
Adaptive Fault-Tolerance for Dynamic Resource
Provisioning in Distributed Stream Processing Systems

Paolo Bellavista
Università di Bologna,

Department of Computer
Science and Engineering,

Bologna, Italy

paolo.bellavista@unibo.it

Antonio Corradi
Università di Bologna,

Department of Computer
Science and Engineering,

Bologna, Italy

antonio.corradi@unibo.it

Spyros Kotoulas
Smarter Cities Technology

Centre,
IBM Research,
Dublin, Ireland

spyros.kotoulas@ie.ibm.com

Andrea Reale
∗

Università di Bologna
Department of Computer
Science and Engineering

Bologna, Italy

andrea.reale@unibo.it

ABSTRACT

A growing number of applications require continuous pro-
cessing of high-throughput data streams, e.g., financial anal-
ysis, network traffic monitoring, or Big Data analytics for
smart cities. Stream processing applications typically re-
quire specific quality-of-service levels to achieve their goals;
yet, due to the high time-variability of stream characteris-
tics, it is often inefficient to statically allocate the resources
needed to guarantee application Service Level Agreements
(SLAs). In this paper, we present LAAR, a novel method
for adaptive replication that trades fault tolerance for in-
creased capacity during load spikes. We have implemented
and validated LAAR as a middleware layer on top of IBM In-
foSphere Streamsr. We have performed a wide set of exper-
iments on an industrial-quality 60-core cluster deployment
and we show that, under the assumption of only statistical
knowledge of streams load distribution, LAAR can reduce
resource consumption while guaranteeing an upper-bound
on information loss in case of failures.

Keywords

data streams processing, fault-tolerance, dynamic adapta-
tion, service-level agreement, IBM InfoSphere Streamsr

1. INTRODUCTION
In recent years, the ability to effectively process Big Data

Streams is becoming increasingly important: the vision of
smarter cities where data from several physical-world sources
are continuously collected, filtered, analyzed, and fed back
to administrators and citizens to assist them in their hour-

∗Part of this work has been developed while the author was
an intern at IBM Research Dublin.

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

by-hour tasks is just one example of the multitude of novel
scenarios where handling large and unbounded flows of in-
formation in real-time is a primary requirement.

Experience with Cloud services [31] has shown that the
possibility to offload the management of computing infras-
tructures to third parties represents an attractive opportu-
nity for both developers and cloud providers. However, in a
cloud environment, the nature of stream processing applica-
tions poses hard challenges to platform providers, including
the ability to offer, at the same time, extreme performance
elasticity in spite of load variations and resiliency to failures,
while keeping costs limited.

From a provider perspective, one major problem lies in
the necessity to handle load fluctuations due to sudden and
possibly temporary variations in the rates of data streams
feeding the hosted applications. If not handled properly,
in fact, load peaks can lead to increased processing latency
due to data queuing and to data loss due to queue overflows.
To avoid these effects, it is necessary to allocate the proper
amount of additional resources for the overloaded applica-
tions, either statically or dynamically when load variations
are detected [4, 8, 22].

Another typical requirement for stream processing appli-
cations is the implementation of fault-tolerance techniques.
In fact, since they usually run for (indefinitely) long time in-
tervals, failures are unavoidable. Many proposals in the lit-
erature have investigated possible fault-tolerance approaches
— including active replication [9, 28], checkpointing [11, 18],
replay logs [6, 16], or hybrid solutions [34] — each providing
different trade-offs between runtime cost in absence of fail-
ures (best-case) and recovery cost. Whichever the adopted
technique, maintaining some form of replication at some
level (software/hardware components, state, or messages)
is a significant overhead in terms of computing resources.

In a large class of applications, however, “perfect” fault
tolerance is not always required, while it is of primary im-
portance to effectively manage temporary load variations.
This is very common, for example, when dealing with Smart
City-generated Big Data. In this context, in fact, large
data streams are produced by many distributed sources —

85 10.5441/002/edbt.2014.09

e.g., mobile phones, ad-hoc sensing devices, or vehicles —
that continuously capture and transmit sensed environmen-
tal features. These data need to be analyzed in real-time,
and results must be promptly delivered to let appropriate
control actions be performed. In this kind of scenarios,
controlled information loss is usually tolerable, given the
common partial information redundancy or overlap of input
streams1. Consider, for instance, an application used to
control traffic light signals based on periodic reports of ve-
hicles’ positions, among other factors. During high traffic
conditions (i.e., high system load), it is clearly preferable
to compute on incomplete information than delay control
decisions, given the high redundancy in reported positions.
At the same time, during low traffic conditions, processing
events with accuracy is still important.
In this work, we investigate the possibility to trade-off reli-

ability guarantees and execution cost, and use the conserved
resources to handle load variations. We propose a novel
method, called Load-Adaptive Active Replication (LAAR),
that dynamically deactivates and activates redundant repli-
cas of application Processing Elements (PE) in order to
claim/release resources and accommodate temporary load
variations. Our technique provides a-priori guarantees about
the achievable levels of fault-tolerance, expressed in terms
of an internal completeness metric that captures the max-
imum amount of information that can be lost in case of
failures. We show that LAAR can be suitably implemented
as a middleware-level layer on top of existing stream pro-
cessing platforms, and we present general architectural and
design guidelines about how to do it efficiently. As a working
proof-of-concept, we describe an implementation of LAAR
on top of IBM InfoSphere Streamsr [13], an enterprise-level
stream processing platform, and we discuss experimental re-
sults about the performance of LAAR on a 60-core IBM
BladeCenterr cluster deployment.
The remainder of the paper is organized as follows: af-

ter reviewing the related literature in Section 2, we present
the considered SLA-aware stream processing service model
in Section 3. In Section 4, we model our middleware and
explain its goals and runtime architecture. Finally, in Sec-
tion 5, we report a wide set of performance results that
quantitatively evaluate the effectiveness of our proposal.

2. RELATED WORK
Techniques for managing load variations have been exten-

sively investigated in the literature, and relevant results have
been produced also in the case of distributed stream process-
ing systems. In fact, unless deployments of these systems are
over-provisioned with resources (an usually undesired solu-
tion because highly cost ineffective), even short variations in
the input rate of external data sources can cause increased
processing latency due to PE queues getting longer, or ran-
dom tuples drops when queues fill up.
A common and very simple solution is to allocate enough

resources to sustain the load for most of the time and then
to avoid (or limit) the growth in latency or random data
drops by introducing load shedding mechanisms [25], which

1In fact, the content of this type of streams is normally both
temporally and spatially redundant, for example, due to sev-
eral sources reporting the value of a feature measured in the
same geographical area, or due to consecutive measurements
of a feature that changes more slowly than the observation
period.

selectively drop tuples at strategic points in the processing
flow to maximize some quality measure [29] or to minimize
the amount of data lost [30].

More sophisticated solutions try to dynamically adapt to
load variations while avoiding to drop any data. A first
common approach is to move PEs between processing hosts
to re-balance the system and accommodate new load condi-
tions [22, 33, 35]. In [4], the authors develop a dynamic re-
source allocation algorithm that automatically re-distributes
resources among PEs to maximize the expected throughput.
More recently, a similar approach has been proposed by [8].
All these solutions effectively manage to handle load vari-
ations when the available resources are sufficient to handle
the total load or, from another perspective, when there is
no hard limit on the runtime cost of the solution.

