
Efficient Concept-based Document Ranking

Anastasios Arvanitis
∗

#1, Matthew Wiley #2, Vagelis Hristidis #3

#University of California, Riverside, CA, USA
1tasos@cs.ucr.edu 2mwile001@cs.ucr.edu 3vagelis@cs.ucr.edu

ABSTRACT
Recently, there is increased interest in searching and computing the
similarity between Electronic Medical Records (EMRs). A unique
characteristic of EMRs is that they consist of ontological concepts
derived from biomedical ontologies such as UMLS or SNOMED-
CT. Medical researchers have found that it is effective to search
and find similar EMRs using their concepts, and have proposed so-
phisticated similarity measures. However, they have not addressed
the performance and scalability challenges to support searching and
computing similar EMRs using ontological concepts. In this paper,
we formally define these important problems and show that they
pose unique algorithmic challenges due to the nature of the search
and similarity semantics and the multi-level relationships between
the concepts. In particular, the similarity between two EMRs is
a function of the minimum semantic distance from each concept
of one document to a concept of the other and vice versa. We
present an efficient algorithm to compute the similarity between
two EMRs. Then, we propose an early-termination algorithm to
search for the top-k most relevant EMRs to a set of concepts, and
to find the top-k most similar EMRs to a given EMR. We experi-
mentally evaluate the performance and scalability of our methods
on a large real EMR data set.

1. INTRODUCTION
Adoption and usage of Electronic Medical Records (EMRs) has

become commonplace in healthcare organizations. An EMR con-
tains systematic documentation of health care delivered to a pa-
tient over a period of time. Each medical record includes a variety
of information recorded by health care providers, such as progress
notes, lab results, discharge summaries, medication, problem lists
etc. Figure 1 shows an excerpt of a clinical note describing a patient
visit. A large part of an EMR is free text that contains numerous
medical terms. In an effort to standardize EMRs many ontologies
have been developed that describe medical concepts and their asso-
ciations, like MeSH, RxNorm and SNOMED-CT. Links between a
term that appears in an EMR and ontological concepts can be cre-
ated using structured data entry tools [4] or by parsing the text of

∗Anastasios Arvanitis is currently affiliated with the Vanderbilt Institute for
Clinical and Translational Research (VICTR)

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

“Patient here for follow up diabetes care. Computer print out of blood sugar shows
average of 201 with 1.7 tests. There is hypoglycemia about 2-3 times a week. Current
Medications: - CELLCEPT 500MG po twice daily - FROSEMIDE 80MG po daily”

Figure 1: Excerpt of a clinical note

Figure 2: A subgraph of the SNOMED-CT ontology

clinical notes using NLP tools like cTAKES [26] or MetaMap [1].
Several types of relationships exist between these terms that are

captured in the ontology structure. For example, in Figure 2 repre-
senting a small part of the SNOMED-CT ontology, a “heart valve
finding” is a type of “cardiac finding”. Some medical terms can
also be synonymous, e.g. “heart attack” and “myocardial infrac-
tion” represent the same ontology concept. Previous studies [18,
21] have shown that leveraging these concept associations can sig-
nificantly improve the effectiveness of free-text search on EMRs.
For instance, consider the query “aortic valve stenosis”. Intuitively,
documents that do not contain the actual query terms, but contain
similar concepts such as “thrombosis”, “embolus” or slightly more
general ones such as “heart disease” or “heart valve finding” can be
considered as relevant to the query. Thereby, documents are rou-
tinely viewed in medical literature as sets of concepts [10, 13, 17,
18, 21, 32] and several sophisticated measures have been proposed
to quantify concept-concept similarity [3, 19, 20, 31].

Concept-based similarity search has proved to be beneficial in
other domains as well. Lord et al. [14] compare genes and pro-
teins based on the similarity of their functions that is captured in
the Gene Ontology (GO), rather than based on their sequence simi-
larity. The similarity between two gene representations can be used
in order to predict gene functions or protein interactions [20].

Therefore, in this work we adopt the view of a document as a set
of ontological concepts, as proposed in the biomedical literature,
although we do recognize that also considering the free text that is
not associated with concepts has the potential to further improve
the retrieval quality. We study two query types: relevance and sim-
ilarity queries, which are the most frequent in practice. As an ex-

403 10.5441/002/edbt.2014.37

ample of a relevance query, consider a clinical researcher searching
an EMR database for patients that qualify to participate in a clinical
trial for a new breast cancer treatment. Specific symptoms and past
treatments for breast cancer, which can be represented as a set of
concepts, may qualify the patient for the trial. Thus, the researcher
wishes to find the most relevant patient records with respect to a set
of medical concepts. As an example of a similarity query, a physi-
cian who wishes to be assisted in finding the right medical treat-
ment for a patient can search a database of EMRs for patients with
similar clinical indicators such as vital signs or medical history. Pa-
tient similarity assessment is also a very important task in the con-
text of patient cohort identification for comparative effectiveness
studies [28]. The key difference between the two aforementioned
query types is that for relevance queries, we are not concerned with
the concepts of the returned EMRs that are not related to the query
concepts. In contrast, for similarity queries we care about the two-
directional similarity between the query EMR and result EMRs.

In a relevance query (hereafter termed RDS for Relevant Doc-
ument Search), the user specifies a query that consists of a set of
concepts with the goal to retrieve the k most relevant documents
(e.g., EMRs). In a similarity query (termed SDS for Similar Doc-
ument Search), the user inputs a query document dq with the goal
to retrieve the k most similar ones. In order to evaluate each query
type, we derive a ranking of documents that depends on the simi-
larity between the query concepts (or query document respectively)
with documents in the collection. This distance similarity is a
function of the similarities of individual concepts. According to
previous studies [17, 20], complex distance metrics do not clearly
improve the correlation with the results provided by domain ex-
perts, whereas they affect efficiency [9]. Therefore, we adopt a
simple distance metric represented as the shortest path connecting
two concepts [23]. Further, for measuring the distance between two
EMRs we use the document-document similarity measure proposed
by Melton et al. [17], where the similarity between two documents
is a function of the minimum semantic distance from each concept
of the one document to a concept of the other and vice versa.

Each ontology may contain thousands of concepts that can be as-
sociated with several paths. For instance, SNOMED-CT ontology
has a size of 300K concepts with up to 29 paths per concept; the
UMLS metathesaurus contains over 2.9 million concepts. Thus, ef-
ficiency and scalability challenges arise. However, according to a
recent work [9] and to the best of our knowledge, previous works
on similarity metrics have serious limitations in terms of perfor-
mance. Motivated by this, in this work we take a first step towards
improving the efficiency and scalability of concept-based retrieval.

A baseline method is to precompute the distance of each concept
with all documents in the collection and build an inverted file with a
distance-based sorting for each postings list. After that, a top-k al-
gorithm (e.g., Threshold Algorithm (TA) [7]) can be applied to find
the k documents with the minimum distances. Although building
such an index offline is feasible, applying TA for SDS queries is
very inefficient. Due to the dual nature of the document-document
distance, whenever TA examines a document, the postings lists for
each concept in that document also need to be accessed and the
distances from the query document determined. Since each posting
list provides sequential access, in the worst case we would have to
access all documents in each list (refer to Section 4.1 for details).

In an effort to address these shortcomings, we propose a uni-
form methodology to evaluate both RDS and SDS queries. Our
query evaluation technique consists of two parts: (i) calculating
query-document distances using the distances of the concepts they
contain, and (ii) ranking documents based on their distance from
the query. For the first part we propose an algorithm termed DRC
that reduces the cost of query-document distance calculation from

O(n2) toO(nlogn) where n is the number of concepts in the query
or examined document. Using a variation of the Radix Tree, our al-
gorithm constructs a subgraph of the ontology that contains only
the query and document concepts and uses this index to efficiently
calculate the query-document distance.

For ranking documents, we present an algorithm for retrieving
the k most relevant (resp. similar) documents, following a parallel
branch and bound traversal of the ontology starting from the query
concept nodes. Our processing strategy balances the costs associ-
ated with distance calculation and graph traversal by probing the
DRC algorithm for a document only if it is highly likely that it will
belong to the query results. For this purpose we propose an error
estimation function for the semantic distances. Essentially, the er-
ror estimation measures how close the currently calculated distance
of a document is to its actual distance based on the subset of query
nodes already “covered” by the document. Thus, we avoid examin-
ing documents with large error estimate, such as those that “cover”
only a few query concepts (recall that each document might contain
hundreds or thousands of concepts in total).

An additional advantage of our method is that it does not require
any distances precomputation. Our algorithm can integrate new
documents into its computation on-the-fly; i.e., when a new patient
arrives at the point-of-care, we can instantly add his or her EMR to
our database. In contrast, TA would have to update every concept
inverted index with the distance from the newly added EMR.
Contributions: The contributions of this paper are as follows:
• We define two important and challenging types of queries on

concept-rich document corpuses, i.e., relevance and similarity.
• Based on a variation of a Radix tree, we propose an algorithm

to reduce the cost of evaluating document-document distances
from O(n2) to O(nlogn).
• We present a threshold-based algorithm for efficiently identi-

fying the k most relevant/similar documents.
• We provide a thorough experimental evaluation of our meth-

ods on a real EMR database. Our results show that our algo-
rithms significantly outperform baseline strategies in terms of
performance and scalability.

