa-
tive in which each edge is labeled with a symbol a from the

196

alphabet ΣT. We call such representatives näıve, since they
can be represented as relational näıve tables [26]. One can
prove that over these patterns query answering for NREs can
be solved by a simple process called näıve evaluation, that
poses the NRE exp directly over the näıve pattern, treat-
ing nulls as if they were constants and then discarding pairs
with nulls in the answer.

We show next that the class of rigid and NRE-restricted
mappings is optimal, as lifting any of the restrictions leads
to intractability of the certain answers problem in combined
complexity.

Proposition 6.3. 1. The problem CertainAnswers
is NP-hard, even if restricted to queries given by NREs
over rigid mappings.

2. CertainAnswers is coNP-hard, even if restricted to
queries given by NREs over NRE-restricted mappings
in which no rule uses disjunction (resp. NRE-restricted
mappings in which no rule uses Kleene-star ∗).

GAV mappings. By further restricting the class of map-
pings, we can obtain even linear combined complexity, in the
size of the database, for the problem of computing certain
answers for NREs. Consider a mapping M = (ΣS,ΣT, T)
in which each rule in T is of the form (x, exp, y) → (x, a, y),
where exp is an NRE over ΣS and a is a symbol in ΣT.
This class of mappings defines target symbols in terms of
NRE views over the source, which resemble global-as-view
(GAV) mappings as studied in relational databases [30]. For
this reason we call mappings of the above form NRE-GAV
(graph) mappings. Clearly, each NRE-GAV mapping is also
rigid and NRE-restricted. The class of NRE-GAV mappings
defines simple yet useful mappings, as shown by M23 and
M13 in Example 3.2, and mapping M′

12 in Example 5.1,
which are all NRE-GAV.

Theorem 6.4. Given an NRE-GAV mappingM from ΣS

to ΣT, a graph database GS over ΣS and an NRE exp over
ΣT, the problem CertainAnswers can be solved in time
O(|GS| · |exp| · |M|).

The lower bound proved in Proposition 5.3 also holds for
NRE-GAV mappings, so one cannot use universal represen-
tative computation in order to obtain Theorem 6.4. Instead,
the proof of Theorem 6.4 is based on query rewriting tech-
niques, as explained in the following technical result.

Lemma 6.5. There is a procedure that, given an NRE-
GAV mapping M = (ΣS,ΣT, T), and an NRE exp over
ΣT, computes an NRE exp′ over ΣS, in time O(|exp | · |M|),
such that certainM(exp, GS) = !exp′"GS for every source
graph database GS.

Hence in order to evaluate the certain answers of an NRE
exp over GS under the NRE-GAV mapping M, we can
perform the following algorithm: Compute from M and
exp the NRE exp′. Then evaluate exp ′ over GS in time
O(|GS| · |exp ′|) (as stated in Proposition 2.4), and thus in
time O(|GS| · |exp| · |M|).

7. INTERLUDE ON COMPOSING GRAPH
MAPPINGS

We have seen that the class of NRE-GAV mappings has
good properties for query answering. In this section we take
advantage of those properties, in particular the existence
of source rewritings, and make a case for the usefulness of
this language in a rather different scenario: when composing
schema mappings. Composition has been identified as a fun-
damental process for several interoperability tasks [33, 12],
and, as such, it has received considerable attention in rela-
tional and XML data exchange [31, 33, 23, 35, 7, 2]. On the
other hand, the composition of schema mappings for graph
databases has not yet been considered in the literature.

Given mappings M1 and M2, the composition M1 ◦M2

is a new mapping that, intuitively, has the same effect as
the application of M1 and M2 one after the other. For-
mally, given mappings M1 from Σ1 to Σ2, and M2 from
Σ2 to Σ3, the composition of M1 and M2 is the map-
ping from Σ1 to Σ3 defined by !M1" ◦ !M2" = {(G1, G3) |
there exists G2 over Σ2 such that (G1, G2) ∈ !M1" and
(G2, G3) ∈ !M2"} [33, 23].