In [24], the authors propose a dynamic priorities mecha-
nism for the Stream MapReduce system [10] that automat-
ically reduces the execution priority of task replicas during
load spikes. Similarly to our proposal, this mechanisms per-
mits to gather the resources necessary to handle the extra
load; differently from LAAR, the proposed solution does not
provide hard SLA guarantees about the possible information
loss in worst-case failure scenarios and is not able to adapt
the runtime cost of streams applications to their required
fault-tolerance guarantees.

In this paper, we deal with this problem from a differ-
ent and original perspective. Instead of handling load vari-
ation by sacrificing latency (queuing), completeness (load
shedding), or increasing cost (resource over-provisioning),
we collect the resources needed to cope with changing load
conditions by leveraging the flexibility of weaker reliability
requirements included in customer–provider SLAs. LAAR
guarantees that these requirement are enforced at runtime
and minimizes the application execution cost accordingly.

3. SERVICE MODEL
In this section we introduce a PaaS-based [31] stream pro-

cessing service model for the commercial-relevant scenario
where service providers host customers’ applications accord-
ing to a set of service level agreements (SLAs) that define the
expected runtime behavior of hosted applications and the as-
sociated costs and pricing plans. By presenting this model,
we set up the basic terminology that we use throughout the
remainder of this paper, and we state the fundamental as-
sumptions of our LAAR dynamic fault-tolerance approach.

In our model, stream processing services are regulated
by customer–provider contracts composed of (i) the stream
processing application to be executed on the platform, (ii)
an application descriptor that characterizes the application
components and the application input (e.g., its statistical
properties, see the following), (iii) a SLA determining the
targeted runtime quality requirements, and (iv) a pricing
plan that defines the economical conditions under which the
provider runs the customer application with the requested
quality of service.

The stream processing application (or, hereinafter, simply
application) consists of a set of software components and an
application graph. The software components are one or more
Processing Elements (PEs), at least one data source, and at
least one data sink. A PE transforms one or more input data
streams — theoretically unbounded sequences of structured
tuples — into another stream (its output); data sources and
data sinks retrieve input from external sources and write

86

tuples to external destinations, respectively. The application
graph arranges PEs, data sources, and data sinks as vertices
of a directed acyclic graph, connected by edges representing
communication channels. This data-flow based processing
model is very general and can be mapped on the majority
of state-of-the-art data stream management systems from
academia [2, 1, 5, 7] and industries [13, 17, 26, 27].
The application descriptor is a document summarizing,

with a set of concise attributes, the computational behavior
of PEs and the expected characteristics of application input
streams. Similarly to what has been done in the literature
(e.g., [16, 21, 30, 29, 32, 35]), application descriptors sum-
marize PE behavior by using the metrics of port selectivity
and per-tuple CPU cost. To be more specific, we associate
every graph edge going into a PE to a selectivity value and a
per-tuple CPU cost value: selectivity represents the weight
of the contribution of an input data stream on the PE out-
put stream; per-tuple CPU cost is the number of CPU cy-
cles (on a given processing architecture) required on average
to process a tuple from the stream associated to the edge.
For simplicity of mathematical derivation, we assume a lin-
ear load model2, but, with consideration similar to those in
[32], our solution can be extended to nonlinear models as
well. In the following discussion, we assume that PE selec-
tivities and per-tuple CPU costs are either provided by the
customer or extracted by the service provider through a pre-
liminary profiling step [14]. The application descriptor also
includes the expected characteristics of the external data
sources: for each data source, the descriptor contains the
probability distribution function describing the probability
of the source to produce data at different tuple rates. We
assume that the continuous space of possible tuple rates for
each data source has been properly transformed in advance
into a finite number of discrete data rates through, e.g., bin-
ning techniques [12]. Again, this information is specified by
the customer or else inferred from a set of example input
traces that she provides.
A Service Level Agreement (SLA) is a set of clauses spec-

ifying the desired runtime quality characteristics of the ap-
plication. Two possible examples of SLA clauses are max-
imum latency, putting an upper bound on the time taken
to produce an output after all the input data generating it
has been received, or fault-tolerance, defining a guaranteed
application behavior in case of failures.
Finally, the pricing plan determines the provider mone-

tary revenue for running the customer application instance.
We assume continuous processing applications, i.e., applica-
tions that run for an indefinite amount of time. As a result,
we consider a time-based, fixed billing plan, according to
which the customer pays a flat fare per billing period T .
This fare depends on the characteristics of the application,
of its input streams, and on the agreed SLA.
The service provider is expected to deploy and allocate

computing resources so that the constraints imposed by SLA
clauses are satisfied at runtime as long as, within each billing
period T , the characteristics of the external data streams
reflect those specified in the contract ; if they do, the provider
has to pay a penalty in case of SLA violations. The provider
is interested in satisfying the quality requirements imposed

2i.e., the output rate and the total CPU load of any PE
can be expressed as a linear combination of the data source
output rates and the PE selectivities and per-tuple CPU
costs respectively.

PE1 PE2

PE 1 PE 2
Selectivity 1 1
CPU Cost 0.1 s/tuple 0.1 s/tuple

Low Rate High Rate
Source 4 tuples/s 8 tuples/s
PE 1 4 tuples/s 8 tuples/s
Prob. 0.8 0.2

Figure 1: A simple processing scenario. Top: the
application graph. Bottom: concise characteristics
of the application and of its data source. For sim-
plicity, data source and data sink are not shown.

by the SLA, while minimizing resource utilization. In this
work, we assume that the service provider does always her
best to avoid SLA violations.

4. LOAD-ADAPTIVE ACTIVE

REPLICATION
LAAR is a novel and adaptive active replication method

for data streams processing platforms that lets applications
adapt to changing load conditions by temporarily trading
perfect reliability for computational resources. It can pro-
vide guaranteed fault-tolerance levels, measured in terms of
an upper bound on the information loss in case of failures,
called internal completeness and defined in Section 4.3.

Similarly to traditional active replication techniques [16],
LAAR deploys k replicas of every PE in the application data-
flow graph: at any moment, one of the k replicas has the
role of primary, the others are called secondary. Primary
and secondary replicas all receive tuples from the primaries
of their predecessor PEs, and all process them advancing
through the same sequence of internal states. However, only
the primary outputs tuples to the replicas of its successors.
When a primary fails, one of the secondaries is elected as the
new primary; once the failed replica is recovered, its state
is synchronized with the non-failed ones before it becomes
active again as secondary.

Originally, LAAR monitors the input rate of its applica-
tion sources, and it dynamically and automatically activates
and deactivates replicas in order to satisfy two goals:

1. The application deployment is never overloaded.

2. The internal completeness constraint expressed in the
SLA is satisfied.

An application deployment is said to be overloaded when,
for any host, the total CPU cycles per second that would
be needed to execute the PEs assigned to it is bigger than
the available CPU cycles per second. Note that, in an over-
loaded system, tuples accumulate at input queues of PEs
(increasing latency) and are eventually dropped when the
corresponding buffers fill.

4.1 LAAR in a simple application

87

PE1,1 PE2,1

PE1,2 PE2,2

(a)

PE1,1 PE2,1

PE1,2 PE2,2

(b)

Figure 2: (a) Replicated deployment of the appli-
cation of Fig. 1 on two hosts. (b) Dynamic deacti-
vation of replicas by LAAR during a “High” input
configuration.