Outline: The rest of the paper is structured as follows. Section 2
gives a review of the related work and Section 3 provides some
technical background and defines the semantic distances and se-
mantic similarity queries. In Section 4, we present an algorithm for
efficiently calculating document-query and document-document dis-
tances. We employ these distance methods for our algorithm pre-
sented in Section 5, which is used to evaluate both query types.
Section 6 reports an experimental evaluation of our methods and
Section 7 concludes the paper and discusses future work.

2. RELATED WORK
Fernandez et al. [9] provide a comprehensive survey of semantic-

based searching approaches that have been proposed in the past.
One classification of these approaches is based on the query model
followed; some approaches utilize structured ontology query lan-
guages such as SPARQL, whereas others assume a keyword search-
ing paradigm. In an effort to combine the flexibility of keyword
search with the expressiveness of structured queries, Pound et al.
[22] propose a hybrid approach where keyword queries are dis-
ambiguated to structured queries based on the vocabulary of the
knowledge base. Our approach falls into the keyword search cate-
gory. Additionally, we also address the case of semantic similarity
queries where the input is a document instead of a set of keywords.

For keyword-based searching, ontology-based query expansion
techniques have proved very beneficial for improving the retrieval
quality [5]. For instance, Matos et al. [16] follow a concept-

404

oriented query expansion methodology to search biomedical pub-
lications by expanding gene concepts related to the query with re-
lated concepts such as protein and pathway names. Likewise, query
expansion techniques have been applied by Lu et al. [15] on the
PubMed database to significantly improve the results’ precision.

In order to address some of the arising performance challenges,
[2] and [29] propose to index together terms that appear frequently
in common in user queries. Their approach requires additional
space and does not consider the semantic distance between con-
cepts, thus it cannot be used to rank documents based on their dis-
tances from the query terms, which is very useful if an ontology is
available for the domain. Ding et al. [6] studied index optimiza-
tion by grouping terms that appear in the subtree of a taxonomy.
Concept-instance relationships were used to apply query substitu-
tions, e.g., the query term “pet” may be replaced by “cat” or “dog”.
Compared to this work our focus is on query evaluation, rather
than index maintenance. Further, our methods are not limited to
concept-instance taxonomies but can be used in DAGs in general.

XOntoRank [8] considers keyword search against a corpus of
XML documents with ontological references. XOntoRank returns
subtrees that (i) either contain or (ii) are associated with the query
terms through the ontological references. XOntoRank will not re-
turn any partial matches and it cannot be used on “bi-directional”
distance functions such as the one proposed by Melton et al. [17].
Tao et al. address the problem of finding nearest neighbors in XML
trees [27]. Given a query node q and a keyword w, a nearest key-
word (NK) query returns the node that is the nearest to q among all
nodes associated with w. The authors present an indexing scheme
that allows answering NK queries efficiently. However, in our sce-
nario the query keywords are not known apriori. Further, the pro-
posed method cannot be applied for document-document similarity
queries where bidirectional distance metrics apply.

In order to measure the semantic distance between ontology con-
cepts, several metrics have been proposed; these metrics have been
reviewed thoroughly [3, 19, 20, 31]. In [3] semantic measures are
generally categorized as either: (i) structured-based or (ii) informa-
tion content-based. Structured-based metrics exploit the geometri-
cal structure of the ontology, such as the length of the shortest path
connecting two concepts [23], or the depth of the concepts in the
hierarchy [30], etc. Information content-based approaches capture
the amount of information content shared by two concepts. In-
formation content depends on the probability of occurrence of any
descendant node of c [24]; i.e., it is proportional to the size of c’s
subtree including c. Resnik [24] and Lin [12] proposed different
distances that measure the information content of the least com-
mon ancestor (LCA) of two nodes compared with the information
content fully associated with the individual concepts. According
to previous user studies with domain experts [17, 20], complicated
distance metrics do not clearly improve the retrieval effectiveness,
therefore in this work we adopt the shortest path distance metric
as proposed by [23] for measuring concept-concept distance and
the similarity metric proposed by [17] as a measure of similarity
between documents that contain ontological concepts, since it has
been shown to be effective for medical records.

3. PRELIMINARIES
In the following section we present the notation and the seman-

tic distance measures that are used throughout this paper and we
formally define the two query types targeted by our algorithms.

3.1 Ontologies and Radix Trees
Concept Ontology. Let D be a document corpus, where each doc-
ument consists of terms derived from a vocabulary V . Let C ⊆ V

Figure 3: A labeled DAG representing an ontology

be the set of terms that are mapped to concepts derived from an
ontology, where each ci ∈ C is associated either with a single term
or with several terms (synonyms) from V .

In this work we will focus on domain ontologies that describe
concept hierarchies, which is the type of ontology typically found
in the medical domain. For instance, MeSH descriptors are orga-
nized in a hierarchical structure that allows searching at various lev-
els of specificity, whereas the Gene Ontology is a Directed Acyclic
Graph (DAG). In general a concept hierarchy is represented as a
Directed Acyclic Graph (DAG) G = {C,E}, where C is the set
of nodes representing concepts and E is a set of edges between
concepts representing relationships such as is-a, part-of, etc.

In Figure 3 every path from the root to a concept ci ∈ C is en-
coded using the Dewey Decimal Coding. Dewey is a prefix-based
scheme where if a node cj is a child of ci and l{ci} is the label of a
path from the root to ci, then the path label of cj is l{ci}.j, where
j ∈ {1, 2, . . . , |children(ci)|}.
Radix Trees. A trie index is a data structure used to store strings,
where each path represents a unique string. In order to reduce the
space consumption of tries, various techniques have been proposed
including path compression or adaptive indexing of the internal
nodes of the trie [11]. In case of path compression, nodes with
only one child can be merged with their child, yielding a space-
optimized index known as a Patricia or Radix Tree. In this paper
we use a Radix index to represent a document as a set of concepts.
Since our ontology is a DAG, each concept can be associated with
several paths, therefore our index is not a tree but a DAG. The
Radix DAG maintains the set of path labels to each concept in the
document. Note that we only merge children that represent a con-
cept in the document with parents that do not represent any con-
cept in the document. Figure 4 shows the Radix tree for document
d = {F,R, T, V } using the ontology from Figure 3. The concepts
contained in the document are denoted with squares. Nodes B, E,
G, and J have been merged into one node with edge label 1.1.1.2.
In Section 4, we describe a variation of the Radix DAG to speed up
the calculation of distances between nodes in the ontology.

3.2 Semantic Distances
Let the semantic distance between ci, cj ∈ C be defined as

D(ci, cj). In this work we focus on the case where the semantic
distance between two concepts is their shortest path distance, as
proposed in [23] and evaluated on medical records in [3]. Note that
we consider a path as valid, only if it passes through a common

405

Figure 4: Indexing d = {F,R, T, V } using a Radix DAG

ancestor of ci, cj . For instance, the shortest path distanceD(G,F)
is not 2 but 5 because it has to pass through one of their common
ancestors, A.

Next, we build on the concept-concept distance definition and
define document-concept, document-query and document-document
distances. First, we define the distance between a document d ∈ D
and a concept c ∈ C as Ddc(d, c)1. Ddc(d, c) is equal to the dis-
tance of c from the nearest concept in C that is associated with d:

Ddc(d, c) = min
ci∈d

D(ci, c) (1)

Given a query consisting of a set of concepts q = {q1, ...qn}, de-
fine the distance of a document d from the query q as Ddq(d, q)2,3:

Ddq(d, q) =
n∑
i=1

Ddc(d, qi) (2)

We define the semantic distance between two documents as
Ddd(d1, d2). For this purpose we adopted the symmetric inter-
patient distance function as proposed by Melton et al. [17], where
we assumed that all concepts have equal weights. Thus, computing
Ddd(d1, d2) requires two calculations: one for deriving d2 starting
from d1, and another for deriving d1 starting from d2; i.e., we cal-
culate the distance of any concept in d1 from the nearest concept
found in d2 and vice-versa, while normalizing by the number of
concepts in the document:

Ddd(d1, d2) =

∑
ci∈d1

Ddc(d2, ci)

|C1|
+

∑
cj∈d2

Ddc(d1, cj)

|C2|
(3)

where |C1|, |C1| represent the number of concepts in documents d1
and d2 respectively. Note that unlike the document-query distance
(Equation 2), Equation 3 is symmetric.

3.3 Similarity Queries
Now we introduce two important queries that arise when search-

ing on a collection of documents that contain concepts derived from
a domain ontology:

Definition 1 (Relevant Document Search - RDS). Given a set of
query concepts q = {q1, ..., qn}, a document collection D and a
positive integer k, determine the set D′ ⊂ D, such that |D′| = k
and ∀d′ ∈ D′, d ∈ D − D′, Ddq(d′, q) ≤ Ddq(d, q).