One fundamental question in this context is definability
of composition: given M1 and M2 defined in some map-
ping language, what is the language needed to specify the
composition of both mappings? Of particular interest is the
search for a mapping language L that is closed under com-
position. This means that for any two mappings M1 and
M2 specified in L, the composition !M1" ◦ !M2" can also
be specified in L (i.e. there is a mapping M in L such
that !M" = !M1" ◦ !M2"). It has been shown that in
the relational scenario the language of GAV mappings is
closed under composition [23]. The next result shows that
for NRE-GAV mappings we obtain a similar good behavior.
The proof is based on the rewriting properties of NRE-GAV
mappings that we stated in the previous section.

Theorem 7.1. The language of NRE-GAV mappings is
closed under composition.

Example 7.2. Consider again mappings M12, M23 and
M13 in Example 3.2. Recall that M23 is the NRE-GAV
mapping defined by the single rule:

(
x, (makes · makes−)+, y

)
→ (x, confConnected, y).

Also, we know from Example 5.1 that M12 is equivalent to
the NRE-GAV mapping M′

12 defined by rules:

(x, creator− · [partOf · series] , y) → (x, makes, y)

(y, [creator] · partOf · series , w) → (y, inConf, w),

It can be proved that the composition !M12" ◦ !M23" is
defined by NRE-GAV mapping M13 from Σ1 to Σ3. Recall
that this mapping consists of the single rule:

(
x, (creator− · [partOf · series] · creator)+, y

)

→ (x, confConnected, y).

As a proof of concept, if G is the graph database in Fig-
ure 1, and one exchanges the data in G by directly applying
the rules in M13, then one obtains the graph database in
Figure 3. This is exactly the same graph database that is
obtained by first exchanging data from G by applying rules
in M12, which yields the graph database G′ in Figure 2, and
then from G′ by applying the rules in M23.

197

The previous work on mappings for graph databases has
focused on mappings defined by 2RPQs or C2RPQs [14, 15,
16]. Thus, it is natural to ask whether one can obtain a
closure result, similar to Theorem 7.1, for mappings based
on those languages. We show that this is not the case, when
restricted to the GAV case, which is an advantage of NRE-
mappings over the other ones seen in this paper. In what
follows, we use the notion of L-GAV mappings, where L is
class of C2RPQs, for the class of mappings specified by rules
of the form ϕ(x, y) → (x, a, y), where ϕ(x, y) is a binary
query in L over the source and a is a symbol in the target.

We start with languages without conjunction, that is,
2RPQs and RPQs. The next proposition shows, in particu-
lar, that the nesting feature of NREs is necessary to obtain
the closure result in Theorem 7.1.

Proposition 7.3. There exist RPQ-GAV mappings M12

from Σ1 to Σ2 and M23 from Σ2 to Σ3, such that the map-
ping M12 ◦M23 is not equivalent to a 2RPQ-GAV mapping.

One may also ask whether the use of conjunctions over
2RPQs or RPQs can lead to a closed mapping language.
The following result shows that this is not the case.

Proposition 7.4. There are CRPQ-GAV mappingsM12

from Σ1 to Σ2 and M23 from Σ2 to Σ3, such that the map-
ping M12◦M23 is not equivalent to a CNRE-GAV mapping.

As a final remark we note that the restriction to GAV
mappings is crucial for obtaining the closure result in Theo-
rem 7.1. In fact, it is not difficult to adapt results by Fagin
et al. [23] to show that our graph mappings cannot express
even the composition of two rigid RPQ-mappings.

8. FEASIBILITY QUERY ANSWERING IN
DATA COMPLEXITY

In this section we study the data complexity of the prob-
lem of evaluating certain answers, that is, we study the
problem CertainAnswers(M, Q), for a fixed mapping M
from ΣS to ΣT, and a fixed n-ary query Q over ΣT. Re-
call that the input to this problem is a graph database
GS and an n-ary tuple t̄, and the question is whether t̄ ∈
certainM(Q,GS).

We presented in Section 6 a class of mappings (rigid NRE-
restricted mappings) and queries (NREs), that allow for effi-
cient computation of certain answers in combined complex-
ity. It is thus possible that a similar result in data complexity
can be obtained for less restrictive scenarios. For instance,
using essentially the same proof techniques as in the proof of
Theorem 6.2, one can show that the data complexity of com-
puting certain answers for the whole class of CNREs, under
mappings that do not make use of union or recursion in the
right-hand side of rules (i.e. rigid mappings, as introduced
in Section 6), is polynomial.