Before presenting an in-depth analysis of the LAAR model
and its fault-tolerance guarantees, we illustrate the basic in-
tuition behind our approach in a minimal application sce-
nario. Consider the application in Fig. 1: it consists of two
PEs connected in a very simple pipeline; PE 1 processes data
from a single data source (not reported in the figure for the
sake of simplicity) and forwards its output to PE 2, which,
in turn, sends the results of its computations to an external
data sink (also not depicted in the figure). The selectivity
of both PEs is 1, meaning that for every received input tu-
ple they produce one output tuple; moreover, considering
the CPU architecture of the deployment hosts, both PEs
require 100 milliseconds to process an incoming tuple. The
single data source can produce tuples at two different rates:
“Low”and“High”. The“Low”rate is 4 tuples per second and
is active on average for 80% of the time (0.8 probability),
while the “High” rate is 8 tuples per second and is active in
the remaining time intervals (0.2 probability). The applica-
tion is replicated and deployed on two hosts, each hosting a
copy of each PE, as shown in Fig. 2a. It is straightforward
to see that, when the input configuration is “Low”, 80% of
the CPU time available at both hosts will be occupied for
processing tuples. More importantly, when the input con-
figuration is “High”, the application would need 160% of the
total CPU time available, which — of course — is available
only by adding extra resources to the deployment (with an
increased cost).
The basic idea behind LAAR is to monitor the data sources

and, according to the current data rates, to dynamically de-
activate replicas in order to release the resources necessary
to face load variations. For example, Fig. 2b shows how
LAAR could deactivate two replicas of PE 1 and PE 2 dur-
ing a load peak so that the total CPU available will become
enough to handle the new load.
Fig. 3 shows this behavior in a real deployment. We im-

plemented, deployed, and executed the replicated pipeline
application in Fig. 2a on an IBM InfoSphere Streamr de-
ployment consisting of two hosts equipped with a single core
CPU. Fig. 3a reports the CPU usage and input/output rates
of the application in time when static active replication is
used: when the input passes to the “High” configuration
(around 50 seconds from the beginning of the experiment),
the CPUs of the two hosts saturate, and the application is
not able to keep up with the input rate; on the contrary,
by temporarily deactivating replicas during the “High” in-
put configuration, it is possible to save enough resources to
allow the output stream to follow the input (Fig. 3b).
Obviously, if a failure of one of the active PEs occurred

0.00

0.25

0.50

0.75

0 50 100 150 200

C
P
U

T
im

e
(%

)

3.00
4.00
5.00
6.00
7.00
8.00
9.00

0 50 100 150 200

Time (seconds)

T
u
p
le
s
p
er

se
co
n
d

(a)

0.00

0.25

0.50

0.75

0 50 100 150 200

3.00
4.00
5.00
6.00
7.00
8.00
9.00

0 50 100 150 200

Time (seconds)

(b)

Figure 3: (a) CPU Time used by the replicated PEs
— top — and corresponding input and output rate
— bottom. (b) CPU time and input/output data
rate when PE 1 replica 1 and PE 2 replica 0 are
deactivated by LAAR. In the top graphs, different
line styles correspond to different PE replicas; in
the bottom graphs, the solid line corresponds to the
input rate, the dashed one to the output rate.

during a “High” period, part of the input would not be pro-
cessed as expected. As we will clarify in the remainder of
this section, the unique and strong aspect of LAAR is its
ability to quantify a-priori these effects on the overall ap-
plication reliability.

4.2 Model and definitions
An application A consists of a set of components: a set I

of data sources, a set P of PEs, and a set O of data sinks,
which collectively define the set X = I ∪P ∪O = {xi}. The
components in X are arranged in a directed acyclic applica-
tion graph G = (X,E). The set of edges E is described by
the function:

pred : X 7→ P (X) (1)

which, for each component xi, identifies the set of predeces-
sor components {xj} so that xj ∈ pred (xi) ⇔ (xj , xi) ∈ E.

The characteristics of PEs are summarized by the selec-
tivity function δ and the per-tuple CPU cost function γ: for
each couple (xi, xj) so that xi ∈ I ∪ P and xj ∈ P and
that (xi, xj) ∈ E, δ (xi, xj) is the selectivity of PE xj with
respect to the tuples it receives from xi, and γ (xi, xj) is the
per-tuple CPU cost for PE xj to process tuples from xi.

Every data source xi ∈ I can produce output at one rate
among a finite set of input rates Ri. The Cartesian product
C = R1 × . . .×Rt, where t is the number of sources, is the
set of all the possible input configurations. As anticipated in
Section 3, we assume to know PC : C 7→ [0, 1], the probabil-
ity mass function associated to the probability distribution
of different input configurations in time. The output rate of
data source xi ∈ I in a particular input configuration c is
indicated as ∆ (xi, c). In absence of failures, it is straightfor-
ward to derive the expected output rate of each PE in any
input configuration c; for uniformity of notation, we also
indicate this value as ∆ (xi, c) , xi ∈ P .

88

We assume that a PE placement algorithm among the
many described in the literature (e.g., in [21] or [32]), com-
putes a replicated assignment of k replicas of each of the PEs
in P to a set of hosts H = {hi}. We indicate the replicated
set of PEs as:

P̃ = {x̃i,j} (2)

For simplicity of notation, we will use the symbol x̃i,j to
indicate the j-th replica of PE xi. The assignment is repre-
sented by the function:

ϑ : P̃ 7→ H (3)

which maps every PE replica to the host where it is deployed.

For convenience, we also define ϑ−1 : H 7→ P(P̃) such that

ϑ−1 (h) = {x̃i,j ∈ P̃ : ϑ (x̃i,j) = h}.
A replica activation strategy is a function:

s : P̃ × C 7→ {0, 1} (4)

that associates every PE replica – input configuration pair
to one of the two possible active/inactive states.

4.3 The internal completeness (IC) metric
By activating/deactivating PE replicas according to the

current input configuration, LAAR dynamically modifies the
resilience of applications to failures. In order to measure the
effect of LAAR on fault-tolerance guarantees, we define the
internal completeness (IC) metric. Intuitively, given a fail-
ure model that describes how hosts and PEs are expected to
fail and a replica activation strategy s, internal completeness
measures, with respect to the billing period T , the fraction
of total tuples that is expected to be processed in case of
failures compared to the number of tuples that would be
processed in absence of failures.
Let us examine the no-failure scenario (best-case) first:

the total number of tuples that is statistically expected to
be processed by the application PEs during billing period T

is:

BIC = T ·
∑

c∈C,
xi∈P,

xj∈pred(xi)

PC(c) ·∆(xj , c) (5)

Best-case internal completeness (BIC) is the summation of
the contributions of all the application PEs in different input
configurations, weighted by the probability of each configu-
ration to occur in T .
Failure internal completeness (FIC) measures the expected

number of tuples processed given a failure model φ and a
replica activation strategy s. It is defined as:

FIC(s) = T ·
∑

c∈C,
xi∈P,

xj∈pred(xi)

PC(c) · φ(xi, c, s) · ∆̂(xj , c, s) (6)

∆̂(xi, c, s) =

∆(xi, c) if xi ∈ I

φ(xi, c, s) ·
∑

xj∈pred(xi)

δ(xj , xi)∆̂(xj , c, s) if xi ∈ P

(7)

The function φ(xi, c, s) depends on the chosen failure model
and describes the probability that at least one replica of PE
xi is alive and active when the input configuration is c and

the replica activation strategy is s. ∆̂(xi, c, s), instead, rep-
resents the expected output of PE xi under failure model φ,

when the input configuration is c and the replica activation

strategy is s; note that the definition of ∆̂ is recursive, as
the number of tuples produced by a PE depends not only on
its possible failure status (described by φ) but also on the
number of tuples produced by its predecessor (Equation 7).

