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ABSTRACT
Motivated by the current interest in languages for expressing
path queries to graph databases, this paper proposes to in-
vestigate Walk Logic (WL): the extension of first-order logic
on finite graphs with the possibility to explicitly quantify
over walks. WL can serve as a unifying framework for path
query languages. To support this claim, WL is compared in
expressive power with various established query languages
for graphs, such as first-order logic extended with reachabil-
ity; the monadic second-order logic of graphs; hybrid compu-
tation tree logic; and regular path queries. WL also serves as
a framework to investigate the following natural questions:
Is quantifying over walks more powerful than quantifying
over paths (walks without repeating nodes) only? Is quan-
tifying over infinite walks more powerful than quantifying
over finite walks only? WL model checking is decidable, but
determining the precise complexity remains an open prob-
lem.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query lan-
guages; F.4.1 [Mathematical Logic and Formal Lan-
guages]: Mathematical Logic—Model theory

General Terms
Theory

1. INTRODUCTION
Graph databases have been investigated at least since the
1980s [2] and are receiving renewed attention recently [38],
due to their wide variety of applications such as social sci-
ences, bioinformatics, the Semantic Web, and GIS data. Of
course, graphs are relational structures, so that we can use
the basic relational query language of first-order logic (FO
or relational algebra and calculus) to query graph databases
as well. Many applications, however, require queries involv-
ing reachability by paths, which are not expressible in FO.
Since path and reachability queries can be expressed using
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recursion, one may employ extensions of FO with recursion,
such as Datalog or fixpoint logic, or other powerful query
languages that can express reachability, such as transitive-
closure logic or second-order logic. Powerful query languages
have been extensively studied in database theory and finite
model theory [1, 20, 27, 29, 25].

It remains interesting, however, to understand what is ob-
tained when FO is extended with path querying primitives
but not much else. Concretely we propose to study what
we call Walk Logic (WL): the extension of FO with explicit
quantifiers over the walks in a graph.1 The exact definition
of such a logic is not entirely trivial; we have taken inspira-
tion from the path logic on spatial data defined by Benedikt
et al. [8]. There is also a connection with first-order logic
on data words [12, 9], because a walk is seen in our logic as
a data word where the letters are the labels of the nodes in
the walk and the data values are the identifiers of the nodes.

WL is not intended as a user-friendly language, although a
variety of queries can be expressed in a quite natural manner.

Example 1. The following formula expresses that there is
a walk W from a node labeled ‘office’ to a node labeled
‘cafeteria’, and a different walk W ′ back from the cafeteria
to the office; different in the sense that at least one node on
W ′ is not on W .

∃W∃W ′∃tW1 ∃tW2 ∃t′W
′

1 ∃t′W
′

2 ∃t′W
′

3

(office(t1) ∧ t1 < t2 ∧ cafeteria(t2) ∧ t′1 < t′3 < t′2

∧ t′1 ∼ t2 ∧ t′2 ∼ t1 ∧ ∀tW3 (t1 < t3 < t2 → t3 6∼ t′3)).

Here, t1 and t2 are variables that range over the positions of
walk W , and t′1, t′2, and t′3 range over the positions of walk
W ′. The predicate t′1 ∼ t2 signifies that the node at position
t′1 in W ′ is the same as the node at position t2 in W .

Rather, WL is intended as a yardstick to understand the
expressiveness of path queries on graphs. Indeed, we will
compare the expressiveness of WL with a number of estab-
lished graph query languages, and will see that doing this

1A walk is a sequence of nodes such that consecutive nodes
are linked by an edge. Walks are very often called just paths,
but in contemporary graph terminology [19], a path is a walk
without repeating nodes (what is often called a simple path).
In this paper, we use the contemporary terminology.
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exercise raises various natural questions about the expressive
power of such languages.

Expressing properties of walks in graphs is the bread and
butter of logics used in the field of verification [14, 5]. There,
the graphs are transition systems that are abstractions of
computer systems, and walks are runs of these systems. A
powerful such logic with explicit walk quantifiers is CTL∗.
A feature of logics used in verification, however, is that they
are invariant under bisimulation, which means that they
view a graph essentially as a tree. This makes them un-
suitable for general graph querying, where we would like to
ask queries such as “can I reach the cafeteria from my of-
fice and walk back by a different route?” which are typically
not bisimulation-invariant. This weakness can be remedied,
however, by moving to “hybrid” logics which can explicitly
quantify nodes in the graph [3, 22, 37, 11].

An important caveat in the comparison of WL to verification
logics is that the latter logics typically quantify over infinite
(or at least maximal) walks, whereas from a database query-
ing perspective it is equally natural to quantify over finite
walks only. Thus we have two variants of WL: the basic one
WL quantifies over finite walks, while WL∞ can quantify
over infinite walks as well. We obtain that hybrid CTL∗

(with finite-walk semantics) is subsumed by WL∞ (WL),
and the subsumptions are strict due to known limitations
on the expressive power of hybrid modal logics [3]. We leave
as an interesting open problem the question whether WL∞

is strictly more powerful than WL; the analogous question
could also be asked for hybrid CTL∗.

In the nonhybrid case, a combination of well-known tech-
niques from model checking for LTL and the theory of counter-
free automata [31, 18] can be used to show that infinite
quantification does not yield more expressiveness. We give
a proof in the framework of linear WL: a fragment of WL
that is equivalent to boolean combinations of LTL formu-
las. For CTL, a similar but not quite the same result has
been claimed [39]; for CTL∗ proper, the difference in expres-
siveness between the finite and the infinite semantics seems
open.

In restriction to trees, WL was already studied under the
name of “Path Logic” where its expressive power is again
closely related to that of CTL∗ [26, 32]. On trees, WL is a
fragment of MSO: monadic second-order logic. Hence, when
moving to graphs, it is a natural question to understand
how WL relates to MSO on graphs. Indeed, MSO on graphs
must be one of the most deeply investigated graph query
languages over the past two decades [16]. There are actually
two versions of MSO on graphs: MS1 can quantify only over
sets of nodes, and MS2 can quantify over sets of edges as
well. We will show that, in contrast to the case of trees,
over graphs, WL is not subsumed by MSO, not even by
MS2.

This shows the power of quantifying over walks as opposed
to paths; indeed, when WL is restricted to quantification
over paths only, the resulting Path Logic (PL) is clearly
subsumed by MS2. As a consequence, PL is strictly weaker
than WL. The expressive power of WL (PL) will turn out
to be incomparable to that of MS2 (MS1). Recently there

has been some commotion about walk- versus path-based se-
mantics in the context of regular path queries [4, 30]. Clear
differences in complexity have been shown, but the conse-
quences on the expressive power have not yet been fully
investigated. We will report some initial results.