Definition 2 (Similar Document Search - SDS). Given a query
document dq , a document collection D and a positive integer k,
determine the set D′ ⊂ D, such that |D′| = k and ∀d′ ∈ D′, d ∈
D − D′, Ddd(d′, dq) ≤ Ddd(d, dq).

As mentioned in the introduction, RDS are suitable for exploratory
queries, where the user is looking for documents relevant to a set of
concepts. Recall the clinical researcher seeking qualifying candi-
dates for a clinical trial. In this case, it is not important if a patient’s
1
dc is used to denote that function Ddc measures document-concept distance as op-

posed to concept-concept distance forD, and is not related to variables d and c.
2
dq denotes document-query distance.

3When merging the distances (scores) of documents produced by multiple queries (i.e.
in query expansion)Ddq(d, qi) needs to be normalized with the size of qi.

record contains additional concepts not specified in the query, as
long as the patient record is associated with some of the query con-
cepts. On the other hand, SDS are appropriate for patient similarity
queries, which have an inherent symmetric property.

4. DISTANCE CALCULATION ALGORITHM
We now discuss document-query and document-document dis-

tance calculation. In Section 4.1 we describe the limitations of the
baseline methods; in Section 4.2 we present a data structure, termed
D-Radix, which we use in Section 4.3, where we propose our algo-
rithm for calculating distances between documents efficiently.

4.1 Baseline Strategies
One approach for calculating document-query and document-

document distances is to precompute all pairwise concept-concept
distances. The space required to maintain these distances would be
O(|C |2). Even if it were possible to build this index, at query time,
for each examined document we have to select the concepts with
the minimum distances and calculate the distances based on Equa-
tions 2 or 3. Assuming nq , nd concepts in the query and the doc-
ument, we must calculate O(nqnd) distances for each examined
document. Unfortunately, a typical EMR may contain thousands of
concepts; in this case the naïve approach is not an option.

Another baseline method is to calculate offline the minimum dis-
tance of each concept from all documents in the collection based
on Equation 1, which would require O(|D||C |) space, where |D|
is the size of the collection; |D| can be in the millions and |C | is
2.9 millions for the UMLS metathesaurus. Then we could build
a postings list for each concept by sorting the (doc_id, distance)
pairs in ascending order. After that, we could apply the threshold
algorithm [7] to find the k documents with the minimum distances
for the RDS query type. However applying a threshold algorithm
for SDS queries poses several challenges. First, due to the dual
nature of the document-document distance, whenever the threshold
algorithm examines a document, the postings lists for each con-
cept contained in that document also need to be accessed, and the
distances from the query document determined. Since the post-
ings lists provide sequential access, in the worst case for each list
we should access O(D) elements (documents). Further, the query
document itself may contain thousands of concepts, thus we would
have to traverse thousands of lists in parallel and maintain interme-
diate results in memory. Even worse, the lower bound threshold
used by TA would assume that a partially examined document does
not contain any concept other than those found so far, which does
not allow for effective pruning in practice for the SDS query case.

4.2 The D-Radix Index
In order to address the scalability shortcomings of the baseline

methods, in Section 4.3 we propose a more efficient algorithm for
computing document-query and document-document distances. In
contrast with baseline methods, our method does not require any
precomputation of distances. Distance calculation is conducted at
query time by utilizing a variation of the Radix that we introduce,
termed D-Radix DAG (Distance-Radix DAG). Given a document d
and a query q, a D-Radix DAG indexes all concepts that exist in
either d or q. Additionally, each node contains the node’s distance
from the nearest node in d and q respectively. More formally:

Definition 3. Given two sets of concepts d and q, a D-Radix DAG
Td,q is a DAG G(C[Ddc(d, ci), Ddc(q, ci)], E), where there is a
node ci ∈ C for every common prefix found in c ∈ d ∪ q and
if ∃!e{cj , ck} and cj , ck /∈ d ∪ q then cj , ck are merged into ci.
Ddc(d, ci) and Ddc(q, ci) represent the distances of node ci from
the nearest cd ∈ d and cq ∈ q respectively, as given in Equation 1.

406

Example 1. Figure 5(g) shows an example of a D-Radix DAG for
a document d = {F,R, T, V } and a query q = {I, L, U}. Doc-
ument and query concepts are represented with squares and trian-
gles respectively. Each node is associated with two numbers: the
first number is the distance from the nearest document concept, and
the second one is the distance from the nearest query concept. 2

Assuming that we have such an index structure available, then in
the case of an RDS query, in order to calculate Ddq(d, q) we can
apply Equation 2 using the nearest document distance attached to
each of the query nodes. Distances from the nearest query nodes
are ignored. Hence, we get Ddq(d, q) = Ddc(d, I)+Ddc(d, L)+
Ddc(d, U) = 4 + 2 + 1 = 7. Similarly, in the case of a SDS
query with dq = {I, L, U}, we can calculate Ddd(d, dq) based on
Equation 3 where we use the distances from the nearest document
node attached to each of the query nodes and the distances from the
nearest query node attached to each of the document nodes.

Apart from having two distances associated with each node, a
significant difference of the D-Radix index compared to the Radix
Tree is that in a D-Radix two concept-nodes are not merged, even
if there is no branch in any of the two nodes. In particular, we only
merge children that represent a concept in the document or query
with parents that do not represent any concept in the document or
query. For instance, in a Radix Tree nodes R and U would have
been merged; in the D-Radix they are kept separate.

4.3 The DRC Algorithm
DRC Overview. The DRC (D-Radix Construction) algorithm con-
sists of a construction and a tuning phase. The construction phase
builds a D-Radix DAG for indexing query and document concepts.
All shortest distances are initially set to∞ with one exception; if
the inserted node is a document concept then the shortest distance
from the document is set to 0, whereas if it is a query concept then
the shortest distance from the query is set to 0. Once the index
has been constructed, DRC propagates the shortest distance infor-
mation by executing a bottom-up traversal followed by a top-down
traversal. The distance information for a node is updated based on
the minimum of (i) its distance, (ii) and the distance from its chil-
dren or parents plus the length of the edge. We show that DRC
calculates query-document and document-document distances in
O((|Pq| + |Pd|) log(|Pq| + |Pd|)) time, where Pq and Pd rep-
resent the number of paths leading to concepts from the query and
the document respectively.
D-Radix DAG Construction. Constructing a D-Radix DAG is
quite more complex compared to the construction of a Radix tree.
The main reason is that, since we have to build a DAG rather than
a tree, each step involves the insertion of both a node and a path
to that node. Each inserted path has to be matched with edges that
already appear in the index. Further, each partial match (path ad-
dress) has to be checked against the set of nodes already inserted to
the index, since it may define an alternative path to such a node. In
that case, the insertion algorithm has to avoid adding a path twice,
such that duplicate paths will not be propagated to the subtree. For
the same reason, an already inserted edge may be split. We ex-
amine some of these cases based on a running example presented
next. The details of inserting a path address are explained in the
next paragraph. Algorithm 1 shows the complete pseudocode of
DRC for the RDS query case. The SDS case is similar except that
(i) we use the distances from both document and query and (ii) the
distance is calculated based on Equation 3.
Path Insertion. Insertion for the D-Radix DAG is similar to that of
Radix trees, except that a path may define a node already contained
in Td,q . Td,q is a hash of nodes, where each node contains zero or
more pointers to other nodes in the hash; these pointers represent
child edges. Td,q also contains a pointer to the root node, which

Algorithm 1: DRC Algorithm for RDS Queries
Input: d: a document, q: a query
Output: Ddq : document-query distance
Variables: Td,q : a D-Radix DAG on d, q,
Pd: lexicographically sorted list of Dewey addresses for each cj ∈ d,
Pq : lexicographically sorted list of Dewey addresses for each qi ∈ q,
l{nd}: next Dewey address from Pd, l{nq}: next Dewey address from Pq

1 begin
2 //Index Construction Phase;
3 retrieve Pd; retrieve and sort Pq ;
4 insert(root) into Td,q ;
5 l{nd} := Pd.first; l{nq} := Pq .first;
6 while (Pd.hasNext or Pq .hasNext) do
7 if (l{nd} ≤ l{nq}) then
8 cn := nd;
9 InsertPath(l{nd}, Td,q);

10 l{nd} := Pd.next;

11 else
12 cn = nq ;
13 InsertPath(l{nq}, Td,q);
14 l{nq} := Pq .next;

15 if cn ∈ q then
16 Dq(q, cn) := 0;

17 else
18 Dq(q, cn) :=∞;

19 //Tuning Phase;
20 //Traverse Td,q bottom-up;
21 foreach cj ∈ Td,q do
22 Dq(d, cj) := min{Dq(d, cj),min

ck
{Dq(d, ck)+D(cj , ck)}};

23 for all ck where ck is a child of cj ;

24 //Traverse Td,q top-down;
25 foreach cj ∈ Td,q do
26 Dq(d, cj) := min{Dq(d, cj),min

ck
{Dq(d, ck)+D(ck, cj)}};

27 for all ck where ck is a parent of cj ;
28 if (cj ∈ q) then
29 Ddq(d, q) := Ddq(d, q) +Dquery(d, cj);

30 returnDdq(d, q);

is created during initialization of Algorithm 1. Thus, the insertion
algorithm starts at the root and traverses Td,q until all pointers have
been updated correctly. Pseudocode for path insertion is given in
Function InsertPath.