Internal completeness (IC) is defined as the ratio between
FIC and BIC:

IC(s) =
FIC(s)

BIC
(8)

We choose the IC metric over other possible metrics (e.g.,
output completeness or average replication factor) for two
main reasons. First, IC is easy to understand and measure.
Second, and most relevant, IC captures not only the com-
pleteness of the application output (at the data sinks) but
also the divergence, in a scenario with failures, of the state of
PEs compared to a failure-free scenario, under the assump-
tion that this divergence is proportional to the amount of
tuples that are not processed.

4.4 LAAR replica activation strategies
In LAAR, the information in the application descriptor is

used to compute — off-line and before application deploy-
ment — a replica activation strategy that fits the application
fault tolerance requirements.

The cost minimization problem that is solved to deter-
mine the appropriate replica application strategy, given an
application descriptor, is defined as follows:

minimize
s

cost (s) (9)

subject to:

IC(s) ≥ SLA Constr . (10)
∑

x̃i,h∈ϑ−1(h),

xj∈pred(xi)

γ (xj , xi)∆(xj , c)s(x̃i,h, c) < K ∀h∈H,
∀c∈C (11)

k∑

h=1

s (x̃i,h, c) ≥ 1 ∀xi∈P,
∀c∈C (12)

The cost function in the minimization term represents the
cost, in terms of resources, for a service provider to run
the application using replica activation strategy s and the
replicated assignment defined by ϑ. In this work, we model
the bandwidth available for cluster-local communication as
an abundant resource, and we model our cost function as the
total CPU time used by an application in a billing period T .
It is defined as follows:

cost (s) = T
∑

c∈C,

x̃i,h∈P̃ ,

xj∈pred(xi)

PC (c) γ (xj , xi)∆(xj , c)s(x̃i,h, c) (13)

and is the summation over all PE replicas x̃i,h of the CPU
time they consume in T.

Equation 10 constraints IC to satisfy the requested SLA
value, while Equation 11 states that each host in the deploy-
ment should never be overloaded; K is a constant express-
ing the number of CPU cycles per second available at the
deployment hosts. The last constraint, expressed in Equa-
tion 12, requires that there is at least one active replica of
every PE in every input configuration, and it ensures that
the measured IC value is one in absence of failures.

In order to solve the optimization problem, LAAR con-
siders a simplified failure model φ, based on the following

89

assumptions:

1. In any failure scenario, all PE replicas fail except one.

2. Unless all the replicas are active at some point in time,
the non-failed replica is chosen among the inactive
ones.

3. Once failed, replicas never recover.

or, more formally:

φ(xi, c, s) =

0 if

k∑
h=1

s(x̃i,h, c) < k, x̃i,h ∈ P̃

1 otherwise

(14)

The so defined model will in general overestimate possible
failure conditions (it is highly unlikely that all PE replicas
fail at the same time) and their consequences (normally fail-
ures would be recovered): for these reasons, we also refer
to it as pessimistic failure model. However, this choice of φ
provides two fundamental benefits:

• Since it overestimates the likelihood and effects of fail-
ures, the IC value computed using this model is a lower
bound to the real IC that will be observed on the ac-
tual application deployment (see Section 5.3).

• Its mathematical formulation simplifies the computa-
tion of IC values for different possible replica activation
strategies and hence the optimization complexity.

Note that the solution space of this problem is still very
large, as for every application there are 2|P |·|C|·k possible
replica application strategies. Note also that the IC con-
straint (Equation 10) and the hosts CPU constraints (Equa-
tion 11) that appear in the cost function (Equation 13) de-

pend on ∆̂ (xi, c, s) (Equation 7), which is a recursively de-
fined exponential term. Hence, to find algorithms that can
find optimal or good enough solutions to this problem is
a major technical challenge. In the next section, we will
present our FT-Search solution, a constraint-programming
-based algorithm that shows how to find, in limited time,
good solutions to instances of this problem.
Let us remark again that the optimization phase is per-

formed off-line with respect to the execution of the stream
processing application, so its complexity does not cause any
direct overhead on the application runtime cost, which is,
instead, minimal. In Section 4.6, we describe how LAAR on-
line counterpart can be implemented as a thin middleware
layer requiring little modifications to existing data streams
processing architectures already supporting (static) active
replication.

4.5 FT-Search
FT-Search is a depth-first search algorithm with back-

tracking that explores the tree of the possible PE activation
states for the possible input configurations. Its implemen-
tation limits the search space by considering only two-fold
replication (k = 2), practically restricting its size to 3|P |·|C|.
While exploring the tree, the algorithm prunes branches

that either cannot improve the current best solution (if any)
or that would lead to solutions that violate problem con-
straints. FT-Search uses four pruning strategies to detect
such conditions as soon as possible:

1. Pruning on CPU constraint (CPU). During the explo-
ration of a branch, FT-Search calculates the current
CPU load at any host: if the maximum CPU thresh-
old is violated for any of them, the branch is pruned.

2. Pruning on IC upper bound (COMPL). During the ex-
ploration of a branch, an upper bound on the possible
achievable IC is kept. This value is computed as the IC
contributions provided by the PE replicas correspond-
ing to already explored nodes plus the maximum pos-
sible IC that PEs corresponding to unexplored nodes
could provide. If the IC upper bound is lower then the
IC goal, the branch is pruned.

3. Pruning on cost lower bound (COST). Once a first fea-
sible solution is found, its cost is saved and updated
whenever a better solution is encountered. While ex-
ploring other branches, a lower bound on the minimum
achievable cost is kept. If this value is greater than the
cost of the best solution, the branch is pruned.

4. Forward domain propagation (DOM). This strategy is
based on the observation that if, in some input con-
figuration, all the predecessors of a PE have only one
replica active, then having for it two replicas active
would not improve the overall IC value, while it would
increase the solution cost. We call this condition no
replication forwarding. For this reason, during the ex-
ploration, whenever some search node is bound to a
value corresponding to no replication, a quick routine
is started. This routine verifies (if necessary, recur-
sively) whether, for any successor of the PE whose
replication values has just been bound, the no repli-
cation forwarding condition applies. If so, the value
corresponding to twofold replication of such successor
PE is removed from the domain of its search node.

Note that, in order to compute partial IC components
while going down on a branch, the exploration must not
violate the topological order [20] of the application graph.
Apart from these restrictions, heuristics can be devised to
choose the most effective exploration order: according to
our experience, exploring nodes corresponding to the most
resource hungry configurations first improves execution time
by making both the CPU and IC constraints fail faster.

We have developed a highly parallel implementation of
FT-Search based on the JSR166 Fork-Join framework [23],
and we have tested it on a set of 600 applications to be
deployed on 1 to 12 hosts, with 2 to 12 PEs per host. We
have executed the algorithm on a machine with a 6-core
Intel Xeonr X5690 @3.5Ghz processor. For all the algorithm
runs, we have set a hard time limit to 10 minutes: after
the deadline, the algorithm terminates and returns the best
solution found.