Regular path queries (which we call regular walk queries
since their default semantics is walk-based) indeed form a
graph query mechanism that has been popular at least since
the 1990s [15]. It has been studied intensively [13] and is re-
ceiving renewed attention recently [6, 7]. To compare regular
walk queries to WL, we naturally define RWL and ERWL:
regular walk logic and extended regular walk logic, which
are defined so that they have the known languages CRPQ
and ECRPQ as their conjunctive-query fragments. We will
show that there are queries in PTIME expressible in WL
but not in ERWL. This result is interesting, in view of the
reported scarcity of techniques for showing nonexpressibil-
ity even by ECRPQs [23]. Our proof is an adaptation of
de Rougemonts’s Ehrenfeucht-Fräıssé game argument about
Hamiltonicity [17]. In the other direction there are CRPQs
not expressible in WL, but the fragment of RWL that uses
only star-free regular expressions is again subsumed by WL.
For ERWL, even for ECRPQ, however, the restriction to
star-freeness does not help to stay within WL.

Query evaluation for WL can be reduced to model checking
of boolean combinations of LTL formulas, but the reduc-
tion has nonelementary complexity and this approach seems
to be a gross overkill; the precise data complexity of WL
query evaluation remains open. Already PL can express the
Hamiltonian path query, so the data complexity is at least
NP- and coNP-hard. On the one hand, we have not been
able to find a PSPACE-hard query expressible in WL, but on
the other hand, we do not see how WL could be subsumed
by, say, second-order logic, or the while-language [1].

We will also consider the positive-existential (also known as
the union-of-conjunctive-queries) fragment of WL. In that
simple setting many logics amount to first-order logic ex-
tended with reachability, and the earlier question regarding
finite versus infinite walks can be easily answered. More-
over, in the positive-existential setting, PL becomes more
powerful than WL.

This paper is further organized as follows. Section 2 for-
mally defines our basic setting. Section 3 discusses the WL
query evaluation problem. Section 4 introduces the theme of
infinite versus finite walks. Section 5 compares to MSO on
graphs and introduces the theme of walks versus paths. Sec-
tion 6 compares to regular walk queries. Section 7 discusses
the positive-existential case. Section 8 concludes.

2. WALK LOGIC

Graphs. We assume some finite vocabulary A of atomic
propositions. In this paper we will work with directed, node-
labeled graphs of the form G = (N,E, l) where N is a finite
set of elements called the nodes of the graph; E ⊆ N × N
is the set of edges; and l : N → 2A assigns to each node
a set of atomic propositions which are abstractions of data
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or properties pertinent to that node.2 When a ∈ l(v) we
say that node v has label a. We do not consider graphs with
self-loops, i.e., edges of the form (v, v), as these can be easily
modeled by labels.

A walk in G is a finite nonempty sequence v1 . . . vn of nodes
such that (vi, vi+1) ∈ E for each 1 ≤ i < n, i.e., any two
consecutive nodes form an edge. The numbers 1, . . . , n are
called the positions in the walk. An infinite walk is similarly
defined but is countably infinite; its set of positions is simply
defined to be the set of natural numbers. Clearly a (finite)
graph has infinite walks if and only if it has a cycle; and a
(finite) graph has a cycle if and only if it has arbitrarily long
finite walks. A walk is a path if no node occurs more than
once in it. The length of a walk is its length as a sequence,
i.e., n in the above notation. Thus, beware that a walk of
length 1 is trivial and consists just of a single node.

First-order logic. We briefly recall the basic query lan-
guage of first-order logic (relational calculus, relational al-
gebra [1]). We can view a node-labeled directed graph G =
(N,E, l) as a relational structure (N,E, aG)a∈A where the
domain is N ; we have E as a binary relation, and we have
a unary relation aG for each a ∈ A such that aG = {v ∈
N | a ∈ l(v)}. We can then use first-order logic over the
relational vocabulary (E, a)a∈A as a graph query language.
Thus, the formula ∃z(E(x, z) ∧ E(z, y) ∧ bar(z)) expresses
that there is a node labeled ‘bar’ with an edge to it from x
and an edge from it to y.

Walk Logic. We assume a sufficient supply of walk vari-
ables, and, for every walk variable W , a sufficient supply of
position variables of sort W . Position variables of different
sorts are different, and to indicate that position variable t is
of sort W , we write tW . The intuition is that if the value of
W is some walk w, then the values that t can take are the
positions in w.

We now define the syntax of Walk Logic (WL). An atomic
formula is one of the following:

• a(t) with a an atomic proposition and t a position vari-
able;

• t1 ∼ t2 with t1 and t2 position variables, not necessar-
ily of the same sort;

• t1 < t2 with t1 and t2 position variables that must be
of the same sort.

Formulas are now built from atomic formulas using the bool-
ean connectives and existential and universal quantifiers in
the usual manner. Quantifiers can be over walk variables
as well as over position variables. The notion of free vari-
able in a formula is defined in an unusual manner as we do

2Often graph databases are defined as edge-labeled, rather
than node-labeled, graphs [2]. Walk logic is more elegantly
defined on node-labeled graphs, which is why we have chosen
this option. None of our results depend essentially on this
choice.

not consider free walk variables. The notion of free posi-
tion variables in a formula is however defined in the usual
manner.

Informally, a(t) means that the node at position t is labeled
a; the informal semantics of t1 ∼ t2 is that the same node
is at position t1 and at position t2 (possibly in different
walks); and t1 < t2 has the obvious meaning. A quantified
walk variable ranges over all walks in the graph; a quantified
position variable tW ranges over all positions in the walk that
is the value of the free occurrences of walk variable W .

We refer back to Example 1 for an example of a WL formula.

Formally, the semantics of WL formulas is defined as follows.
Let us say that a set X of walk and position variables is legal
if the sort of any position variable in X also belongs to X,
i.e., if tW ∈ X thenW ∈ X. Given a graphG, an assignment
on G is a mapping α on a finite, legal set X of variables
such that walk variables are mapped to walks in G, and
each position variable tW is mapped to a position in α(W ).
Given a formula ϕ, an assignment is called appropriate for
ϕ if its domain X includes all free variables of ϕ.

Example 2. Let ϕ be the atomic formula a(tW ). Then an
assignment appropriate for ϕ must be defined on W as well
as on t: on t because t is a free variable of ϕ, and on W
because if tW ∈ X and X is legal, then also W ∈ X.