Let ni be the node to be inserted with path address l{ni}. Ex-
ecution begins by initializing the variables: u = ε, v = l{ni},
and cn = Td,q.root (lines 2-4). Function InsertPath maintains the
invariant that u is a common prefix of l{ni}, and v is the suffix of
l{ni} not matched by u. cn is used to keep track of the current
node in the traversal (line 6); u defines a path to node cn in Td,q .

While variable v is not equal to ε, l{ni} has not been fully in-
serted into Td,q (line 5). Hence, we examine each child edge of cn,
seeking an edge that shares a common prefix with v (lines 5-10).
Only one such edge may exist. If no such edge exists, then ni is a
child of cn with edge label v (lines 11-13). Otherwise, v contains
a prefix exactly equal to m, or v shares a prefix with m that is not
equal to ε orm. If v contains a prefix exactly equal tom, then u, v,
and cn are updated to reflect traversal from cn to n (lines 14-17).
This is accomplished by concatenatingm to u, removing the prefix
of m from v, and setting cn = n.

If v shares a prefix with m that is not equal to ε or m, then the
edge between cn and n must be modified to include the LCA of
l{ni} and Td,q . Thus, the child edge from cn to m is removed
(line 19). Let variable lcp be equal to the Longest Common Pre-
fix (LCP) of v and m (line 20). The path defining the LCA is u
concatenated with lcp (line 21). Once we have the Dewey address
of the LCA, we look up its corresponding node identifier (line 22).
Next, we add a child edge from cn to the LCA with lcp as the edge
label (line 23). Then an edge is added from the LCA to node n

407

(a) After step 2. (b) After step 4. (c) After step 6. (d) After step 8.

(e) The D-Radix DAG with the initial distances. (f) The D-Radix DAG after the bottom-up traversal. (g) The D-Radix DAG after the top-down traversal.

Figure 5: Running example of the DRC algorithm

with edge label m.substring(lcp.length + 1) (line 24); plus one
removes the “.” trailing the lcp string. If the LCA is not equal to
ni, then we also add a child edge from the LCA to ni with edge
label v.substring(lcp.length + 1) (lines 25-26); again, plus one
removes the “.” trailing the lcp string.
Example 2. Consider d = {F,R, T, V } from Figure 3 and q =
{I, L, U}. Pd and Pq are listed in Table 1. First, DRC retrieves
the lists and inserts a root node into Td,q . In the first step, DRC
processes I with address 1.1.1.1. A node for I is created along
with an edge from A to I . Next, DRC processes R with address
1.1.1.2.1.1. After matching 1.1.1.2.1.1 with 1.1.1.1, DRC splits
edge 1.1.1.1 into 1.1.1 (the common prefix) and 1. Thus, DRC will
also insert node G with address 1.1.1, and insert the remaining
path address to R as an edge 2.1.1. The resulting D-Radix DAG
is shown in Figure 5(a). In the third step, DRC processes U with
1.1.1.2.1.1.1, which subsumes 1.1.1.2.1.1 (node R), thus it inserts
an extra edge from R to U as well as node U .

Node Labels Step #
Pd

R 1.1.1.2.1.1 2
V 1.1.1.2.2.1.1 4
F 3.1 5
R 3.1.1.1.1 6
V 3.1.1.2.1.1 8
T 3.1.2.1.1.1 9

Pq
I 1.1.1.1 1
U 1.1.1.2.1.1.1 3
U 3.1.1.1.1.1 7
L 3.1.2.2 10

Table 1: Dewey path address
lists for DRC

In the fourth step, DRC
has to process node V with
1.1.1.2.2.1.1. This step
splits the edge between G
and R with 1.1.1.2 (node
J) as the LCA; V (2.1.1) is
added with J as the parent
(Figure 5(b)). In the fifth
step, node F with address
3.1 is added with the root
as the parent. In the sixth
step, DRC processes node
R with address 3.1.1.1.1.
Node R already exists in

Td,q , but an edge between F and R is missing. Thus, DRC adds
this edge as shown in Figure 5(c). The seventh step processes node
U with address 3.1.1.1.1.1. This address is completely matched
in Td,q , thus Td,q is not modified. The eighth step processes node

V with address 3.1.1.2.1.1. By matching this address, the DRC
algorithm decides that the edge between F and R has to be split
into addresses 3.1.1, 1.1 and 2.1.1. DRC performs a lookup and
finds out that 3.1.1 corresponds to node J which already appears
in Td,q . Therefore the edge between F and R is modified to be be-
tween F and J but no new node will be created. Also, DRC finds
out that address 2.1.1 (node V) already appears in Td,q . The result
of this step is illustrated in Figure 5(d). The ninth step adds node T
as a child of node F . Finally, in the tenth step DRC processes node
L with address 3.1.2.2. By matching this address, DRC has to split
the edge between F and T and insert 3.1.2 (node H) as a parent
of T and L. The result of the tenth step with the initial distances
assigned to each node is illustrated in Figure 5(e). 2
Distances Tuning. Obtaining the shortest distance for each node
requires a bottom-up traversal followed by a top-down traversal.
Let Dq symbolize the distance from the nearest query node; then
the distance at each node is recursively updated as:

Dq(d, cj) = min{Dq(d, cj),min
ck
{Dq(d, ck) +D(ck, cj)}} (4)

∀ck where ck is a child of cj for the bottom up traversal, and a
parent of cj for the top-down traversal. A similar formula is used
for computing distances from document nodes for an SDS query.
Correctness. Let u, v be two nodes of Td,q . One of the following
conditions holds: (i) u is a descendant of v, or (ii) u is an ancestor
of v, or (iii) u and v share a common ancestor. Executing a bottom-
up and a top-down traversal always propagates the correct distance
information for u and v in the first two cases. Further, recall from
Section 3.1 that valid paths must pass through a common ancestor.
Based on the order of the traversals all distance information is only
propagated along valid paths that contain the common ancestor of
two nodes. Since Td,q has only one root, the common ancestor of
any u, v is always visited. Therefore in the third case u and v will
always have the correct distance information.

Figure 5(e) shows the D-Radix DAG from Example 2 after the
completion of the construction phase of DRC. The bottom-up traver-

408

Function InsertPath
Input: ni: the node to insert, l{ni}: Dewey address for ni,
Td,q : a D-Radix DAG on d, q
Variables: u: common prefix of l{ni}, v: suffix of l{ni} not contained by u,
cn: node from Td,q defined by address u

1 begin
2 u := ε;
3 v := l{ni};
4 cn := Td,q .root;
5 while v 6= ε do
6 m := null; n := null;
7 foreach edge ej pointing to node nchild from cn do
8 if ej .sharesPrefixWith(v) then
9 m := ej ;

10 n := nchild;

11 ifm is null then
12 cn.addChild(ni, v);
13 v := ε;

14 else if v.containsPrefix(m) then
15 u := u.concat(“.” +m);
16 v := v.substring(m.length + 1);
17 cn := n;

18 else
19 cn.removeChildEdge(m);
20 lcp := LCP(v,m);
21 LCApath := u.concat(“.” + lcp);
22 LCAnode := FindNodeByDewey(LCApath);
23 cn.addChild(LCAnode, lcp);
24 LCAnode.addChild(n,m.substring(lcp.length + 1));
25 if LCAnode 6= ni then
26 LCAnode.addChild(ni, v.substring(lcp.length + 1));

27 v := ε;

sal propagates these distances up to the root, as shown in Figure
5(f). The top-down traversal propagates these distances down to
the leaves of the D-Radix DAG, as illustrated in Figure 5(g).

After finishing both the construction and tuning steps, the final
distance is computed using Equation 2 or 3, depending on the query
type. Distances are progressively calculated during the top-down
traversal as each document and query node is visited.
Complexity Analysis. Let Pq and Pd be the sets of path addresses
to concepts of the query and the document respectively. The D-
Radix constructed by DRC will containO(|Pq|+ |Pd|) nodes. The
construction phase loops over each path address. Since the height
of the D-Radix index is log(|Pq| + |Pd|), the construction phase
takes O((|Pq| + |Pd|) log(|Pq| + |Pd|)) time. The traversals re-
quired for the tuning phase are completed inO(|Pq|+|Pd|). Hence,
the total complexity of DRC is O((|Pq|+ |Pd|) log(|Pq|+ |Pd|)).

5. K-NEAREST DOCUMENT SEARCH
ALGORITHM

This section presents our algorithm for evaluating RDS and SDS
queries, termed kNDS (k-Nearest Document Search Algorithm).
We first present the challenges that our problem poses, and a gen-
eral overview of the proposed algorithm. Next, we provide details
regarding the algorithm’s execution.