Fig. 4 and 5 show some of the results. In particular, Fig. 4
shows what kind of solutions FT-Search finds within the
time limit, with the IC constraint growing from 0.5 to 0.9.
Note that, in most cases, the algorithm terminates either by
finding an optimal (BST) or feasible (though not necessarily
optimal) solution (SOL), or it shows that no feasible solution
exists for the problem (NUL); on the contrary, it is not able
to find any feasible solution, or to demonstrate that no solu-
tion exists for only a small number of instances (TMO). As
the IC constraint grows, the number of algorithm instances

90

0

1

2

3

4

5

50 60 70 80 90

IC Constraint

h
u
n
d
re
d
s
in
st
a
n
ce
s Sol. type

BST

NUL

SOL

TMO

Figure 4: Types of solution found for different IC
constraints: (BST) optimal solution, (SOL) feasi-
ble solution, (NUL) no solution exists, (TMO) time
limit exceeded and no solution found.

0

50

100

150

1.0 1.1 1.2 1.3

Cost ratio

F
re
q
u
en

cy

(a)

0

50

100

150

200

250

0.00 0.25 0.50 0.75 1.00

Time ratio

F
re
q
u
en

cy

(b)

Figure 5: Cost (a) and search time (b) ratios be-
tween the first solution and the optimum (when an
optimal solution is found).

that terminate demonstrating that there is no feasible solu-
tion clearly grows as well, but it is interesting to see that,
the stricter the IC constraint, the fewer the situations where
the algorithm terminates after finding at least a solution.
For the instances we were able to find an optimal solu-

tion for, we have measured the cost ratio between the first
solution found and the optimum. A histogram representing
the results is shown in Fig. 5a: the distribution is positively
skewed, with a mean value of 1.057. At the same time, a first
feasible solution is usually found much more quickly than the
optimum: the histogram in Fig. 5b shows the distribution
of the ratios between the time needed to find the first fea-
sible solution and the optimum, whose mean value is 0.37.
This is very important for our scenario, since it means that
it is generally possible to accept sub-optimal solutions, thus
saving considerable amounts of time at the price of minimal
penalties on solution quality.
We also measured how often different pruning strategies

were used (in average) and how effective they were. Fig. 6
summarizes the results. The IC-based strategy results to
be the most applied pruning method, followed by forward
domain propagation. However, CPU-based pruning is gen-
erally applied earlier in the search, thus cutting larger search
subspaces; the cost-based strategy, finally, is both the least
used and the least effective. This is probably due to the
fact that the exploration needs to go deep down in the tree

before a sufficiently tight cost lower bound can be found.

4.6 Runtime architecture
LAAR has been designed to be integrated with little effort

with existing platforms that already offer static active repli-
cation and that support the model described in Section 3.
The work flow used to deploy a LAAR-enabled application
is schematically shown in Fig 7. The application descriptor,
the IC SLA requirement, and the application itself (see again
Section 3) are fed to two different components. The first im-
plements the FT-Search algorithm described in the previous
section and produces a replica activation strategy. The sec-
ond component, i.e., the Application Preprocessor, modifies
the original application to produce the extended application,
which enhances the original user application with LAAR -
specific mechanisms. In particular, as shown in Fig. 8, two
special PEs are added to the original data-flow graph — the
Rate Monitor and the HAController —, and the behavior
of application PEs is extended in order for them to under-
stand and accept activation/deactivation commands. The
extended application is finally deployed on the actual dis-
tributed stream processing system (DSPS).

At runtime, the Rate Monitor PE periodically measures
the data rates from sources and outputs this measurement
result. The High Availability Controller (HAController),
initialized at startup with the chosen replica activation strat-
egy, receives the sources data rates from the Rate Monitor
and, according to their values, it chooses the appropriate
replica activation state based on the current input config-
uration. To achieve that quickly and effectively, it uses an
R-Tree [15] -like data structure that selects the input con-
figuration that is spatially closer to the current data rates
and whose components are all greater than the correspond-
ing actual rates. This choice guarantees that the chosen
replica configuration will never underestimate the actual sys-
tem load. Whenever a change in the replica configuration
occurs, the HAController reliably sends activations or deac-
tivation commands to PE replicas.

Application PEs behavior is also slightly modified to make
them accept commands from the HAController. When de-
activated, they immediately stop processing their input and
transit into an idle, resource-saving state. On the contrary,
when activated again, they re-synchronize their state with
one of the active replicas and restart processing their in-
put. Since this process is almost identical to the recovery

Number Depth

0.0

0.2

0.4

0.6

Strategy

CPU

COMPL

COST

DOM

Figure 6: Effectiveness of pruning: relative number
of domain values pruned (left), and average height
of the pruned search branches (right).

91

RAS

FT-Search
App

Preprocessor

App
Descriptor

Ext.
App

DSPS

SLA App

Figure 7: Deployment of a LAAR application.

Src0

HA
Controller

SrcN

...

Rate
Monitor

PE h

PE j...

...

PE i

RAS

Rep. Activ. Str.

PE

Replicated PE

PE k

PE k
R0

PE k
R1

enable

enable

Figure 8: Structure of extended data-flow graphs.

of crashed PEs in traditional static replication systems [16],
we will not detail it further in this paper.
Let us emphasize again that, since they do not require any

particular platform-dependent functionality, both the Rate
Meter and HAController can be implemented transparently
on top of existing stream processing platforms as standard
PEs. For what concern the enhancements needed on appli-
cation PEs, they are minimal and can be implemented, for
example, by dynamically proxying user provided PEs. In
Section 5.1, we describe how we implemented this architec-
ture on IBM InfoSphere Streamsr.

5. PERFORMANCE EVALUATION ON

IBM INFOSPHERE STREAMSr

We have implemented and deployed LAAR on top of an
enterprise deployment of an industrial-strength stream pro-
cessing system, IBM InfoSphere Streamsr, and tested it on
a set of artificially generated stream processing applications.
In this section, after describing the main aspects of the im-
plementation on Streams and the rationale behind our syn-
thetic application generation process, we will present the
performance results obtained by running these applications
on a 60-core cluster.

5.1 LAAR on IBM InfoSphere Streamsr

IBM InfoSphere Streamsr [13] is a distributed stream pro-
cessing platform evolved from the SPC research project [3].
In Streams, applications are written in an ad-hoc Stream
Processing Language (SPL) that is used to describe oper-
ators and their stream connections. At compilation time,
operators are transformed into their runtime counterparts,
i.e., PEs, each executed, after application deployment, in
its own process on the host system. The mapping from
operators to PEs is usually many-to-one, as the Streams
compiler can fuse [21] several operators into single PEs to

minimize context-switching and communication overheads.
At the time of writing, the only form of fault-tolerance sup-
ported natively by Streams is checkpointing [18].

In order to use LAAR, which leverages active replication
support from existing platforms, we implemented a minimal
active replication system on top of Streams, based on opera-
tor proxying. The same proxying technique is also leveraged
to implement the replica activation/deactivation mechanism
needed by LAAR at runtime. In more detail, in the appli-
cation preprocessing step, the application SPL sources are
modified by creating two replicas of every operator and by
introducing, for each replica, a special HAProxy operator.
This operator intercepts the input and output streams of
the proxied replica and has the following functions:

• Accept activate/deactivate commands from the LAAR
HAController. When active, HAProxy forwards all the
input to the proxied operator replica and all its output
to all the replicas of its successors; when inactive, all
the input is ignored and no output tuple is forwarded.

• Send periodic heartbeat messages to the proxies of the
replica’s successors to indicate that the replica is alive.