Now let G = (N,E, l) be a graph, ϕ be a formula, and α be
an assignment on G appropriate for ϕ. Then we define that
G satisfies ϕ under α, denoted by G,α |= ϕ, as follows:

• G,α |= a(tW ) if a ∈ l(vi), where i = α(t) and α(W ) =
v1 . . . vn;

• G,α |= tW1
1 ∼ tW2

2 if xi = yj , where i = α(t1) and j =
α(t2) and α(W1) = x1 . . . xn and α(W2) = y1 . . . ym;

• G,α |= t1 < t2 if α(t1) < α(t2);

• G,α |= ∃W ϕ, for a walk variable W , if there exists a
walk w in G such that G,α{W 7→ w} |= ϕ.3

• G,α |= ∃tW ϕ, for a position variable t, if there exists
a position i in α(W ) such that G,α{t 7→ i} |= ϕ.

The semantics of the boolean connectives is the standard
one and we omit that part of the definition.4

Clearly, the satisfaction of a formula ϕ depends only on the
values of the variables in the set vars(ϕ), defined as consist-
ing of all free position variables of ϕ plus the sorts of these
variables. Formally, we have that G,α |= ϕ if and only if
G,α|vars(ϕ) |= ϕ. Note that vars(ϕ) is the smallest (w.r.t. set
inclusion) domain of any assignment appropriate for ϕ. If ϕ
is a sentence (formula without free variables) then vars(ϕ)

3The notation α{W 7→ w} denotes the assignment that is
equal to α except that W is mapped to w.
4Note also that equality of position variables t1 = t2 can be
expressed as ¬(t1 < t2) ∧ ¬(t2 < t1).
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is empty; otherwise it contains at least one walk variable.
As usual, if ϕ is a sentence, then we can simply talk about
G |= ϕ.

Node variables. Using sentences we can express yes/no
queries; using formulas with free variables we can express
queries that return tuples of walks and positions in these
walks. How can we express classical queries, i.e., queries
that return tuples of nodes of the graph? In practice we can
extend WL with node variables, which can (for now) only
occur free and which can only be used with atomic proposi-
tions and in comparisons by ∼ with other node variables or
position variables.

Example 3. The following query, using two free node vari-
ables x and y, defines all pairs of nodes (x, y) such that there
is a walk from x to y that goes through a node labeled a:

∃W∃tW1 ∃tW2 ∃tW3 (t1 < t2 < t3 ∧ t1 ∼ x ∧ t3 ∼ y ∧ a(t2)).

In principle, however, node variables can be simulated using
position variables. Formally, for every node variable x we
use a separate walk variable Wx and then use x as a position
variable of sort Wx. Then for any formula ϕ using node
variables, we have G,α |= ϕ (with α assigning nodes of G
to the node variables) if and only if G,α′ |= ϕ where α′ is
any assignment obtained from α by assigning to Wx a walk
w that contains node α(x), and assigning to x any position
in w where α(x) occurs.

We can even simulate quantification of node variables. Let
ϕ be a formula involving quantified node variables. Define
ϕ′ to be the formula obtained from ϕ by replacing every
quantifier ∃x of a node variable by ∃Wx∃x. Then again one
can verify that G,α |= ϕ if and only if G,α′ |= ϕ′. Moreover,
we could even allow edge predicates E(x, y) between node
variables. This can be simulated by the subformula

∃W∃tW1 ∃tW2 (t1 ∼ x ∧ t2 ∼ y ∧ t2 = t1 + 1).

In the above formula the successor predicate t2 = t1 + 1 is
of course readily expressed as t1 < t2 ∧ ¬∃tW3 t1 < t3 < t2.

By the above discussion, the following is clear:

Proposition 1. WL is at least as powerful as first-order
logic (FO) on graphs.

Of course WL is much more powerful than FO, as the fol-
lowing exercise shows.

Exercise 1. Express in WL that the graph has a Hamil-
tonian path.

Later in the paper we will explore the expressive power of
WL further.

Variants of WL. As motivated in the Introduction, we de-
fine three natural variants of WL as follows. We omit their
formal definition.

• PL is the variant of WL where walk variables are re-
stricted to range over paths only. So syntactically, PL
is identical to WL, but the semantics is different.

• WL∞ is the extension of WL where, in addition to
quantifiers ∃W over finite walks, we also allow quanti-
fiers ∃∞W over infinite walks.

• Linear WL is the restriction of WL where the predicate
∼ is forbidden. Similarly one can consider linear WL∞

as a restriction of WL∞.

Example 4. The following PL formula expresses that there
is no simple way to go from node x to node y and visit a bar
on the way:

∀P ((∃sP∃tP (s < t ∧ s ∼ x ∧ t ∼ y))

→ ∀uP (s < u < t→ ¬bar(u))).

The semantics of the above formula as a WL formula would
say something stronger, namely, that there is no bar reach-
able from x so that y is reachable from the bar.

Since one can express in WL that a walk W is a path (see
solution of Exercise 1), PL is subsumed by WL. Trivially,
linear WL is subsumed by WL, and WL is subsumed by
WL∞. We will investigate strictness of these inclusions later
in the paper.

3. QUERY EVALUATION FOR WL
For any WL sentence ϕ, the query evaluation problem for
ϕ is to decide, given a graph G, whether G |= ϕ. (Query
evaluation of general formulas, rather than just sentences, is
discussed afterwards.) This is the “data complexity” setting
[36]; in the “combined complexity” setting, one considers the
general problem of deciding, given G and ϕ, whether G |= ϕ.

We will first show that if ϕ is linear (does not use the ∼
predicate), then query evaluation for ϕ is decidable in poly-
nomial time (data complexity).

We begin by noting the following which can be proved by
straightforward formula manipulation:

Lemma 1. Every linear WL sentence ϕ is equivalent to
a boolean combination of linear WL sentences of the form
∃W ψ where ψ has no walk quantifiers and all position vari-
ables occurring in ψ have sort W .

In the absence of the predicate ∼, walks are viewed as strings
over the alphabet Σ = 2A, so that sentences ψ as in the
above proposition are nothing but sentences in first-order
logic (FO) on strings over the alphabet Σ [35]. On strings,
first-order logic is equivalent to the logic LTL [18]. We are
left with the problem to decide, given a graph G, whether
there exists a walk w in G such that the string of labels
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traced by w satisfies a fixed LTL formula. But this is almost
exactly the model checking problem for LTL [5], which is well
known to be decidable in polynomial time.5 We conclude:

Proposition 2. For each linear WL sentence ϕ, the query
evaluation problem for ϕ is decidable in polynomial time.

Note that the combined complexity of this method is horri-
ble, since it involves a translation from FO to LTL, for which
a non-elementary lower bound is known [34].

Our next step is to observe that query evaluation for WL
can be reduced to query evaluation for linear WL, although
the reduction is not efficient. The reduction is straightfor-
ward. Given a graph G = (N,E, l) labeled using the ba-
sic set of atomic propositions A, we construct the exposed
graph Ğ = (N,E, l̆) labeled using the extended set of atomic

propositions A∪N by defining l̆(v) = l(v)∪{v}. Thus, each
node is labeled additionally with its own identifier. Then
given a formula ϕ, we define the formula ϕ̆G obtained from ϕ
by replacing each comparison t1 ∼ t2 by

∨
v∈N (v(t1)∧v(t2)).