Proposition 8.1. Let M be a rigid mapping from ΣS to
ΣT and Q a CNRE over ΣT. Then CertainAnswers(M, Q)
can be solved in polynomial time.

This of course does not rule out the possibility of ob-
taining tractability results for more general mappings that
make use of arbitrary NREs in the right-hand side of the
rules. However, we know from Theorem 4.6 that the prob-
lem of computing certain answers is intractable already for

RPQ-mappings and RPQs given as words, which are noth-
ing more than usual conjunctive queries over the relational
representation of databases. This shows that there is a deli-
cate trade-off between the expressive power of mappings and
the complexity of query answering, and it appears that none
of the restrictions considered so far in this paper will lead us
to a new tractable fragment. Instead, we follow here a dif-
ferent approach, based on structural properties of universal
representatives and queries, as described next.

Recall that in Section 4.1 we prove that for every mapping
M from ΣS to ΣT, and graph databaseGS over ΣS, there ex-
ists a graph pattern πT such that SolM(GS) = RepΣT

(πT).
Moreover, this pattern πT can be computed in polynomial
time. Thus, given an n-ary query Q over ΣT, and an n-ary
tuple t̄, checking if t̄ ∈ certainM(Q,GS) is equivalent to
checking whether t̄ belongs to the set:

!Q(πT) =
⋂

{!Q"GT | GT ∈ RepΣT
(πT)}.

This means that the complexity of computing certain an-
swers is essentially located at the level of computing the set
!Q(πT), for a graph pattern πT. For this reason, we concen-
trate our efforts in finding interesting tractable cases of this
particular problem. More precisely, we present a class of pat-
terns and queries that has the desired properties regarding
the computation of !Q(πT), and discuss on the optimality
and practical applicability of such class.

It is important to note that we focus solely on graph pat-
terns πT that do not use null values. This simplifies to a
great extent the exposition of our results and, moreover,
the study of patterns without null values is interesting in
its own right: This class of patterns contains universal rep-
resentatives for NRE-mappings and, more generally, for all
mappings that have no existential quantification in the right-
hand side of rules. (In fact, for these mappings the proce-
dure used in the proof of Proposition 4.3 always produces a
universal representative πT with such characteristics).

8.1 Structural restrictions
It follows from the lower bound in Theorem 4.6 that the

problem of checking whether a tuple belongs to !Q(π) is in-
tractable, in particular, coNP-hard, even if π is a graph pat-
tern without null values. However, by staring at the proof,
one observes that this intractability arises from some rather
“unnatural” classes of patterns. This gives hope to the idea
of finding “natural” classes of patterns with tractable query
evaluation. In this section we propose a set of structural re-
strictions on graph patterns, and on the interaction between
patterns and queries, that gives rise to a class with good
properties for computing certain answers.

We concentrate from now on a particular class of queries:
CRPQs in which each regular expression occurring in the
query does not use the Kleene-star (that is, the regular lan-
guage defined by this expression is finite). We say that a
CRPQ satisfying this restriction is tame. The class of tame
CRPQs is relevant as it contains, among others, all conjunc-
tive queries over the standard relational representation of
graph databases. Moreover, notice that the intractability
result in Theorem 4.6 was actually proved for a tame RPQ
(since the query in such theorem is a single word) over an
RPQ-mapping, and thus tame CRPQs are intractable even
over the class of patterns that do not use null values.

Our class of patterns is defined by two conditions that,
when used together, yield tractability to the problem of

198

computing certain answers of tame CRPQs over patterns
without null values. As we later show, the obtained class of
patterns is, in a precise sense, maximal for tractability. Our
first condition is a very simple restriction on the structure
of patterns.

(C1) We require the out-degree of nodes in patterns to be
bounded by a constant.