• Receive heartbeats and input tuples from all the repli-
cas of the proxied operator predecessors and forward
only data from the current primary to the proxied op-
erator.

Each proxy and its corresponding operator replica are fused
into a single PE using the partition co-location setting.

Rate Meter PEs and HAController PEs are also inserted
in the operator graph, the latter customized with the path
to a JSON file describing the replica activation strategy to
be used at runtime.

5.2 Experimental setup
We generated a corpus of different stream processing ap-

plications on which to test and validate our LAAR approach.
To this purpose, we developed and used a generator that
builds synthetic stream processing applications from a set
of descriptive parameters. The output of the generation is
an application descriptor, which is then transformed into a
corresponding Streams application. Every PE in the gen-
erated application is mapped onto a deterministic Streams
operator that behaves according to its concise attributes3.
These operators are stateless, with no particular semantics
associated with their output.

Our deployment environment consists of a 60-core IBM
BladeCenterr cluster. Each node is equipped with one Intel
Xeonr X5690 processor and 96 gigabytes of primary mem-
ory. The cluster runs an instance of InfoSphere Streamsr

v.2, with one of the servers hosting Streams management
services only, and the remaining dedicated to the execution
of PEs. In all the experiments, we used applications com-
posed of 24 PEs — 48 PEs, considering the twofold replica-
tion (1 PE per logical CPU core) — deployed on the available
servers to minimize inter-host communication. During the
execution of the experiments, we periodically query Streams

3Tuple processing is simulated through busy wait cycles of
configured length. Selectivity is implemented by producing
an output tuple after receiving, from an input port, a num-
ber of tuples equal or greater than an integer multiple of its
selectivity.

92

about the current status of all the PEs and log this infor-
mation.
In this paper, we present the results of a set of experiments

on 100 generated applications. The application graphs have
an average outgoing node degree between 1.5 and 3, and
the operators are generated with port selectivity values uni-
formly distributed between 0.5 and 1.5. An external source
produces tuples at two possible input rates (labeled “Low”
and “High”), both chosen from a uniform distribution be-
tween 1 and 20 tuples per second. The PEs’ per-tuple CPU
cost parameters are randomly generated ensuring that i) the
deployment is not overloaded when all replicas are active and
the input configuration is“Low”and that ii) it would instead
be overloaded when all replicas are active and the input con-
figuration is “High”. Every experiment runs on a 5 minute
long input trace, with the High input configuration being
active for one third of the trace. All the PEs are configured
with one queue for each input port, long enough to hold 2
seconds of tuples in the “High” input configuration; once a
queue is filled up, new tuples are dropped.
For every application, we run experiments using six dif-

ferent replication approaches, henceforth referred to as vari-
ants. The first three variants use our LAAR approach: we
used FT-Search to obtain replica activation strategies for
three different IC requirements of 0.5, 0.6, and 0.7, labeled
in the following as L.5, L.6, and L.7, respectively. In order
to compare LAAR with other possible static an dynamic
replication techniques, we also run experiments using the
following other three variants:

• Non Replicated (NR). The application is deployed on
the available resources with no PE replication. A NR
variant is obtained starting from the PE activations for
the “High” input rate from the D.5 variant, and mod-
ifying them to make sure that only a replica of each
PE is ever active. The obtained activations are used
for both the possible input configurations. This simple
procedure permits to quickly obtain a non replicated
deployment over all the cluster resources that guaran-
tees that the system is never overloaded.

• Static Replication (SR). For every PE, both replicas
are active all the time independently of the current
input configuration.

• Greedy (GRD). A dynamic replica activation strategy
is derived using the following greedy algorithm: start-
ing from a static active replication setting, for every
input configuration, redundant PE replicas are itera-
tively disabled until every host is non overloaded; at
each algorithm iteration, an overloaded host is chosen,
and the replica that consumes the most CPU is chosen
for deactivation. A simple heuristic is used to prefer
the deactivation of upstream PEs first.

5.3 Evaluation on BladeCenterr cluster
We present an evaluation of the LAAR approach com-

pared to the different replication variants considering the
following failure modes: i) No failure ever occurs (referred
to as best-case scenario); ii) a replica of each PE is per-
manently crashed throughout the experiment according to
the pessimistic failure model presented in Section 4.4 (re-
ferred to as worst-case scenario); iii) during the experiment,
a random server crashes and is recovered after some time.

1.000 1.774 1.491 1.579 1.658 1.682

1.00

1.25

1.50

1.75

2.00

NR SR L.5 L.6 L.7 GRD

Variant and goal

C
P
U

ti
m
e
(n
o
rm

)

1.000 12.560 2.483 2.340 2.221 1.981

0

10

20

30

NR SR L.5 L.6 L.7 GRD

Variant and goal

T
u
p
le
s
d
ro
p
p
ed

(n
o
rm

)

Figure 9: Distributions of the total CPU time used
— top – and total number of tuples dropped — bot-
tom — in a best-case experiment scenario, normal-
ized w.r.t. the NR variant. Labels correspond to
mean values.

Many of the results in this section are presented through box
plots4, which show how metrics of interest are distributed
across executions of different applications when different dy-
namic replication variants are used. We do not differentiate
by other graph parameters (e.g., average node degree) since
our experiments have shown that their values do not affect
the performance results relevantly.

Fig. 9 (top) shows the distribution of the total CPU time
used to process all the input traces when using the consid-
ered variants in a best-case scenario. To compare measure-
ments from different applications, the results are normalized
with respect to the value measured when a non-replicated
deployment is used (NR). As expected, static active replica-
tion (SR) is the variant using the highest amount of CPU
time to process the same trace, with the overhead due to ac-
tive replication being between 61% and 90% (note that this
is not 100% since the deployment cluster does not have, by
design, enough resources to handle the load peak, i.e., twice
the CPU time consumed by NR). As expected, the greedy
(GRD) variant is the second most expensive one because
it deactivates “just enough” replicas for the system not to
be overloaded. The three LAAR variants result to be the
cheapest solutions in terms of resource use and, most inter-
estingly, the cost of each of them is proportional to the IC
value requested. This is a very important feature of our so-
lution because it gives a direct way to correlate the desired
reliability level to its runtime cost.

4Each box in a box plot shows the 25th, 50th and 75th per-
centiles of a population of values. The ends of the whiskers
represent the smallest (biggest) sample within 1.5 times the
inter-quartile range, and circles represent outliers.

93

1.000 0.668 0.950 0.953 0.936 0.879

0.25

0.50

0.75

1.00

NR SR L.5 L.6 L.7 GRD

Variant and goal

P
ea
k
o
u
t.

ra
te

(n
o
rm

)

Figure 10: Applications output data rate during
load peak, normalized w.r.t. the NR variant. La-
bels correspond to mean values.