Note that this is a linear formula. Clearly, we have for all
graphs G and all assignments α on G appropriate for ϕ that
G,α |= ϕ if and only if Ğ, α |= ϕ̆G. We conclude:

Theorem 1. The query evaluation problem for WL sen-
tences is decidable.

Now the data complexity of the decision procedure described
above is horrible. Indeed, the formula ϕ̆G depends on G, so
the combined complexity of checking Ğ |= ϕ̆G determines
the data complexity of the overall procedure. As mentioned
in the Introduction, we leave as open:

Problem 1. Determine the precise data complexity of the
query evaluation problem for WL sentences.

In view of Exercise 1, the data complexity is at least NP-
hard, and also coNP-hard since WL is closed under negation.

Formulas with free variables. For a WL formula ϕ that
may have free variables, the query evaluation problem is
to decide for a given G and assignment α on G defined on
vars(ϕ), whether G,α |= ϕ. The reduction to linear WL
works for formulas in general, so let us assume that ϕ is
linear. Lemma 1 can be generalized to formulas so that ev-
ery linear WL formula is equivalent to a boolean combina-
tion of formulas of the form ∃W ψ as in Proposition 1, and
additionally formulas of the form χ where χ has no walk

5Almost exactly because of two differences. First, LTL
model checking only considers walks starting in a designated
initial node. But that is not essential to the model-checking
algorithm. Second, LTL model checking normally consid-
ers “maximal” walks only: these are infinite walks, and fi-
nite walks that end in a terminal node (without outgoing
edges). The well-known automata-based LTL model check-
ing algorithm, however, works as well for finite walks (using
standard finite automata) as for infinite walks (using Büchi
automata) [5].

quantifiers and all position variables are of the same sort.
Now each such formula χ, talking about some walk variable
W ∈ vars(ϕ), can simply be evaluated on the given walk
α(W ).

The expressive power of linear WL. We note that Lemma 1
actually provides a characterization of the expressive power
of linear WL. As a corollary we obtain

Proposition 3. Linear WL is strictly subsumed by WL.

Proof. Consider the four-node, diamond-shaped directed
graphD = ({1, 2, 3, 4}, {(1, 2), (1, 3), (2, 4), (3, 4)}). The query
“the graph has a subgraph isomorphic to D” is readily ex-
pressed in WL, but not in linear WL. Indeed, no sentence
∃W ψ as in Lemma 1 can distinguish D from the tree-shaped
graph T = ({1, 2, 3, 4, 5}, {(1, 2), (1, 3), (2, 4), (3, 5)}).

More generally, Lemma 1 implies that linear WL is bisimul-
ation-invariant [24] whereas full WL is clearly not.

4. INFINITE WALKS
Lemma 1 applies to linear WL∞ as well. Hence, as already
hinted upon in Footnote 5, the query evaluation algorithm
from the previous section also applies to WL∞. In fact, the
default semantics for LTL on graphs is to consider infinite
walks. We are thus led to wonder whether the expressive
power of WL is actually strictly weaker than that of WL∞.
We can only show the following. The proof below uses stan-
dard arguments, except that it needs the notion of counter-
free automaton to apply to infinite strings, which was only
recently worked out [18]:

Theorem 2. Every linear WL∞ sentence is equivalent to
some WL sentence.

Proof. We must show that a sentence of the form ∃∞W ψ,
with ψ an FO sentence on strings, is expressible in finite walk
logic. We can translate ψ into a Büchi automaton M that
is counter-free [18]. It is also known that every language
of finite words defined by a counter-free finite automaton is
also definable in first-order logic. We note that the notion of
counter-freeness has nothing to do with the acceptance cri-
terion of the automaton; in particular, when a counter-free
Büchi automaton is used alternatively as a finite automaton,
it is still counter-free considered as an automaton on finite
words. This will be crucial for the correctness of the proof.

We want to express that there exists an infinite walk in G =
(N,E, l) whose label sequence is accepted by M . Thereto we
use a well-known product construction; we define the Büchi
automaton G×M as follows.

• The set of states equals N ×Q with Q the set of states
of M ;

• The initial states are those of the form (x, q) with q an
initial state of M ;
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• The repeating states are those of the form (x, r) with
r a repeating state of M ;

• The transitions are those of the form (x, q)
a→ (y, q′)

such that

1. there is an edge (x, y) ∈ E;

2. a = l(x) in G;

3. there is a transition q
a→ q′ in M .

Clearly there is an infinite walk in G whose label sequences is
accepted by M , if and only if the automaton G×M accepts
some infinite word.

It is well known [5] that a Büchi automaton accepts some
infinite word, if and only if some initial state can reach some
repeating state that lies on a cycle. Applied to G×M , our
task is thus focused on the following two properties that may
or may not hold for given states (x, q) and (y, r) of G×M :

1. (y, r) is reachable by a (possibly empty) path of tran-
sitions starting from (x, q);

2. (y, r) lies on a cycle of transitions.

We are going to express properties 1 and 2 by walk formulas
ψq,r

1 (x, y) and ψr
2(y) that work uniformly for all graphs G.

Then the final sentence will be∨
q

∨
r

∃x∃y(ψq,r
1 ∧ ψr

2) (∗)

where the disjunction is over all initial states q of M and all
repeating states r of M . Since we have seen that quantifi-
cation over nodes is expressible in WL, the theorem will be
proved.

The formulas will follow from the following two claims. Let
Mq,r be the finite automaton obtained from M by setting q
to be the only initial state and setting r to be the only final
state. Let Mq,q be defined analogously. We claim:

1. In G×M , state (y, r) is reachable from state (x, q), if
and only if there is a walk in G from x to y whose label
sequence, with the last letter omitted, is accepted by
Mq,r.

2. In G × M , state (y, r) lies on a cycle of transitions,
if and only if there is a walk in G, of length strictly
greater than one, whose label sequence, with the last
letter omitted, is accepted by Mq,q.

Recall that we define a walk in our work as a nonempty
sequence of nodes such that there is an edge from any
node in the sequence to its successor in the sequence;
thus a walk of length one is a trivial walk that does
not follow any edge. Such walks are allowed in the
previous property but not in the present one.

The equivalent formulations of the two properties given by
the above two claims can readily be translated into walk
logic, once we realize that M is counter-free, so that the
finite string languages defined by Mq,r and Mr,r are first-
order definable.