5.1 Baseline Methods
A naïve approach to evaluate RDS or SDS queries is to calculate

the distances of all documents in the collection from the query (or
query document); and then select k with the minimum distances.
Clearly, this is prohibitively expensive and inefficient. Ideally, we
would prefer to maintain a sorted list of documents ordered by their
semantic distances from the query, such that unexamined docu-
ments would always have a larger distance, thus we could prune
those documents. However, as we discussed in Section 4.1, this
threshold-based approach would require precomputing the distance

of each document in the collection from any concept in the ontol-
ogy, i.e., O(|D||C |) space, and it would not be useful for the SDS
query due to the dual nature of the semantic distance of Equation 3.

5.2 Challenges and tradeoffs
In order to overcome this problem, we propose a solution that

does not require any distance precomputation but exploits a threshold-
based technique to prune irrelevant documents. Our algorithm,
termed kNDS, is based on the idea of query expansion. In particu-
lar, we start our search by considering documents that contain the
exact query terms and then we follow a breadth-first traversal of the
ontology graph to retrieve documents that contain similar concepts.
Our goal is the following: if at some point during the graph traver-
sal we already have found k documents with final distances (i.e.,
we have covered all query nodes and the total distance of each doc-
ument from the query has been determined), then we can prune all
documents for which we have not calculated their exact distances,
as long as their lower bound is greater than of the k already exam-
ined ones. Before delving into the details of kNDS we first explain
how we calculate partial and lower bound distances.

Iteration l + 1, l ≥ 0 examines concepts having distance l from
a query concept. Assume that during iteration l+1 for the breadth-
first search starting from query node qi we traverse a concept node
cj , such that cj is contained in document d and cj is the first con-
cept for document d seen for query node qi. Then, we know that
Ddc(d, qi) = D(cj , qi) = l. If no concept for document d is
found, then the lower bound for the distance Ddc(d, qi), termed
D−dc(d, qi) is equal to l + 1.

Example 3. Consider a query q = {I, L, U} and document d =
{F,R, T, V }. Then, starting a parallel breadth-first search from
each query concept in Figure 3, in the second iteration we examine
nodes: G,M,N,R,H . Only R is contained in d, thus the actual
distance Ddc{d, U} is 1. For the rest of the query nodes it holds
that: D−dc{d, I} = D−dc{d, L} = 2. 2

Let Md(qi, d) be a hash that maps a node qi to a distance value
l if during the breadth-first search starting from query node qi a
concept that belongs to document d has been found with distance l
from qi. For instance in our previous example, during the second
step of the traversal, Md(qi, d) would contain the element {U, 1}.
Note that values for each key in Md are only set once so that Md

maintains the minimum distance from each qi. Then, we define the
partial (currently calculated) Dpartial

dq (d, q) and the lower bound
distance D−dq(d, q) between a document and a query (for RDS) as:

Dpartial
dq (d, q) =

∑
qi∈Md

Md(qi, d) (5)

D−dq(d, q) =
∑
qi∈Md

Md(qi, d) +
∑
qi 6∈Md

(l + 1) (6)

LetM ′d(ci, q) be a hash for document d with a value for ci if and
only if a concept for document d has been found during any of the
breadth first searches for any query node in q; values for each key in
M ′d are only set once, hence M ′d contains the minimum distances.
Then the partial and lower bound distances for SDS are:

Dpartial
dd (d1, d2) =

Dpartial
dq (d2, d1)

|C1|
+

∑
ci∈M′d2

M ′d2(ci, d1)

|C2|
(7)

D−dd(d1, d2) =
D−dq(d2, d1)

|C1|
+

∑
ci∈M′d2

M ′d2(ci, d1) +
∑

ci 6∈M′d2

(l + 1)

|C2|
(8)

409

kNDS proceeds in a branch-and-bound fashion. Starting from
the query nodes, it performs a breadth-first traversal of the ontol-
ogy, retrieves documents that contain the visited concept nodes and
iteratively updates their partial distances using Equations 5 or 7,
depending on the query type. Similarly, it calculates a lower bound
distance based on Equations 6 and 8. Then, we can check whether
some of the documents can be pruned by comparing their lower
bound distance with the partial distances of already examined ones.

The challenge is that during graph traversal, it is highly unlikely
to discover documents that would cover all query nodes early dur-
ing the algorithm execution, especially if the query (or query doc-
ument) contains many terms. Moreover, in general we would like
to avoid calling the DRC algorithm to calculate actual (final) dis-
tances because this is an expensive operation. In fact there is a
tradeoff between the distance calculation cost (DRC execution) and
graph traversal. If we execute DRC too soon we may waste time to
compute the distance of irrelevant documents. On the other hand
if we wait until finding several concepts of a document before run-
ning DRC, this may explode the ontology traversal cost, since non-
visited nodes are kept in a priority queue in memory.

Then when would it be preferable to calculate the actual distance
of a document from the query in order to prune some documents?
To answer this question, kNDS algorithm maintains an error esti-
mate that compares the partial distance of the document with the
document’s lower bound distance based on the following formula:

εd = 1−
Dpartial
dq (d, q)

D−dq(d, q)
(9)

kNDS compares the calculated error with an error threshold εθ .
If the error estimate is lower (i.e., the partial distance yields quite
a good estimate of the actual distance), then kNDS probes DRC in
order to compute the actual distance. Otherwise, kNDS continues
the graph traversal until having a better distance estimation.

Note that determining a good error threshold εθ generally de-
pends on several factors such as: (i) the query type (RDS or SDS),
(ii) the query size, (iii) the ontology characteristics (fanout, average
number of paths to each concept node, etc.), and (iv) the document
collection statistics (e.g., if a document contains concepts that are
close to each other in the ontology, the average number of concepts
per document, etc.). Thereby, we use the error threshold as an in-
put parameter to the algorithm. We include a detailed sensitivity
analysis on this parameter in the experimental section (Section 6).

5.3 The kNDS Algorithm
We first describe the data structures used followed by the details

of the algorithm execution.
Data Structures. kNDS maintains the following data structures:
• A queue, denoted asEc, used to perform breadth-first traversal

of the ontology, where each element contains a concept node
and the corresponding query node from which the traversal
originated, denoted as {cj , qi}.
• A list of documents, denoted as Ld, where each element con-

tains a document d and its partial and lower distances.
• A binary heap Hk of the top-k most similar documents found

so far and their respective distances from the query. This heap
contains documents for which their distances have been deter-
mined; it is ordered in reverse Ddq(d, q).
• A hashset Sd of documents that have been examined.
We also assume the availability of an index that allows us to tra-

verse the ontology efficiently (this would typically fit in memory)
as well as an inverted and a forward index that map concepts to
documents and vice-versa (memory or disk-based).
Algorithm Execution. The algorithm execution consists of two
steps: breadth-first expansion and distance calculation. In the fol-

Algorithm 2: kNDS Algorithm
Input: D: a document collection, q: a query,G: a concept ontology,
k: a positive integer, εθ : a distance error threshold,D(cj): inverted index on cj
Output: the k most similar documents to q
Variables: Ec: nodes’ queue, Ld: a list of documents,
Hk: a heap of the k most similar documents to q,
Sd: a hash of documents that have been examined,
D+
k : the distance of the k-th element inHk from q,

D−: the lower bound of the distance from q of the first element in Ld
1 begin
2 Ld := ∅;Hk := ∅; Sd := ∅;D− := 0;D+

k :=∞;
3 foreach qi ∈ q do
4 Ec.push(qi, qi);

5 Ec.push(∅, ∅);
6 while (D− < D+

k andEc 6= ∅) do
7 while (Ec.head() 6= {∅, ∅}) do
8 Ec.pop()→ {cj , qi};
9 foreach cl: ∃E(cl, cj) ∈ G or ∃E(cj , cl) ∈ G do

10 Ec.push(cl, qi);

11 foreach d ∈ D(cj) and d 6∈ Sd do
12 calculate(D−dq(d, q));

13 Ld.push(d,D−dq(d, q));

14 Ec.pop();Ec.push(∅, ∅);
15 sort(Ld);
16 calculateError(Ld.first)→ εd;
17 while (εd ≤ εθ and Ld 6= ∅) do
18 Ld.removeFirst()→ d;
19 calculate(Ddq(d, q));
20 Sd.push(d);
21 if |Hk| < k then
22 Hk.push(d,Ddq(d, q));
23 Hk.find-min()→ D+

k ;

24 else ifDdq(d, q) < D+
k then

25 Hk.delete-min();
26 Hk.push(d,Ddq(d, q));
27 Hk.find-min()→ D+

k ;

28 Ld.first()→ D−;
29 calculateError(Ld.first)→ εd;
30 foreach di ∈ Hk do
31 ifDdq(di, q) ≤ D− then
32 output di;

33 foreach di ∈ Hk do
34 output di;

lowing we provide details for each step. The complete pseudocode
of the kNDS algorithm is given in Algorithm 2. Additional engi-
neering optimizations are described at the end of this section.
Breadth-first Expansion. Initially all data structures are empty (line
2). Ec is initiated by inserting each qi ∈ q into Ec (line 4). kNDS
performs multiple breadth-first traversals of the ontology starting
from each query node. For each node cj in the queue, we maintain
its distance to the query concept that was the source of cj . We
use this distance to compute the two document distances described
above. In each iteration the following operations are conducted:
• The breadth-first traversal proceeds to the next depth level,

e.g., at iteration l kNDS processes all nodes with distance
(depth) l from any of the query nodes. Note that we enforce
the traversal to follow only valid paths in the ontology (passing
through a common ancestor), as we discussed in Section 3.1.
• For each traversed node cj , the node’s neighbors are inserted

to Ec (lines 9-10). Ec maintains a natural ordering of ele-
ments via insertion. In order to distinguish elements that have
different depths, we include a null insertion {∅, ∅} after fin-
ishing each iteration (lines 5 and 14). Note that a node can
be visited several times during the ontology traversal. Label-
ing a visited node is more expensive, since it would require to
maintain a large structure with all (cj , qi) already visited.