The out-degree of a node u in pattern π is defined as
the number of edges of the form (u, exp, u′) in π. The out-
degree of a pattern π, denoted by out(π), is the maximum
out-degree of a node in π. Let us denote by OD≤d the class
of patterns π such that out(π) is at most d. Considering
bounded out-degree is a common assumption in the study
of complex networks [32]. This assumption reflects the idea
that while incoming edges are generated distributively by
all agents in a network, the outgoing edges are generated
locally by a single node, and therefore its number can be
assumed to be small as compared to the size of the whole
network. By using condition (C1) we obtain a first simple
tractability result.

Proposition 8.2. Let Q be a fixed tame CRPQ without
existentially quantified variables, t̄ a tuple of node ids, and
d ≥ 0 a fixed value. There is an algorithm that given a
pattern π in OD≤d without null values, checks whether t̄ ∈
!Q(π) in polynomial time.

As we later show, tractability for tame CRPQs in general
cannot be obtained by just bounding the out-degree of pat-
terns (see Theorem 8.6 (2)). Thus, we provide another re-
striction that together with (C1) defines a tractable case for
tame CRPQs. Let us illustrate the intuition of this condition
by means of an example.

Example 8.3. Let n be odd, and define πn as:

v2

a

v0

a+ b b c

vn−2 vn−1 vn vn+1

a+ b a+ b

v1 v3

and consider the tame CRPQs Q = ∃x∃y (x, aa+ bb, y) and
Q′ = ∃x∃y (x, (a+ b)bc, y).

Notice that the certain answers of Q and Q′ over πn are
true. In order to show this for the case of Q, one needs to
check over all possible combinations resulting of assigning
label either a or b to each of the edges of the form (vi, a +
b, vi+1). On the other hand, in the case of Q′ it is sufficient
to inspect the labels of the last 3 edges of πn, and thus, we
essentially have to check only two combinations.

The above example suggests that existential variables are
problematic for query answering only when they can be wit-
nessed by several nodes in the pattern, whereas queries in
which the possible witnesses are limited should behave bet-
ter. We formalize this intuition with our second condition,
but first we need to introduce some terminology.

Let π = (N,D) be a pattern over Σ and Q a tame CRPQ
over the same schema. Assume that x̄ is the tuple of free
variables in Q and ȳ the tuple of variables that are existen-
tially quantified in Q, and consider a function f : ȳ → N∪D,
that is, f maps each existentially quantified variable ofQ ei-
ther to a node (N) or to an edge (D) in π. Given a tuple

t̄, we say that f is meaningful for π, Q and t̄, if there is a
graph database G ∈ RepΣ(π) and a mapping σ, such that
the following holds:

1. G is obtained from π by replacing each edge of the form
e = (u, exp, v) ∈ D with a graph database Ge, of fresh
node ids except for u and v, such that (u, v) ∈ !exp"Ge ,

2. σ is a mapping from the variables of Q into the nodes
of G, that witnesses t̄ ∈ !Q"G, in particular, σ(x̄) = t̄,

3. for each y in ȳ we have σ(y) = f(y) if f(y) ∈ N , or
σ(y) is a node in ρf(y) if f(y) ∈ D. That is, if f(y)
is the edge e of π, then σ maps y into a node in the
graph database ρe that replaces e in G (and σ and f
coincide for all variables that f sends to nodes of π).

We denote by mf(Q,π, t̄) the number of meaningful functions
for π, Q and t̄. We need a final definition before stating our
condition. Given a pattern π, the complete graph induced
by π, denoted by comp(π), is the graph database obtained
from π by removing each incomplete edge of π, that is, each
edge labeled with a regular expression that is syntactically
distinct from a symbol in Σ. We are now ready to state our
second structural condition, which depends on π, Q, and t̄.

(C2) If t̄ does not belong to the evaluation ofQ over comp(π),
then the number of meaningful functions for π, Q and t̄, is
logarithmically bounded by the size of π.

From a practical point of view, we can understand this
condition as follows. Assume that a query Q is not im-
plied by the complete data of π. Then one can expect that
the interaction between π and Q is rather sophisticated, and
hence that Q should only have a small bound on the number
of potential witnesses in a completion of the pattern. This
is precisely what condition (C2) expresses, assuming such
bound to be logarithmic, since meaningful functions essen-
tially encode the potential witnesses of Q in a completion of
the pattern.