Note that we have not shown that every linear WL∞ sen-
tence is equivalent to some linear WL sentence; the walk
logic formula (∗) in the above proof is not linear, since we
need quantification over nodes x and y which needs to be
simulated using ∼. It is tempting to conjecture that linear
WL∞ is strictly more expressive than linear WL. Also, the
nonlinear case remains open:

Problem 2. Is WL∞ strictly more expressive than WL
for yes/no queries over graphs?

Hybrid CTL∗. Our original reason to consider WL∞ is that
logics used in verification have a semantics based on infinite
walks. As mentioned in the Introduction, a powerful such
logic is hybrid CTL∗, denoted here by HCTL∗ [37, 11]. Ac-
tually we can define two variants: HCTL∗ under the default
semantics based on infinite walks, and a finite-walk variant
which we denote by HCTL∗fin . A HCTL∗ sentence is always
evaluated on a graph and an initial node, thus, these sen-
tences always express unary queries.6 The expressive power
compares to the WL variants as follows:7

Proposition 4. In their expressive power of unary queries
on graphs, HCTL∗ is strictly weaker than WL∞, and HCTL∗fin

is strictly weaker than WL.

Proof. That the HCTL∗ variants are subsumed by the
corresponding WL variants is proven by a syntactic transla-
tion. That the subsumptions are strict follows from a known
limitation on the expressive power of hybrid modal logics,
namely, that they are invariant under generated submodels
[3]. For instance, the query “there exists a node labeled a”
is expressible in WL but neither in HCTL∗fin nor in HCTL∗,
since the query is not invariant under generated submod-
els.

Remark 1. Areces et al. [3] have shown that the hybrid
version of standard modal logic actually captures the frag-
ment of FO invariant under generated submodels. In anal-
ogy to the result that, in restriction to trees, CTL∗ captures
the bisimulation-invariant fragment of Path Logic [32], it
would be interesting to know whether HCTL∗ captures the
fragment of WL invariant under generated submodels. Also,
the proof given by Areces et al. does not immediately apply
in restriction to finite graphs [33].

Remark 2. Open problem 2 can also be stated for HCTL∗:
How do the expressive powers of HCTL∗ and HCTL∗fin com-
pare?

6With additional free“state variables”, HCTL∗ formulas can
more generally express k-ary queries.
7We note that Benevides et al. [11] report results on the
expressive power of HCTL∗ that are slightly misleading, for
example, they claim that Hamiltonian path and Eulerian
trail are expressible, but they do not exhibit one formula
that expresses the query on all inputs; instead, they need
larger and larger formulas for larger and larger input graphs.
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Remark 3. One may also wonder about the relationship
between linear WL∞ and standard, non-hybrid CTL∗. From
Lemma 1 it follows that every linear WL∞ sentence ex-
presses a boolean combination of LTL properties about the
graph. It is well-known known that LTL is subsumed by
CTL∗. We have not investigated the reverse relationship,
whether every CTL∗ global graph property (property true
at all nodes) is also expressible in linear WL∞.

5. MSO, AND PATHS VERSUS WALKS
In this section we compare the expressive power of WL and
its path-based fragment PL to that of monadic second-order
logic (MSO) on graphs.

MSO [16] is the extension of first-order logic with set vari-
ables. On graphs, MSO comes in two flavors. In MS1, we
simply use MSO on the same relational structure representa-
tion of a graph as used in first-order logic on graphs (recall
Section 2). In MS2, we view a graph G = (N,E, l) as a
relational structure (N ∪E, sourceG, targetG, aG)a∈A where
sourceG equals the binary relation {((v, v′), v) | (v, v′) ∈ E}
and targetG equals {((v, v′), v′) | (v, v′) ∈ E}. The edge
predicate is redundant in this setting. So MS2 is MSO over
the relational vocabulary (source, target, a)a∈A. In MS2,
edges are treated as first-class objects; in particular, one
can quantify over sets of nodes and edges as opposed to
MS1 where one can quantify only over sets of nodes. It is
known that MS1 is strictly weaker than MS2: the query “the
graph has a Hamiltonian path” is expressible in MS2 but not
in MS1.

We begin by making two immediate observations:

Proposition 5. PL is subsumed by MS2, but not by MS1.

Proof. PL is subsumed by MS2 since in the latter logic
one can express that a set of edges is a path. PL is not
subsumed by MS1 since Hamiltonicity is expressible in PL
but known not to be expressible in MS1 [16].

It will turn out that the subsumption of PL by MS2 is the
only comparison that holds between PL and WL on the one
hand, and MS1 and MS2 on the other hand. We begin by
demonstrating a number of global graph properties that are
not expressible in WL∞.

Theorem 3. The following yes/no queries are not ex-
pressible in WL∞: weak connectivity; planarity; and bipar-
titeness.8

Proof. The proof is based on the observation that WL∞

can only work with directed walks. Hence, on classes of
graphs with a constant bound on the length of directed
walks, WL∞ collapses to FO. Hence it suffices to give, for
each property, a class C of directed graphs of bounded walk

8These are properties of undirected graphs whereas we are
working with directed graphs. We resolve this mismatch
consistently in this paper by agreeing that a directed graph
G satisfies a property of undirected graphs if the undirected
graph underlying G satisfies the property.

length and show that the property is not expressible in FO
even in restriction to the class C.

Since weak connectivity (even on directed graphs), as well
as bipartiteness, is expressible in MS1, we obtain:

Corollary 1. MS1 is not subsumed by WL∞.

Remark 4. In contrast to weak connectivity, strong (di-
rected) connectivity is obviously expressible in WL. Thus,
if we restrict attention to undirected graphs, which can be
modeled in our framework as directed graphs with a sym-
metric edge relation, connectivity becomes expressible in
WL, even in PL. Furthermore, also planarity restricted
to undirected graphs is expressible in PL, using the well-
known Kuratowski characterization of planar graphs. We
leave open whether bipartiteness is expressible in WL on
undirected graphs. Indeed we leave open whether Corol-
lary 1 still holds in restriction to undirected graphs, although
we conjecture this to be the case.

The next theorem will imply the converse to Corollary 1 for
WL and MS2. Recall that an Eulerian trail in a directed
graph G = (N,E) is a walk v1 . . . vn containing each edge
precisely once, so formally, E = {(vi, vi+1) | 1 ≤ i < n} and
(vi, vi+1) = (vj , vj+1) implies i = j.

Theorem 4. The existence of an Eulerian trail is not ex-
pressible in MS2.

Proof. For natural numbers i and j, define the graph
G(i, j) = (N,E) by N = {x1, . . . , xi, v1, v2, y1, . . . , yj} and
E = {(xk, v1) | 1 ≤ k ≤ i}∪{(v1, yk) | 1 ≤ k ≤ j}∪{(yk, v2) |
1 ≤ k ≤ j} ∪ {(v2, xk) | 1 ≤ k ≤ i}. Then G(i, j) has an
Eulerian trail if and only if |i− j| ≤ 1.