Fig. 9 (bottom) analyzes, in the same best-case scenario,
the ability of the studied variants to efficiently use the avail-
able resources by adapting to changing input configurations.
In particular, we measured the number of tuples dropped
due to queues filling up during the experiment. Note that
static replication, not having any form of dynamic adap-
tation to the input rate, can drop up to 33.6 times more
tuples compared to the non-replicated deployment, with a
very high variance due to the different characteristics of dif-
ferent applications. In all the dynamic variants, instead, the
amount of tuples dropped is much smaller, even if it is not
zero mainly because of the effects of glitches on the input
rate (a phenomenon that could be smoothed by carefully
tuning PE queue lengths).
Another important element we looked at for the evalua-

tion of our approach is the output tuple rate of applications
during load peaks. In fact, this value directly depends on
resource availability and on the ability of the platform to
effectively use these resources. For each different applica-
tion, we measured the average output data rate in the over-
provisioned and non-replicated configuration (NR) and used
it as reference to evaluate the other variants. Fig. 10 shows
the distribution of the output data rate ratios measured for
all the applications and variants. When static active replica-
tion (SR) is used, the applications output rate is on average
33% slower than the NR variant (up to 63%), while, when
LAAR is used, the rate is at most 9% slower. The greedy
variant (GRD) is in general better than the static one, but,
differently from LAAR, it is not able to provide a consistent
behavior across different applications, with an output rate
ratio that is from 2% to 38% slower than NR.
We ran the same applications also assuming the pessimistic

failure model defined in Section 4.4 in order to verify whether
our system was actually able to satisfy the promised IC
requirements in real stream processing deployments. The
graph at the top of Fig. 11 shows the distribution of the
normalized total number of samples produced by PEs in the
worst-case scenario for all the replication variants. While
the NR variant fails to produce any output (recall that in
this failure model one active replica of each PE is perma-
nently failed), the three LAAR variants are able to produce
a fraction of output tuples that satisfies their respective IC
requirement, except in a very limited number of cases, in
which the violation is still never bigger than 4.7%. On the
contrary, the GRD variant, while performing well in many

0.000 0.566 0.656 0.749 0.674

1.000.00

0.25

0.50

0.75

1.00

NR SR L.5 L.6 L.7 GRD

Variant and goal

IC
va
lu
e

0.838 0.853 0.874 0.939 0.886

1.00
0.7

0.8

0.9

1.0

NR SR L.5 L.6 L.7 GRD

Variant and goal

T
u
p
le
s
p
ro
d
u
ce
d
(n
o
rm

)

Figure 11: Total number of samples processed sim-
ulating the pessimistic (worst-case) failure model —
top — and a single server crash model — bottom
— normalized w.r.t. the failure-free NR variant (SR
is introduced for ease of comparison). Labels corre-
spond to mean values.

cases, is not able to provide a consistent behavior across dif-
ferent application, with measured IC values that can be as
big as 0.95 but also as low as 0.35.

Fig. 12 summarizes the presented results showing the av-
erage numbers of tuples dropped, the average IC value, and
the average cost of different replication strategies compared
to the static active replication variant. It is immediate to see
that LAAR permits to control application execution costs by
tuning the desired IC guarantees, a crucial property in our
business application scenario.

Finally, in order to evaluate the system behavior when
more realistic failure scenarios are considered, we re-executed
a randomly sampled subset of 40 applications, using a single
host crash-failures with recovery failure model. In practice,
during each experiment run, we randomly crash one of the
PE hosting servers. The failure lasts for 16 seconds, i.e.,
the time needed, according to the experiences in [19], for
Streams to detect it and migrate failed PEs to another host.
We force these failures to occur only during “High” input
configurations, because that is the case when LAAR pro-
vides the weaker fault-tolerance guarantees (thus disfavoring
our solution). Fig. 11 (bottom) shows the IC values mea-
sured for the different variants in this scenario. As expected,
the IC measured for the LAAR variants is much higher than
their guaranteed values, given the less pessimistic failure
model. Note that the results for L.5 are similar to those
measured for the no-replication variant: recall, in fact, that
the NR deployment is derived from L.5 by deactivating the
replicas which have still two active replicas in the “High”
configuration (which are usually just a few). Once again,

94

0.00

0.25

0.50

0.75

NR L.5 L.6 L.7 GRD

Variant and goal

R
a
ti
o
w
.r
.t
.
S
R Variable

Tuples Dropped

IC

Cost

Figure 12: Summary: comparison of the different
variants (mean values normalized w.r.t. SR)

the GRD variant confirms its unpredictable behavior in the
way it responds to failures.

6. CONCLUSIONS AND FUTURE WORK
Stream processing service providers may need to tem-

porarily provision additional resources to hosted applica-
tions during load spikes, if avoiding to drop or delay ap-
plication tuples is a requirement. In this paper, we have
presented LAAR, a novel technique for dynamic active repli-
cation that reduces the costs of provisioning these resources
by enforcing weaker fault tolerance guarantees for applica-
tions that can tolerate them. In particular, LAAR can tem-
porarily gather CPU resources by dynamically activating
and deactivating PE replicas according to the current sys-
tem load. We have implemented LAAR on top of IBM Info-
Sphere Streamsr and deployed it on a 60-cores cluster. Our
evaluation shows that LAAR can effectively trade-off run-
time costs with availability while still enforcing completely
predictable and guaranteed fault-tolerance levels.
We are continuing our work on LAAR in two main di-

rections. First, we are trying to improve the underlying
model by i) investigating the use of alternative failure mod-
els in the optimization problem with the goal of providing
tighter lower bounds on IC values, ii) considering a penalty
model associated to IC violations and using IC constraints
as minimization terms, and iii) extending the problem for-
mulation by considering the interaction of replica placement
with optimal replica activation strategies. Second, we will
continue to work on the experimental evaluation of our sys-
tem by testing it on complex real world applications. Let us
finally note that, although we have presented LAAR in the
context of stream processing, we deem it applicable to the
much larger domain of distributed data flow systems that
can tolerate incompleteness.

7. REFERENCES
[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and
S. Zdonik. The design of the borealis stream
processing engine. In Proc. of the 2nd Biennial
Conference on Innovative Data Systems Research,
CIDR 2005, pages 277–289, Asilomar, CA, USA, 2005.
The VLDB Endowment.

[2] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. Zdonik. Aurora: a new model and architecture for
data stream management. The International Journal
on Very Large Data Bases, 12(2):120–139, 2003.

[3] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen,
R. King, P. Selo, Y. Park, and C. Venkatramani. Spc:
a distributed, scalable platform for data mining. In
Proc. of the 4th International Workshop on
Data-Mining and Statistical Science, DMSS2006,
pages 27–37, Sapporo, Japan, 2006. ACM.

[4] L. Amini, N. Jain, A. Sehgal, J. Silber, and
O. Verscheure. Adaptive control of extreme-scale
stream processing systems. In Proc. of the 26th IEEE
Conference on Distributed Computing Systems, ICDCS
2006, pages 71–78, Lisboa, Portugal, 2006. IEEE.

[5] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, K. Ito,
R. Motwani, U. Srivastava, and J. Widom. Stream:
The stanford data stream management system.
Technical report, Stanford InfoLab, 2004.

[6] M. Balazinska, H. Balakrishnan, S. Madden, and
M. Stonebraker. Fault-tolerance in the borealis
distributed stream processing system. ACM Trans.
Database Syst., 33(1), 2008.

[7] P. Bellavista, A. Corradi, and A. Reale. Design and
implementation of a scalable and qos-aware stream
processing framework: the quasit prototype. In Proc.
of the 2012 IEEE International Conference on Cyber,
Physical and Social Computing, CPSCOM 2012, pages
458–467, Besançon, France, 2012. IEEE.

[8] I. Boutsis and V. Kalogeraki. Radar: adaptive rate
allocation in distributed stream processing systems
under bursty workloads. In Proc. of the 31st
Symposium on Reliable Distributed Systems, SRDS
2012, pages 285–290, Irvine, CA, USA, 2012. IEEE.