Formally, given a tame CRPQ Q, a tuple t̄, and a value
k ≥ 0, we denote by MFQ,t̄

≤k the class of patterns π for which
either t̄ ∈ !Q"comp(π) or mf(Q,π, t̄) ≤ k · log(|π|), where |π| is
the size of π measured as its number of edges. The following
lemma shows that membership in OD≤d ∩ MFQ,t̄

≤k can be
efficiently checked.

Lemma 8.4. Given a tame CRPQ Q, a tuple t̄ and values
d, k ≥ 0, checking if pattern π without null values belongs to
OD≤d ∩MFQ,t̄

≤k can be done in polynomial time w.r.t. |π|.

This finishes the presentation of properties (C1) and (C2).
The following result shows that checking whether t̄ ∈ !Q(π)

can be efficiently decided for patterns in OD≤d ∩MFQ,t̄
≤k .

Theorem 8.5. Let Q be a fixed tame CRPQ, and t̄ a tu-
ple of node ids. Moreover, let d, k ≥ 0 be fixed values. Then
there is an algorithm that given a pattern π in OD≤d ∩
MFQ,t̄

≤k without null values, checks whether t̄ ∈ !Q(π) in
polynomial time.

It is possible to prove that the two described classes of
patterns are maximal with respect to tractability, as lifting
either condition (C1) or (C2), raises the complexity. It can
also be proved that the class of tame CRPQs is maximal
to obtain tractability for patterns satisfying (C1) and (C2).
All this is summarized in our last result.

199

Theorem 8.6.

1. There is a tame CRPQ Q, a tuple t̄, and a value k ≥ 0,
such that checking t̄ ∈ !Q(π), for the class of patterns

π in MFQ,t̄
≤k without null values, is coNP-complete.

2. There is a tame CRPQ, a tuple t̄, and a value d ≥ 0,
such that checking t̄ ∈ !Q(π) , for the class of patterns
π in OD≤d without null values, is coNP-complete.

3. There exist a non-tame RPQ Q, a pair (u, v) of node
ids, and values d, k ≥ 0 such that checking whether
(u, v) ∈ !Q(π), for patterns π in OD≤d∩MFQ,t̄

≤k with-
out null values, is coNP-complete.

It still deserves to be studied how to link our positive re-
sults for graph patterns to the context of computing mapping-
based certain answers. We believe this to be an interesting
and challenging topic for future research, and the results in
this section are a first step in such direction.

9. CONCLUDING REMARKS
In this paper we have studied interoperability issues for

graph databases. In particular, we have proposed a mapping
language based on CNREs and studied data exchange, query
answering and also the composition of mappings specified in
the language. We have also identified relevant fragments of
the language for which those problems can be solved effi-
ciently. There are interesting issues that remain open. One
of particular interest is the development of a mapping lan-
guage able to express the composition of mappings beyond
the class of GAV-NRE.

Acknowledgments We thank Leonid Libkin and Domagoj Vr-
goč for their comments. Barceló is funded by Fondecyt Grant
1110171, Pérez by Fondecyt grant 11110404 and VID grant U-
Inicia 11/04 Universidad de Chile, and Reutter by EPSRC grant
G049165 and FET-Open Project FoX, grant agreement 233599.

10. REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web:

From Relations to Semistructured Data and XML. Morgan
Kaufmann, 1999.

[2] S. Amano, L. Libkin, and F. Murlak. XML schema
mappings. In PODS, pages 33–42, 2009.

[3] M. Arenas, P. Barceló, L. Libkin, and F. Murlak.
Relational and XML Data Exchange. Morgan & Claypool
Publishers, 2010.

[4] M. Arenas, P. Barceló, and J. L. Reutter. Query languages
for data exchange: Beyond unions of conjunctive queries.
Theory Comput. Syst., 49(2):489–564, 2011.

[5] M. Arenas and L. Libkin. XML data exchange: Consistency
and query answering. J. ACM, 55(2), 2008.

[6] M. Arenas, J. Pérez, and J. L. Reutter. Data exchange
beyond complete data. In PODS, pages 83–94, 2011.

[7] M. Arenas, J. Pérez, J. L. Reutter, and C. Riveros.
Composition and inversion of schema mappings. SIGMOD
Record, 38(3):17–28, 2009.