We will show that there is no MS2 sentence that expresses
existence of Eulerian trail even when restricted to the class
of all G(i, j) graphs. Since this class is “uniformly 2-sparse”
[16], MS2 is equivalent to MS1 on this class, so it suffices to
show that there is no MS1 sentence.

We now claim the following reduction from MS1 on graphs
to MSO on naked sets:9 For each i and each MSO sentence
ϕ over graphs, there exists an MSO sentence ϕ′(i) over naked
sets such that for each j, we have G(i, j) |= ϕ ⇔ [j] |=
ϕ′(i), where [j] denotes the set {1, . . . , j}. Moreover, ϕ′(i) has
the same quantifier rank as ϕ.

Now assume, for the sake of contradiction, that there exists
an MSO sentence ϕ expressing existence of Eulererian trail.
Let k be the quantifier rank of ϕ. Then for each j, we have
G(j, j+1) |= ϕ but G(j, j+2) 6|= ϕ. As a consequence of the
reduction to naked sets, we have for each j that [j + 1] |=
ϕ′(j) but [j + 2] 6|= ϕ′(j). However, it is known [29, Proof

of Proposition 7.12] that for any j′ and j′′ at least 2k, the

9On naked sets, the vocabulary is empty, and the only re-
lation symbol that can be used in formulas is the equality
predicate.

123



sets [j′] and [j′′] are indistinguishable by MSO sentences of
quantifier rank k. Since ϕ′(j) has quantifier rank k, we have
arrived at the desired contradiction.

Remark 5. The above result is for directed Eulerian trails
on directed graphs, but the analogous inexpressibility re-
sult holds for the classical Eulerian property of undirected
graphs (say, the undirected graph underlying the given di-
rected graph). Indeed in the above proof we can make the
graphs G(i, j) symmetrical; the resulting class of graphs is
uniformly 4-sparse and the same argument applies.

Since the existence of an Eulerian trail is readily expressed
in WL, we obtain from Theorem 4:

Corollary 2. WL is not subsumed by MS2.

Moreover, since PL is subsumed by MS2, we obtain:

Corollary 3. WL is strictly stronger in expressive power
than PL.

Remark 6. While Eulerian trail is easily expressed in WL,
one can show that the query “the underlying undirected
graph is Eulerian” is not expressible, not even in WL∞. This
can be shown using the same counterexample graphs used in
the proof of Theorem 3, again exploiting the weakness WL
is limited to following directed walks. Of course, when the
given graph is symmetric, the Eulerian property is express-
ible.

To conclude this section, the picture that emerges is the
following, where arrows indicate strict subsumption and ab-
sence of arrows indicates incomparable expressive power:

PL

WL MS2

MS1

This picture seems satisfying, since PL and WL are really
meant for walk-based querying whereas the MSO variants
are meant for global graph properties as well.

6. REGULAR WALK LOGIC
In this section we compare the expressive power of WL with
the much-studied regular path queries. One of the more
powerful formalisms in the literature is that of ECRPQs
[6]. However, ECRPQs are a positive-existential logic, so
we first introduce extended regular walk logic (ERWL) as
the natural extension of ECRPQs closed under negation. In
the literature this variant is also called ECRPQ¬.

Recall that in a graph each node v is labeled with a set
l(v) ⊆ A of atomic propositions. For regular walk logic it is

more convenient to think of each such set as a global label
and thus work with the alphabet Σ = 2A of labels.

For the syntax of ERWL we assume sufficient supplies of
node variables and walk variables. The atomic formulas are
the following:

• a(x) and x = y with a ∈ Σ and x and y node variables;

• from(W,x) and to(W,x), with W a walk variable and
x a node variable;

• R(W1, . . . ,Wk), with W1, . . . , Wk walk variables and
R a regular expression over the alphabet Σk

⊥, where
Σ⊥ = Σ ∪ {⊥} and Σ = 2A.

The formulas of ERWL are built from the atomic formulas
using quantification over nodes, quantification over walks,
and the boolean connectives in the usual manner. Examples
of formulas will be seen in the proofs below.

An ERWL formula ϕ is evaluated on a graph G = (N,E, l)
and an assignment α defined on the free variables of ϕ, as
follows: (we only give the nonobvious rules)

• G,α |= from(W,x) if α(x) is the first node of walk
α(W ).

• G,α |= to(W, c) if α(x) is the last node of walk α(W ).

• G,α |= R(W1, . . . ,Wk) if the tuple of traces (l(α(W1)),
. . . , l(α(Wk))) satisfies the regular relation R.10 Here,
for a walk w = v1 . . . vn we naturally define the string
l(w) = l(v1) . . . l(vn) over Σ; this string is called the
trace of w.

• G,α |= ∃W ϕ, for walk variable W , if there exists a
walk w in G such that G,α{W 7→ w} |= ϕ.

Note that the atomic predicates a(x) in principle are redun-
dant as they can be expressed as ∃W (from(W,x) ∧ a(W )).

We identify the following fragments of ERWL:

• RWL is the fragment where atomic formulas of the
form R(W1, . . . ,Wk) are only allowed for k = 1.

• ECRPQ is the fragment where only existential quanti-
fiers are allowed and the only allowed boolean connec-
tive is ∧.

• CRPQ is the syntactic intersection of RWL and ECRPQ.

10Given a tuple ~s = (s1, . . . , sk) of strings over Σ, we can
form a string [~s] over Σk

⊥ as follows. Fist, if necessary, we
pad strings to the right with ⊥ symbols so that the all strings
become of the same length. Then, the tuple of first letters
is taken as the first letter of [~s]; the tuple of second letters
as the second letter of [~s]; and so on. Now we say that ~s
satisfies the regular relation R if [~s] satisfies R [6, 10].
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• For each variant we can also consider the star-free frag-
ment, where only star-free regular expressions are al-
lowed.11

Since star-free regular expressions are first-order definable
[35], we immediately obtain:

Proposition 6. Star-free RWL is subsumed by WL.

When either the star-free restriction is lifted, or regular re-
lations are allowed, however, we are no longer within WL:

Proposition 7. Neither CRPQ nor star-free ECRPQ is
subsumed by WL.

Proof. We use here the popular conjunctive-query syn-
tax for (E)CRPQs. For a CRPQ not expressible in WL, we
use the even-length walk query

Q1 ← a(x), b(y), (cc)∗(x, y).