410

Iteration Sd Ld Ec Hk D− D+
k

0 ∅ ∅ {F, F}{I, I}{∅, ∅} ∅ 0 ∞
0 ∅ {d1, 1}{d2, 1}{d3, 1} {D,F}{H,F}{J, F}{G, I}{M, I}{N, I}{∅, ∅} ∅ 0 ∞
1 {d1, d2} {d3, 1} {D,F}{H,F}{J, F}{G, I}{M, I}{N, I}{∅, ∅} {d2, 2}{d1, 4} 1 4
1 {d1, d2} {d3, 2}{d6, 2}{d4, 3} {A,F}{K,F}{L, F}{O,F}{P, F}{E, I}{J, I}{∅, ∅} {d2, 2}{d1, 4} 1 4

END {d1, d2, d3, d6} {d4, 3} {A,F}{K,F}{L, F}{O,F}{P, F}{E, I}{J, I}{∅, ∅} {d2, 2}{d3, 2} 3 2

Table 2: Running example of the kNDS algorithm

• For each traversed node cj , all documents that contain cj and
have not been examined before (i.e., they are not found in Sd)
are inserted toLd (lines 11-13). If the document already exists
in Ld, its lower bound distance as well as the current distance
are updated (line 12). For each document, we also maintain
the query nodes from which the search originated, so that we
do not increase a distance if the document is associated with a
second concept that originated from a covered query node.

Distance Calculation. After completing a breadth-first expansion,
kNDS proceeds to analyze collected documents. First, it sorts Ld
by increasing D−dq(d, q) (line 15). Then, it calculates the estima-
tion error (εd) for the first element (line 16). If εd ≤ εθ , where
εθ is the error threshold, then the document must be analyzed, i.e.,
the document is removed from Ld, added to Sd and the actual dis-
tance is calculated by calling upon DRC (lines 17-20). Otherwise,
kNDS proceeds to the next breadth-first iteration. Each document
for which the actual distance has been determined is compared with
the documents contained in a min-heapHk, whereHk contains the
k documents with the currently lowest actual distances. If the new
document’s distance is lower than the distance of the k-th element
of Hk (or |Hk| < k), then the new document replaces the last
element of Hk (or it is inserted into Hk respectively) (lines 22-
26). Documents from Ld are examined iteratively until either Ld is
empty or εd > εθ (line 17) or D− is higher than the distance of the
k-th element in Hk (line 6); in the last case kNDS terminates and
the contents of Hk are returned as the query results (lines 33-34).
Example 4. Following Example 2, assume an RDS query with
q = {F, I}, εθ = 1, and k = 2 on the document collection and the
ontology depicted in Figure 3. Table 2 shows the contents of vari-
ous data structures during the execution of kNDS. Every two rows
represent one iteration of the main while loop. The first row shows
the contents at the start of the respective iteration and the second
row shows the contents after retrieving the neighbors for each node
in Ec and updating Ld. kNDS begins by adding the query nodes to
Ec, and initializing D− = 0, D+

k = ∞ (row 1). The algorithm
then pushes each neighbor of F and I into Ec, and initializes Ld
(row 2). The top-2 documents (d1 and d2) are then analyzed and
added to Hk and Sd; D− is set to 1 using the lower bound dis-
tance of d3, and D+

k is set to 4 using the actual distance of d1 (row
3). Since D− < D+

k , kNDS continues to the next iteration. Next,
kNDS processes Ec adding the respective neighbors and updates
Ld (row 4). Note, node J has now been added twice to Ec; once
for F and once for I . Also note that although G is a parent of J ,
the BFS for query node F did not push {G,F} toEc; this is due to
the valid path rules discussed in Section 3.1. kNDS then examines
Ld and sets D− to 3 using the lower bound of d4, and D+

k to 2
using the final distance of d3. Since D− ≥ D+

k , kNDS terminates
and outputs the contents of Hk as the top-2 results.
Correctness. We will show that kNDS algorithm always outputs
the top-k documents with the lowest distances from the query. Any
document d ∈ D can be in one of the following 3 states: (i) al-
ready examined, i.e. contained in Sd, (ii) partially visited, i.e. con-
tained in Ld, or (iii) not visited yet. Recall that kNDS maintains a
min-heap Hk with the documents found so far that have the low-
est distances. Whenever the final distance of a new document is
calculated (line 19), i.e. the documents moves from state (ii) to
(i), if Ddq(d, q) < D+

k then the new document replaces the old

one in Hk (lines 24-26). This step ensures that @d ∈ Sd − Hk :
Ddq(d, q) < D+

k . Now recall that partially visited documents are
kept in Ld sorted on their lower distance (lines 11-13). kNDS con-
tinues as long as the first document in Ld has D− < D+

k (line
6). When kNDS terminates, since Ld is sorted in ascending lower
distance, all documents in Ld will have D− > D+

k so they can
be safely discarded. Finally, let l be the distance of the concepts
examined in the breadth-first traversal at the current iteration from
q. Then for RDS it holds that ∀d ∈ Ld, d′ ∈ D − {Sd ∪ Ld},
D− ≤ D−dq(d, q) ≤ |Q|(l + 1) ≤ D−dq(d

′, q) ≤ Ddq(d
′, q).

A similar inequality holds also for the SDS query based on Equa-
tions 7 and 8. Therefore, when kNDS terminates it holds D+

k ≤
D− ≤ Ddq(d

′, q). In other words, any not visited document will
always have a greater distance than those already examined.
Complexity Analysis. The worst case for the cost of kNDS hap-
pens when the number of iterations (line 6) is maximized or all
documents in the corpus have to be examined (each document’s
distance is computed). Each iteration performs a breadth-first step,
so the maximum number of iterations is equal to the longest path
in the ontology L. Normally |D| > L. Further, based on our
analysis in Section 4.3, each distance calculation has a O((|Pq| +
|Pd|) log(|Pq| + |Pd|)) cost where Pq and Pd represent the sets
of path addresses to concepts of the query and the document re-
spectively. Therefore, assuming |D| iterations in the worst case the
complexity of kNDS will beO(|D|(|Pq|+ |Pd|) log(|Pq|+ |Pd|)).
Note that the cost for the heap reorganization in each iteration (line
15) is dominated by the cost of the distance calculation, since in
practice the number of documents kept in the heap is |D′| << |D|.
Optimizations. In order to speed up the algorithm execution we
also apply the following optimizations:
• When updating the distances of a document inLd, if the calcu-

lated lower distance grows larger than that of the k-th element
in Hk, then the document is removed from Ld.
• Since the size of Ld might grow large, instead of sorting Ld

after each iteration we build a partial sorted heapHd that con-
tains n ≥ k+1 documents ordered by D−dq(d, q). The reason
for enforcing n ≥ k+1 is that in the most favorable scenario,
the first k elements in the heap will be the final query results.
In that case, we need to know the lower bound distance of the
next element in order to check the termination condition.
• As we discussed before, for each document d we maintain the

number of distinct query concepts or their neighbors for which
we have found that d is associated with. If all query nodes are
found already then we can use the current distance instead of
applying the DRC algorithm.
• kNDS can progressively output results fromHk during the al-

gorithm execution. If the distance of a document d in Hk is
lower than or equal to the lower bound distance of the first el-
ement in Ld (or Hd), then d must be in the top-k most similar
documents and can be reported as a query result (lines 30-32).

6. EXPERIMENTAL EVALUATION
6.1 Experimental Setting
Dataset. Experiments were conducted using a subset of the MIMIC
II clinical database [25]. This subset consists of 42,144 clinical
notes over 983 patients. There are four different types of notes
available for each patient: (i) MD Notes (816 documents), (ii)

411

Patient Radiology
Total Documents 983 12,373

Total Concepts 16,811 8,629
Avg. Tokens/Document 8,184 273.7

Avg. Concepts/Document 706.6 125.3

Table 3: Document Corpus Statistics
Parameter Range
Number of Results (k) 3, 5, 10, 50, 100
Query Size (Q) 1, 3, 5, 10

Table 4: Values for parameters; default values shown in bold

Nursing Notes (28,133 documents), (iii) Radiology Reports (12,373
documents), and (iv) Discharge Summaries (822 documents).