[8] P. Barceló. Logical foundations of relational data exchange.
SIGMOD Record, 38(1):49–58, 2009.

[9] P. Barceló, C. A. Hurtado, L. Libkin, and P. T. Wood.
Expressive languages for path queries over graph-structured
data. In PODS, pages 3–14, 2010.

[10] P. Barceló, L. Libkin, and J. L. Reutter. Querying graph
patterns. In PODS, pages 199–210, 2011.

[11] P. Barceló, J. Pérez, and J. L. Reutter. Relative
expressiveness of nested regular expressions. In AMW,
pages 180–195, 2012.

[12] P. Bernstein. Applying model management to classical
meta data problems. In CIDR, 2003.

[13] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Vardi.
Containment of conjunctive regular path queries with
inverse. In KR, pages 176–185, 2000.

[14] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y.
Vardi. View-based query processing for regular path queries
with inverse. In PODS, pages 58–66, 2000.

[15] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y.
Vardi. View-based query answering and query containment
over semistructured data. In DBPL, pages 40–61, 2001.

[16] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y.
Vardi. Simplifying schema mappings. In ICDT, pages
114–125, 2011.

[17] A. K. Chandra and P. M. Merlin. Optimal implementation
of conjunctive queries in relational data bases. In STOC,
pages 77–90, 1977.

[18] M. Consens and A. Mendelzon. GraphLog: A visual
formalism for real life recursion. In PODS, pages 404–416,
1990.

[19] P. Cudré-Mauroux and S. Elnikety. Graph data
management systems for new application domains.
PVLDB, 4(12):1510–1511, 2011.

[20] L3s dblp bibliography db: http://dblp.l3s.de/d2r/.
[21] R. Fagin. Inverting schema mappings. TODS, 32(4), 2007.
[22] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data

exchange: semantics and query answering. TCS,
336(1):89–124, 2005.

[23] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan.
Composing schema mappings: Second-order dependencies
to the rescue. TODS, 30(4):994–1055, 2005.

[24] G. H. L. Fletcher, M. Gyssens, D. Leinders, J. V. den
Bussche, D. V. Gucht, S. Vansummeren, and Y. Wu.
Relative expressive power of navigational querying on
graphs. In ICDT, pages 197–207, 2011.

[25] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms
for processing XPath queries. ACM Trans. Database Syst.,
30(2):444–491, 2005.

[26] T. Imielinski and W. Lipski. Incomplete information in
relational databases. J. ACM, 31(4):761–791, 1984.

[27] P. G. Kolaitis. Schema mappings, data exchange, and
metadata management. In PODS, pages 61–75, 2005.

[28] P. G. Kolaitis, J. Panttaja, and W.-C. Tan. The complexity
of data exchange. In PODS, pages 30–39, 2006.

[29] M. W. Krentel. The Complexity of Optimization Problems.
Journal of Computer and System Sciences, 36(3):490–509,
1988.

[30] M. Lenzerini. Data integration: a theoretical perspective.
In PODS, pages 233–246, 2002.

[31] J. Madhavan and A. Y. Halevy. Composing mappings
among data sources. In VLDB, pages 572–583, 2003.

[32] G. S. Manku, M. Naor, and U. Wieder. Know thy
neighbor’s neighbor: the power of lookahead in randomized
P2P networks. In STOC, pages 54–63, 2004.

[33] S. Melnik. Generic Model Management: concepts and
Algorithms, volume 2967 of LNCS. Springer, 2004.

[34] A. O. Mendelzon and P. T. Wood. Finding regular simple
paths in graph databases. SIAM J. Comput.,
24(6):1235–1258, 1995.

[35] A. Nash, P. A. Bernstein, and S. Melnik. Composition of
mappings given by embedded dependencies. In PODS,
pages 172–183, 2005.

[36] J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A
navigational language for RDF. J. Web Sem., 8(4):255–270,
2010.

[37] P. T. Wood. Query languages for graph databases. Sigmod
Record, 41(1):50–60, 2012.

[38] M. Yannakakis. Algorithms for acyclic database schemes. In
VLDB, pages 82–94, 1981.

200