Strictly in our syntax the above query would be written
∃W∃x∃y(a(x) ∧ b(y) ∧ from(W,x) ∧ to(W, y) ∧ (cc)∗(W )).
For a star-free ECRPQ not expressible in WL, we use the
existence of two walks of different length:

Q2 ← from(W1, x1), to(W1, y1), from(W2, x2), to(W2, y2),

a(x1), b(y1), a(x2), b(y2),dl(W1,W2).

Here, the different-length predicate dl can be expressed by
the star-free regular expression (writing Λ for Σ2

⊥)⋃
a∈Σ

(Λ∗
[
⊥
a

]
Λ∗ ∪ Λ∗

[
a
⊥
]
Λ∗).

To prove that these two queries are not expressible in WL,
we use the following:

Lemma 2. Over graphs that are disjoint unions of chains,
WL collapses to FO(Reach).

Here, FO(Reach) is the extension of FO on graphs that pro-
vides the reflexive-transitive closure of the edge relation in
the form of an extra predicate Reach(x, y).

By the Lemma, it suffices to show that Q1 and Q2 are not
expressible in FO(Reach) on disjoint unions of chains, which
can be shown using well-known inexpressibility arguments
about FO on linear orders [29].

To prove the Lemma, we use that on disjoint unions of chains
there is at most one walk between any two nodes. Thus
we can simulate a walk variable W by a pair of node vari-
ables xW and yW satisfying Reach(xW , yW ). A position
variable tW is then simulated by a node variable t satisfying
Reach(xW , t) ∧ Reach(t, yW ). A comparison t1 ∼ t2 is ex-
pressed as t1 = t2 and a comparison t1 < t2 is expressed as
t1 6= t2 ∧ Reach(t1, t2).

11The star-free regular expressions (sfre) over an alphabet Σ
are defined as follows. Each a ∈ Σ is a sfre; the expression
Σ∗ is a sfre; and if e1 and e2 are sfres, then so are e1 · e2,
e1 ∪ e2, and e1 − e2.

Remark 7. The queries given in the above proof use node
labels, but we can also separate the logics using queries over
unlabeled graphs. To separate CRPQ from WL one can use
“there exist two nodes x and y such that there is both an
even-length and an odd-length walk from x to y”. To sepa-
rate star-free ECRPQ from WL one can use “there exist two
nodes x and y such that there are two walks from x to y of
different lengths”. The proof can be adapted so that graphs
consisting of two disjoint chains joined at their endpoints are
considered. By a slightly more involved simulation we still
have that WL collapses to FO(Reach) on such graphs.

As a counterweight to the previous proposition, we have
inexpressibility on the ERWL side:

Theorem 5. The yes/no queries “there exists a Hamil-
tonian path” and “there exists an Eulerian trail” are not ex-
pressible in ERWL.

Proof. We adapt de Rougemont’s Ehrenfeucht-Fräıssé
(EF) game argument that Hamiltonicity is not expressible in
infinitary logic [17, 28]. Actually, we only need the winning
strategy for the first-order logic game; it will however be
extended so that the spoiler and the duplicator can choose
walks as well as nodes.

The considered family of graphs is that of all graphs Km ×
Cn that are the product graph of a totally disconnected
m-node graph Km with the n-node undirected cycle Cn,
with 1 < m and 1 < n. We thus have nodes v0, . . . , vm−1

from Km, nodes w0, . . . , wn−1 from Cn, undirected edges
(vi, wj) for 0 ≤ i < m and 0 ≤ j < n, and undirected edges
(wj , wj+1 mod m) for 0 ≤ j < m. The edges are symmetric,
so the pairs just described as well as their converses belong
to the graph.

It can be verified that Km×Cn is Hamiltonian if and only if
m ≤ n+ 1. However, the duplicator has a winning strategy
in the n-round EF game on Km×Cn and Km′×Cn for any
m,m′ ≥ n, showing that Hamiltonicity is not expressible in
FO on graphs.

We now observe that the winning strategy can be expanded
to the case where we extend the universe of each structure
with the set of all walks on that graph, and expand the
vocabulary with the predicates from, to, andR for all regular
relations R, in accordance with the semantics of ERWL.
Clearly, ERWL boils down to FO on these extended and
expanded structures.

The reason why the strategy extends to the walk-extended
structures is the following. Suppose the spoiler chooses a
walk w from node v1 to node v2 in one of the structures.
Let v′1 and v′2 be the nodes in the other structure that the
duplicator would choose in response to the point moves v1

and v2. Now there always exists a walk w′ from v′1 to v′2
in the other structure of exactly the same length as w, and
this is the walk move that the duplicator will respond with.
This follows from the following claim: Let v1 and v2 be two
nodes in Kn×Cm. Then for every length ` ≥ 3 there exists
a walk from v1 to v2 of length `. We only have to worry
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about lengths, since our graphs are unlabeled (l(v) = ∅ for
each node v), so the alphabet Σ has only a single letter.
Hence walks of the same length have identical traces. Note
also that walks of length one and two (equality and edge)
are already taken care of by the winning condition on point
moves.

The argument for Eulerian trail is very similar, but now we
use the undirected versions of the G(i, j) graphs from the
proof of Theorem 4.

Since Hamiltonicity is expressible in PL and Eulerian trail
is expressible in WL, we obtain from Theorem 5:

Corollary 4. Neither PL nor WL is subsumed by ERWL.

We note though the following:

Proposition 8. Linear WL is subsumed by RWL.

Indeed this follows immediately from Lemma 1 and the ex-
pressibility of first-order logic on strings by star-free regular
expressions.

Paths versus walks in regular walk logics. Just like we
have considered the variant PL of WL that has a path-based
rather than a walk-based semantics, we can consider path
semantics for ERWL and its fragments. We denote the re-
sulting variant of ERWL by ERPL. For (E)CRPQs, how-
ever, which are established names and already have a P in
them, we will denote the path-based variants by pCRPQ
and pECRPQ.

The apparent increase in complexity of path-based versus
walk-based regular walk queries has been reported recently
[4, 30]. We complement these results with some initial ex-
pressivity results. Much remains open, however.

Recall that PL is subsumed by WL simply because one can
express in WL that a walk is a path. This does not go
through for ERWL:

Theorem 6. ERPL is not subsumed by ERWL.

Proof. We work over a one-letter alphabet Σ = {a}
(equivalently, A = ∅). The query “the longest path has
even length”12 is expressible in ERPL by ∃P (even(P ) ∧
¬∃Q longer(Q,P )), where even is the regular expression (aa)∗

and longer is the regular expression
[
a
a

]∗[ a
⊥
]+

. This query

is not expressible in ERWL because it returns true on Kn×
Cn but false on Kn+1×Cn, using the graphs indistinguish-
able in ERWL we have already seen in the proof of Theo-
rem 5.

12This query is NP-complete [21], while the data complexity
of ERWL is in P [6], but in absence of a proof of P 6= NP
we still have to prove inexpressibility in ERWL.