[9] A. Brito, F. C., and P. Felber. Multithreading-enabled
active replication for event stream processing
operators. In Proc. of the 28th Symposium on Reliable
Distributed Systems, SRDS2009, pages 22–31, Niagara
Falls, NY, USA, 2009. IEEE.

[10] A. Brito, A. Martin, T. Knauth, S. Creutz, D. Becker,
S. Weigert, and C. Fetzer. Scalable and low-latency
data processing with stream mapreduce. In Proc. of
the 3rd International Conference on Cloud Computing
Technology and Science, CloudCom 2011, pages 48–58,
Athens, Greece, 2011. IEEE.

[11] Z. Cai, V. Kumar, B. Cooper, G. Eisenhauer,
K. Schwan, and R. Strom. Utility-driven proactive
management of availability in enterprise-scale
information flows. In Proc. of the
ACM/IFIP/USENIX 7h International Middleware
Conference, Melbourne, Australia, 2006. Springer.

[12] J. Dougherty, R. Kohavi, and M. Sahami. Supervised
and unsupervised discretization of continuous features.
In Proc. of the 12th International Conference on
Machine Learning, ICML ’95, pages 194–202, Tahoe
City, CA, USA, 1995. Morgan Kaufmann.

[13] B. Gedik and H. Andrade. A model-based framework
for building extensible, high performance stream
processing middleware and programming language for
ibm infosphere streams. Softw. Pract. Exper,
42(11):1363–1391, 2012.

95

[14] B. Gedik, H. Andrade, and K.-L. Wu. A code
generation approach to optimizing high-performance
distributed data stream processing. In Proc. of the
18th Conference on Information and Knowledge
Management, CIKM 2009, pages 847–856, Hong Kong,
China, 2009. ACM.

[15] A. Guttman. R-trees: a dynamic index structure for
spatial searching. In Proc. of the 1984 ACM SIGMOD
international conference on Management of data,
SIGMOD ’84, pages 47–57, Boston, Massachusetts,
1984. ACM.

[16] J.-H. Hwang, M. Balazinska, A. Rasin, U. Çetintemel,
M. Stonebraker, and S. Zdonik. High-availability
algorithms for distributed stream processing. In Proc.
of the 21st International Conference on Data
Engineering, ICDE 2005, pages 779–790, Tokyo,
Japan, 2005. IEEE.

[17] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. In Proc. of the 2nd ACM
SIGOPS European Conference on Computer Systems,
volume 41 of EuroSys 2007, pages 59–72, Lisbon,
Portugal, 2007. ACM.

[18] G. Jacques-Silva, B. Gedik, H. Andreade, and K.-L.
Wu. Language level checkpointing support for stream
processing applications. In Proc. of the 2009
IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2009, pages 145–154,
Estoril, Portugal, 2009. IEEE.

[19] G. Jacques-Silva, B. Gedik, H. Andreade, K.-L. Wu,
and R. Iyer. Fault injection-based assessment of partial
fault tolerance in stream processing applications. In
Proc. of the 5th International Conference on
Distributed Event-based Systems, DEBS 2011, pages
231–242, New York, NY, USA, 2011. ACM.

[20] A. Kahn. Topological sorting of large networks.
Commun. ACM, 5(11):558–562, 1962.

[21] R. Khandekar, K. Hildrum, S. Parekh, D. Rajan,
J. Wolf, K.-L. Wu, H. Andrade, and B. Gedik. Cola:
optimizing stream processing applications via graph
partitioning. In Proc. of the ACM/IFIP/USENIX 10th
International Middleware Conference, Urbana
Champaign, IL, USA, 2009. Springer.

[22] V. Kumar, B. Cooper, and K. Schwan. Distributed
stream management using utility-driven self-adaptive
middleware. In Proc. of the 2nd International
Conference on Autonomic Computing, ICAC 2005,
pages 3–14, Seattle, WA, USA, 2005. IEEE.

[23] D. Lea. A java fork/join framework. In Proc. of the
ACM 2000 conference on Java Grande, pages 36–43,
San Francisco, CA, USA, 2000. ACM.

[24] A. Martin, C. Fetzer, and A. Brito. Active replication
at (almost) no cost. In Proc. of the 2011 IEEE
International Symposium on Reliable Distributed
Systems, SRDS 2011, pages 21–30, Madrid, Spain,
2011. IEEE.

[25] R. Motwani, J. Widom, A. Arasu, B. Babcokc,
S. Babu, M. Datar, G. Manku, C. Olston,

J. Rosenstein, and R. Varma. Query processing,
resource management, and approximation in a data
stream management system. In Proc. of the 1st
Biennial Conference on Innovative Data System
Research, CIDR 2003, Asilomar, CA, USA, 2003. The
VLDB Endowment.

[26] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed stream computing platform. In Proc. of
the 2010 IEEE International Conference on Data
Mining Workshops, ICDMW 2010, pages 170–177,
Sydney, Australia, 2010. IEEE.

[27] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang,
L. Zhou, Y. Yu, and Z. Zhang. Timestream: reliable
stream computation in the cloud. In Proc. of the ACM
SIGOPS European Conference on Computer Systems,
EuroSys 2013, Prague, Czech Republic, 2013. ACM.

[28] M. Shah, J. Hellerstein, and E. Brewer. Highly
available, fault-tolerant parallel dataflows. In Proc. of
the 2004 ACM International Conference on
Management of Data, SIGMOD 2004, pages 827–838,
Paris, France, 2004. ACM.

[29] N. Tatbul, U. Çetintemel, and S. Zdonik. Staying fit:
efficient load shedding techniques for distributed
stream processing. In Proc. of the 33rd International
Conference on Very Large Data Bases, VLDB 2007,
Vienna, Austria, 2007. The VLDB Endowment.

[30] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniacak,
and M. Stonebraker. Load shedding in a data stream
manager. In Proc. of the 29th International
Conference on Very Large Data Bases, VLDB 2003,
pages 309–320, Berlin, Germany, 2003. The VLDB
Endowment.

[31] L. Vaquero, L. Rodero-Merino, J. Caceres, and
M. Lindner. A break in the clouds: towards a cloud
definition. SIGCOMM Comput. Commun. Rev.,
39(1):50–55, 2008.

[32] Y. Xing, J.-H. Hwang, U. Çetintemel, and S. Zdonik.
Providing resiliency to load variations in distributed
stream processing. In Proc. of the 32nd International
Conference on Very Large Data Bases, VLDB 2006,
Seoul, Korea, 2006. The VLDB Endowment.

[33] Y. Xing, S. Zdonik, and J.-H. Hwang. Dynamic load
distribution in the borealis stream processor. In Proc.
of the 21st International Conference on Data
Engineering, ICDE 2005, pages 791–802, Tokyo,
Japan, 2005. IEEE.

[34] Z. Zhang, Y. Gu, F. Ye, H. Yang, M. Kim, H. Lei, and
Z. Liu. A hybrid approach to high availability in
stream processing systems. In Proc. of the 30th IEEE
International Conference on Distributed Computing
Systems, ICDCS 2010, pages 138–148, Genoa, Italy,
2010. IEEE.

[35] Y. Zhou, B. Ooi, T. Kian-Lee, and W. Ji. Efficient
dynamic operator placement in a locally distributed
continuous query system. In Proc. of the 2006
Confederated international conference On the Move to
Meaningful Internet Systems: CoopIS, DOA, GADA,
and ODBASE, OTM 2006, Montpellier, France, 2006.
Springer.

96