For our experiments, we used two different document collec-
tions. Our purpose was to examine the performance of our methods
on data sets with different characteristics in terms of size, average
number of concepts contained per document, total number of dis-
tinct concepts in the collection, etc. The first document collection
that we used consists of the Radiology Reports documents; we re-
fer to this corpus as RADIO. For the second collection we con-
structed a patient records corpus. For this purpose, we treated all
clinical notes associated with a patient as a single document. Since
the new document includes all different types of notes, it contains
more concepts and these concepts are more densely distributed in
the ontology. On the other hand, RADIO contains fewer concepts
per document and it less cohesive. Table 3 reports some statistics
for the two document collections used in the experiments.

We used the SNOMED-CT ontology where we considered only
edges that represent is-a relationships. In total, there are 296,433
concepts. Each node has an average of 4.53 children. On average
there are 9.78 path addresses per concept with length equal to 14.1.

In order to link the medical documents with the SNOMED-CT
ontology we applied the following procedure. First, we analyzed
each document in order to identify and expand abbreviations based
on a public list of medical abbreviations. Next, we used the MetaMap
tool [1] in order to identify UMLS concepts associated with terms
in the clinical notes. We indexed only UMLS concepts that corre-
spond to SNOMED-CT concepts. Negation of concepts was identi-
fied using MetaMap as well. According to domain experts, negated
concepts are not relevant when measuring inter-patient similarity
[21]. Therefore we only consider concepts with positive polarity;
e.g., we exclude concepts contained in phrases such as “absence of
bradycardia”. We have built an index of the ontology, an inverted
index on concepts and a forward index to map documents to con-
cepts. Depending on the collection and ontology sizes and memory
availability, the indexes can be memory or disk-based. In our ex-
periments the inverted and forward indexes where loaded into a
MySQL database for indexing, thus we will also include perfor-
mance analysis that measures the database access times.
Experimental setup. All experiments were carried out on an Intel
i3 2.1 GHz CPU with 6 GB RAM running Windows 7 and MySQL
5.2.4. All algorithms were implemented in Java 7 with a 4 GB heap
and a 64-bit JVM. In order to avoid memory overflow when insert-
ing too many elements into the nodes’ queue during a breadth-first
expansion step, we set a maximum queue size of 50K elements.
Whenever the size of the queue reaches this limit, the graph traver-
sal halts and kNDS is forced to examine the collected set of doc-
uments. In practice, the queue size limit can be eliminated by im-
plementing kNDS as a MapReduce job. Each mapper would be
responsible for one iteration of the BFS traversal starting from one
query node; reducers would do the book-keeping and execute the
distance calculation algorithm, if needed.
Parameters. Table 4 describes the parameters under investigation;
default values are shown in bold. For each experiment, we vary

(a)Time vs. nq for SDS (PATIENT) (b) Time vs. nq for SDS (RADIO)

Figure 6: Distance Calculation Time vs. Query Size nq

each parameter while keeping the rest in their default values. Ad-
ditionally, we set a depth and a collection frequency (cf) threshold
such that we exclude generic or very common concepts (such as
“disease” or “blood” respectively). For depth threshold we used a
default value of 4, i.e., we excluded all concepts in a depth level that
is lower than 4. This includes over 99% of the concepts. We found
that the number of concepts filtered by the cf threshold depends on
the distribution of the dataset. Therefore we used µ+ σ as the de-
fault cf threshold for each dataset, where µ is the estimated mean
and σ is the estimated standard deviation; µ+σ includes about 92%
of the concepts. In order to examine the statistical significance of
our results, we ran a two-tailed t-test for the times reported in Fig-
ure 9 with two sample variances and found out that the execution
times measured are statistically significant with p-value < 0.001.

6.2 Experimental Results
Previous works [17, 21] have studied the effectiveness of the dis-

tance metrics that we have used, hence our experiments will fo-
cus on efficiency. Our goal is to examine the performance of dis-
tance calculation separately from the document search algorithm.
Thus we conducted two experiments: (i) the first one evaluates
the performance on different algorithms for calculating document-
document distances, (ii) the second one measures the benefit from
our pruning strategy on query evaluation. We discuss which algo-
rithms we compare at the beginning of the respective experiment.
Distance Calculation Experiments. The goal of the first experi-
ment is to measure the scalability of the distance calculation meth-
ods against the query size, i.e., the number of concepts in the query
document. As we discussed in Section 4.1, building a matrix for all
concept-concept distances would impose a large space requirement.
Thus, in order to have a fair comparison, we compared two methods
that do not require index maintenance, i.e., DRC against a baseline
that calculates the document to document distances at the query
time by computing the respective minimum concept distances. Our
experiments examine the scalability of the two methods when vary-
ing the query size nq over a workload of 5000 randomly generated
query documents with nq concepts each. Figure 6 shows the aver-
age time required by the baseline (BL) and the DRC algorithm for
the two document collections that we examined. As expected, in
all experiments when the query size grows larger, the time required
by the baseline methods grows quadratically. In contrast, DRC al-
gorithm takes less than two seconds in the worst case, and grows
with nlogn rate as shown in Section 4.3 (nq is proportional to Pq).
Document Ranking Experiments. This experiment compares kNDS
against a baseline method that does not apply any pruning of docu-
ments. In order to isolate the performance gains achieved because
of the documents pruning that kNDS applies, we used the DRC al-
gorithm as the distance calculation component for both kNDS and
the baseline method. Note that we did not consider a TA [7] vari-
ation as a competitor algorithm since it is impractical for the SDS
query due to the problems that we discussed in Section 4.1. We
conducted experiments for both RDS and SDS queries. All query
experiments measure the average times taken over 100 randomly
generated queries; in the case of SDS, documents were randomly

412

picked from the corpus. Each experiment measures user time spent
for distance calculations using DRC, ontology traversal time (ap-
plies only for kNDS) and the I/O time of each algorithm.
Sensitivity Analysis vs. Error Threshold. In the first set of exper-
iments, we conduct a sensitivity analysis vs. the error threshold
that is used an input parameter input of the kNDS algorithm. The
examined range of values covers two extreme variations of kNDS;
εθ = 0 represents a strategy where the algorithm waits until having
visited all concepts of a document, i.e. it will calculate an exact
distance for this document. On the other hand, when εθ = 1, then
kNDS would directly calculate the actual distance of a document
the first time it visits any concept node linked with the document.

We first examine the performance of kNDS for different val-
ues of εθ when varying the query size for the RDS query type.
Plots 7(a)-7(b) show the measured times for the PATIENT collec-
tion. An interesting observation is that in this setting the optimal
value for εθ is always 0, i.e., the best strategy is to find all query
nodes before examining a document. The reason is that the PA-
TIENT collection contains many concepts that are very close to
each other. Thereby, it is highly likely that another document that
contains a neighbor node may belong to the query results instead.
Thus, in most of the queries, it is more efficient to wait until finding
all query nodes in a document. Another important factor is that be-
cause of the large number of concepts contained in each document,
the DRC calculation part is considerably expensive and dominates
the total time for larger query sizes. This is another reason to avoid
redundant distance calculations as much as possible.

Plots 7(c)-7(e) show the results for the RADIO collection. In
contrast with PATIENT documents, we notice that in this case the
query times are highly dependent on the error threshold and they
are generally lower for larger thresholds. Further, the distance cal-
culation cost is rather small. The reason is that RADIO documents
contain fewer concepts. These concepts are generally sparsely dis-
tributed in the ontology graph. Thus, it is sufficient to find some
documents that contain only a small subset of the query concepts
in order to probe the distance calculation. Since the distance cal-
culation is not expensive, making a false judgment does not affect
the performance. As expected, the best error threshold is larger
for larger query sizes (plot 7(f)) requiring less query nodes to be
found before calculating distances. Plots 7(g) and 7(h) plot the
query times measured for various error thresholds for SDS query.

Regardless of the error threshold used, kNDS outperforms the
baseline algorithm, where the baseline times are shown in plots 9(a)-
9(d). However, the results of the above analysis allow us to find a
good setting for the error threshold. In the following experiments
we set the default error thresholds for the PATIENT and RADIO
collections to 0.5 and 0.9 respectively. The percentage of exam-
ined documents (i.e. documents for which DRC was probed) that
were eventually part of the top-k query results justifies our settings
for the error threshold parameter. Specifically, for RDS in the PA-
TIENT dataset, 99% of the documents for which the actual distance
was calculated were returned in the top-k results. For SDS queries
over 60% of the examined documents were reported as results; this
percentage could be improved by increasing the node queue limit
that may cause excessive calls to DRC.
Scalability vs. Query Size. Next we varied the query size nq and
measured the execution time needed by the baseline and kNDS on
a workload of RDS queries. Results are depicted in plots 8(a)-
8(b). As expected, processing times increase with the size of nq
with rate roughly nlogn, which supports the complexity analysis
in Section 5.3 (nq is proportional to Pq). Note that lower query
sizes cause fewer calls to DRC so kNDS can often terminate before
exceeding the queue limit. In all settings kNDS is the most efficient
algorithm with a large performance gain over the baseline.