We leave open whether ERWL is subsumed by ERPL. We
can show though that Eulerian trail is still not expressible
in ERPL. We omit the proof which is a modification of the
proof of Theorem 5.

We also have an analogue of Theorem 6 on the CRPQ level:

Theorem 7. pCRPQ is not subsumed by ECRPQ.

Proof. Consider the pCRPQ

Q← (aa)∗(x, y), (aa)(y, x)

which expresses that there is an even cycle in the graph. To
see thatQ is not expressible in ECRPQ we consider for any n
the cycle Cn of size n. There is a homomorphism h from C2n

to Cn which goes once over C2n while going twice over Cn.
Moreover, this homomorphism extends to a homomorphism
h̄ of the structures extended and expanded with all walks, as
in the proof of Theorem 5. Specifically, we can always map
a walk w from v1 to v2 in C2n to a walk h̄(w) from h(v1) to
h(v2) of exactly the same length, by letting h̄(w) go around
in Cn twice as often as w goes around in C2n. As in the
proof of Theorem 5, since we are working with a one-letter
alphabet, identical lengths guarantee that all regular rela-
tions are preserved, so h̄ is indeed a homomorphism. Since
ECRPQ is subsumed by positive-existential first-order logic
on these expanded and extended structures, and positive-
existential first-order logic is preserved by homomorphisms,
we have that when Q is expressible in ECRPQ and Q is
true on C2n then also Q is true on Cn. For odd n this is a
contradiction.

We leave open whether the even cycle query is expressible in
the more powerful logic ERWL. Note though that in ERWL
one can express that a walk W is a shortest path from node
x to node y. In particular, on cycle graphs as used in the
above proof, ERWL can express path quantifiers. So at least
another proof would be needed.

Infinite versus finite walks for regular walk logics. As
with WL∞, we can add ∃∞ quantifiers to ERWL and its
variants and use appropriate notions of regular relations for
infinite words. (Of course, the ‘to’ predicate will never apply
to an infinite walk variable, but the ‘from’ can.) Then again
the question of relative expressiveness can be asked. We
leave this question largely untouched; we only note that the
proof idea of Theorem 2 readily applies to show the following
analogue:

Proposition 9. CRPQ∞ is no more powerful than CRPQ.

7. POSITIVE-EXISTENTIAL WL
Given the popularity of unions of conjunctive queries (equiv-
alent to positive-existential logic [1]), it appears useful to
consider the positive-existential fragment of WL, where only
existential quantification is allowed and the only boolean
connectives are ∧ and ∨. A small caveat is that we must add
the edge predicate E, or equivalently, the successor predi-
cate t2 = t1 + 1 on positions, because to express these in
core WL we need negation.
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Our result is that in this case, there is no difference between
infinite versus finite, and the resulting expressive power is a
very natural one. Recall that FO(Reach) is the extension
of first-order logic on graphs with the reflexive-transitive
closure of the edge predicate in a new predicate Reach. In
general, FO(Reach) is strictly subsumed by WL and even
by PL. We now see that the positive-existential fragments
of WL and FO(Reach) coincide, but that paths are now
strictly stronger than walks:

Theorem 8. The positive-existential fragments of WL and
WL∞ are equivalent and equivalent to the positive-existential
fragment of FO(Reach). The positive-existential fragment of
PL is strictly more powerful.

Proof. In this proof we mostly omit the adjective ‘positive-
existential’ which applies everywhere in the proof. FO(Reach)
can be translated in the other logics simply by translating
each predicate Reach(x, y) to x = y ∨ ∃W∃tW1 ∃tW2 (t1 <
t2 ∧ t1 ∼ x ∧ t2 ∼ y).

We can translate WL∞ to WL as follows. Consider a for-
mula ∃∞W ψ with ψ a conjunction of atoms (disjunctions
can be brought to the top and each disjunct treated sepa-
rately). We can equivalently express this as ∃W ψ′ where ψ′

is obtained from ψ by adding a position variable lW that is
stated to be strictly larger than all position variables of sort
W in ψ, and stating that from l a cycle is reachable:

∃C∃tC1 ∃tC2 ∃tC3 (t1 < t2 < t3 ∧ l ∼ t1 ∧ t2 ∼ t3).

In this way all infinite quantifiers can be eliminated.

We can translate WL to FO(Reach) as follows. Consider a
conjunction of atoms ψ in WL. By making a disjunction
of all possible completions, we may assume that the con-
junction is complete in the sense that all position variables
of a same walk variable are totally ordered by the < predi-
cate. We construct a conjunction of atoms ψ′ in FO(Reach)
by treating each position variable as if it were a node vari-
able; replacing each predicate t1 < t2 by Reach(t1, t2); and
replacing each comparison t1 ∼ t2 by t1 = t2. We claim
that the existential closure ∃̄ψ of ψ is equivalent to ∃̄ψ′. To
prove the claim, let G be a graph. First consider a WL as-
signment α on G, appropriate for ψ, such that G,α |= ψ.
We can turn α into an FO(Reach) assignment α′ on G by
defining α′(tW ) to be the node in G under position α(t)
in walk α(W ). Then G,α′ |= ψ′. Conversely, consider an
FO(Reach) assignment α′ on G such that G,α′ |= ψ′. We
can define a WL assignment α on G by mapping each walk
variable W to a walk that joins all paths implied by pred-
icates Reach(tW1 , tW2 ) together in the order consistent with
the ordering on W ’s position variables given in ψ. We then
map the position variables accordingly.

Finally we must give a query expressible in positive-existential
PL that is not expressible in positive-existential FO(Reach).
Note that yes/no queries in the latter logic are preserved un-
der homomorphism. Such a query is the following:

∃P∃tP1 ∃tP2 ∃tP3 (t1 < t2 < t3 ∧ a(t1) ∧ c(t2) ∧ d(t3)).

To see the inexpressibility, consider the following two graphs:

dbcba d

c

ba

There is a homomorphism from the left graph to the right
graph, but the left graph satisfies the query while the right
graph does not.

8. CONCLUSION
As a conceptual contribution we have proposed Walk Logic
(WL) as a framework for the investigation of the expres-
sive power of path query languages for graph databases. We
have identified two themes that challenge our understanding,
namely, finite versus infinite walks, and paths versus walks.
We have shown that our theory is workable by showing vari-
ous results that compare the expressive power of path query
languages. At the same time we have identified a number of
open problems for further research. We repeat a few here:

• What is the precise data complexity of WL? Is it sub-
sumed by another natural powerful query language?

• Is WL∞ strictly more expressive than WL? The same
question can be asked for HCTL∗ and regular walk
logics.

• Characterize the expressive power of HCTL∗ on finite
graphs.
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