(a) Time vs. εθ for RDS and nq =
3 (PATIENT)

(b) Time vs. εθ for RDS and nq =
5 (PATIENT)

(c) Time vs. εθ for RDS and nq =
3 (RADIO)

(d) Time vs. εθ for RDS and nq =
5 (RADIO)

(e) Time vs. εθ for RDS and nq =
10 (RADIO)

(f) Optimal Error Threshold vs.nq
for RDS (RADIO)

(g) Time vs. εθ for SDS (PA-
TIENT)

(h) Time vs. εθ for SDS (RADIO)

Figure 7: Query Time vs. Distance Error Threshold εθ

(a)Time vs. nq for RDS (PATIENT) (b) Time vs. nq for RDS (RADIO)

Figure 8: Query Time vs. Query Size nq

Performance Analysis vs. Number of Results. Finally we exam-
ined the behavior of the algorithms for evaluating RDS and SDS
queries when varying the number of results k. Plots 9(a)-9(d) show
the results for the two document collections used. The baseline
algorithm has to calculate the distances for all documents in the
collection; thus its performance is independent from k whereas
kNDS uses a termination condition in order to prune some docu-
ments. In all experiments, kNDS outperforms the baseline method
with a broad margin. For example, for the default setting where
k = 10 in the PATIENT collection, kNDS takes less than 1 sec to
run, whereas the baseline method takes 104 secs. The performance
gains of kNDS are more significant in SDS, e.g., for k = 10, kNDS
is 99% faster. Again notice that for the PATIENT collection, most
of the processing time is used for distance calculation; this is due
to the large number of concepts contained in each patient record.

413

(a) Time vs. k for RDS (PATIENT) (b) Time vs. k for SDS (PATIENT)

(c) Time vs. k for RDS (RADIO) (d) Time vs. k for SDS (RADIO)

Figure 9: Query Time vs. Number of Results k

Finally, as shown in the plots, the performance of kNDS is not af-
fected significantly by k. For instance, for k = 100 and a SDS
query, the kNDS algorithm is 89% faster than the baseline.

7. CONCLUSION AND FUTURE WORK
In this work we studied two important and challenging types of

queries arising when searching over concept-rich document collec-
tions, i.e., relevance and similarity queries. Such queries are fre-
quently encountered in Electronic Medical Record (EMR) systems.
We proposed an algorithm that reduces the cost of query evaluation
from O(n2) to O(nlogn) by using a variation of the Radix Tree.
We presented an efficient early-termination algorithm to search for
the top-k most relevant/similar documents that avoids redundant
distance calculations following a branch and bound approach. We
experimentally evaluated our algorithms against baseline strategies
on real clinical data and we showcased the advantages of our meth-
ods in terms of efficiency and scalability. In our future work we
plan to combine our methods with IR ranking and explore other se-
mantic distances. We also aim to study how non is-a ontological
edges can be incorporated into the similarity function and how this
would affect the algorithms’ performance.
Acknowledgments. This research has been partially supported by
NSF Grant IIS-1216007.

8. REFERENCES
[1] A. R. Aronson. Effective mapping of biomedical text to the UMLS

Metathesaurus: the MetaMap program. In Proceedings of AMIA
Symposium, pages 17–21, 2001.

[2] H. Bast and I. Weber. Type less, find more: fast autocompletion
search with a succinct index. In SIGIR, pages 364–371, 2006.

[3] M. Batet, D. Sánchez, and A. Valls. An ontology-based measure to
compute semantic similarity in biomedicine. Journal of Biomedical
Informatics, 44(1):118–125, 2011.

[4] S. Bleeker, G. Derksen-Lubsen, A. van Ginneken, J. van der Lei, and
H. Moll. Structured data entry for narrative data in a broad specialty:
patient history and physical examination in pediatrics. BMC Medical
Informatics and Decision Making, 6:29–35, 2006.

[5] C. Carpineto and G. Romano. A survey of automatic query expansion
in information retrieval. ACM Computing Surveys, 44(1):1–50, 2012.

[6] B. Ding, H. Wang, R. Jin, J. Han, and Z. Wang. Optimizing index for
taxonomy keyword search. In SIGMOD, pages 493–504, 2012.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware. In PODS, pages 102–113, 2001.

[8] F. Farfán, V. Hristidis, A. Ranganathan, and M. Weiner. XOntoRank:
Ontology-aware search of electronic medical records. In ICDE,
pages 820–831, 2009.

[9] M. Fernández, I. Cantador, V. Lopez, D. Vallet, P. Castells, and
E. Motta. Semantically enhanced information retrieval: An
ontology-based approach. Journal of Web Semantics, 9(4), 2011.

[10] N. C. Ide, R. F. Loane, and D. Demner-Fushman. Application of
information technology: Essie: A concept-based search engine for
structured biomedical text. Journal of the American Medical
Informatics Association (JAMIA), 14(3):253–263, 2007.

[11] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree:
ARTful indexing for main-memory databases. In ICDE, pages
38–49, 2013.

[12] D. Lin. An information-theoretic definition of similarity. In ICML,
pages 296–304, 1998.

[13] J. J. Lin and D. Demner-Fushman. The role of knowledge in
conceptual retrieval: a study in the domain of clinical medicine. In
SIGIR, pages 99–106, 2006.

[14] P. W. Lord, R. D. Stevens, A. Brass, and C. A. Goble. Investigating
semantic similarity measures across the Gene Ontology: The
relationship between sequence and annotation. Bioinformatics,
19(10):1275–1283, 2003.

[15] Z. Lu, W. Kim, and W. J. Wilbur. Evaluation of query expansion
using MeSH in PubMed. Information Retrieval, 12(1):69–80, 2009.

[16] S. Matos, J. Arrais, J. Maia-Rodrigues, and J. L. Oliveira.
Concept-based query expansion for retrieving gene related
publications from MEDLINE. BMC Bioinformatics, 11:212, 2010.

[17] G. B. Melton, S. Parsons, F. P. Morrison, A. S. Rothschild,
M. Markatou, and G. Hripcsak. Inter-patient distance metrics using
SNOMED-CT defining relationships. Journal of Biomedical
Informatics, 39(6):697–705, 2006.

[18] R. Moskovitch, S. B. Martins, E. Behiri, A. Weiss, and Y. Shahar.
Application of information technology: A comparative evaluation of
full-text, concept-based, and context-sensitive search. Journal of the
American Medical Informatics Association (JAMIA), 14(2), 2007.

[19] T. Pedersen, S. V. S. Pakhomov, S. Patwardhan, and C. G. Chute.
Measures of semantic similarity and relatedness in the biomedical
domain. Journal of Biomedical Informatics, 40(3):288–299, 2007.

[20] C. Pesquita, D. Faria, A. O. Falcão, P. Lord, and F. M. Couto.
Semantic similarity in biomedical ontologies. PLoS Computational
Biology, 5(7), 2009.

[21] L. Plaza and A. Díaz. Retrieval of similar electronic health records
using UMLS concept graphs. In NLDB, pages 296–303, 2010.

[22] J. Pound, I. F. Ilyas, and G. E. Weddell. Expressive and flexible
access to web-extracted data: a keyword-based structured query
language. In SIGMOD, pages 423–434, 2010.

[23] R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and
application of a metric on semantic nets. IEEE Transactions on
Systems, Man, and Cybernetics, 19(1):17–30, 1989.

[24] P. Resnik. Using information content to evaluate semantic similarity
in a taxonomy. In IJCAI, pages 448–453, 1995.

[25] M. Saeed, M. Villarroel, A. Reisner, G. Clifford, L. Lehman,
G. Moody, T. Heldt, T. Kyaw, B. Moody, and R. Mark.
Multiparameter intelligent monitoring in intensive care II MIMIC-II:
A public-access intensive care unit database. Critical Care Medicine,
39:952–960, 2011.

[26] G. K. Savova, J. J. Masanz, P. V. Ogren, J. Zheng, S. Sohn, K. K.
Schuler, and C. G. Chute. Mayo clinical text analysis and knowledge
extraction system (cTAKES): architecture, component evaluation
and applications. Journal of the American Medical Informatics
Association (JAMIA), 17(5):507–513, 2010.

[27] Y. Tao, S. Papadopoulos, C. Sheng, and K. Stefanidis. Nearest
keyword search in XML documents. In SIGMOD, 2011.

[28] F. Wang, J. Sun, and S. Ebadollahi. Composite distance metric
integration by leveraging multiple experts’ inputs and its application
in patient similarity assessment. Statistical Analysis and Data
Mining, 5(1):54–69, 2012.

[29] H. Wang, Y. Liang, L. Fu, G.-R. Xue, and Y. Yu. Efficient query
expansion for advertisement search. In SIGIR, pages 51–58, 2009.

[30] Z. Wu and M. Palmer. Verbs semantics and lexical selection. In
Proceedings of the 32nd Annual Meeting on Association for
Computational Linguistics, pages 133–138, 1994.

[31] X. Zhang, L. Jing, X. Hu, M. K. Ng, and X. Zhou. A comparative
study of ontology based term similarity measures on PubMed
document clustering. In DASFAA, pages 115–126, 2007.

[32] W. Zhou, C. T. Yu, N. R. Smalheiser, V. I. Torvik, and J. Hong.
Knowledge-intensive conceptual retrieval and passage extraction of
biomedical literature. In SIGIR, pages 655–662, 2007.

414

