
Interactive Inference of Join Queries

Angela Bonifati Radu Ciucanu Sławek Staworko
University of Lille & INRIA, France

{angela.bonifati, radu.ciucanu, slawomir.staworko}@inria.fr

ABSTRACT
We investigate the problem of inferring join queries from
user interactions. The user is presented with a set of candi-
date tuples and is asked to label them as positive or negative
depending on whether or not she would like the tuples as
part of the join result. The goal is to quickly infer an ar-
bitrary n-ary join predicate across two relations by keeping
the number of user interactions as minimal as possible. We
assume no prior knowledge of the integrity constraints be-
tween the involved relations. This kind of scenario occurs in
several application settings, such as data integration, reverse
engineering of database queries, and constraint inference. In
such scenarios, the database instances may be too big to be
skimmed. We explore the search space by using a set of
strategies that let us prune what we call “uninformative” tu-
ples, and directly present to the user the informative ones
i.e., those that allow to quickly find the goal query that the
user has in mind. In this paper, we focus on the inference
of joins with equality predicates and we show that for such
joins deciding whether a tuple is uninformative can be done
in polynomial time. Next, we propose several strategies for
presenting tuples to the user in a given order that lets min-
imize the number of interactions. We show the efficiency
and scalability of our approach through an experimental
study on both benchmark and synthetic datasets. Finally,
we prove that adding projection to our queries makes the
problem intractable.

1. INTRODUCTION
The amount of data and the number of available data

sources continue to grow at an ever astounding rate allow-
ing the users to satisfy more and more complex information
needs. However, expressing complex information needs re-
quires the use of formalisms for querying and integrating
data sources that are typically mastered by only a small
group of adept users. In real life, casual users often have
to combine raw data coming from disparate data sources,
with little or no knowledge of metadata and/or querying

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

formalisms. Such unqualified users need to resort to brute
force solutions of manipulating the data by hand. While
there may exist providers of integrated data, the users may
be unsatisfied with the quality of their results.

In this paper, we consider very simple user input via
Boolean membership queries (“Yes/No”) to assist unfamiliar
users to write their queries. In particular, we focus on two
fundamental operators of any data integration or querying
tool: equijoins – combining data from two sources, and semi-
joins – filtering data from one source based on the data from
another source. Such operators are crucial in several appli-
cation settings, such as data integration, reverse engineering
of database queries, and constraint inference, whenever the
user has little or no knowledge of the database schemas.

Inference algorithms for expert users have been recently
studied to design mappings [3, 4] via data examples. Such
examples are expected to be built by the mapping designer,
who is also responsible of selecting the mappings that best fit
them. Query learning for relational queries with quantifiers
has recently been addressed in [1, 2]. There, the system
starts from an initial formulation of the query and refines
it based on primary-foreign key relationships and the input
from the user. We discuss in detail the differences with
our work at the end of this section. To the best of our
knowledge, ours is the first work that considers inference
of joins via simple tuple labeling and with no knowledge of
integrity constraints.

Consider a scenario where a user working for a travel
agency wants to build a list of flight&hotel packages. The
user is not acquainted with querying languages and can ac-
cess the information on flights and hotels in two tables (Fig-
ure 1).

From To Airline
Paris Lille AF
Lille NYC AA
NYC Paris AA
Paris NYC AF

City Discount
NYC AA
Paris None
Lille AF

Figure 1: Instances of Flight and Hotel, respectively.

The airline operating every flight is known and some hotels
offer a discount when paired with a flight of a selected airline.
Two queries can be envisioned: one that selects packages
consisting of a flight and a stay in a hotel and another one
that additionally ensures that the package is combined in a
way allowing a discount. These two queries correspond to
the following equijoin predicates:

451 10.5441/002/edbt.2014.41

Flight.To � Hotel.City, (Q1)

Flight.To � Hotel.City^ Flight.Airline � Hotel.Discount. (Q2)

Note that since we assume no knowledge of the schema and
of the integrity constraints, a number of other queries can
possibly be formulated but we remove them from consider-
ation for the sake of simplicity and clarity of the example.

While the user may be unable to formulate her query, it is
reasonable to assume that she can indicate whether or not a
given pair of flight and hotel is of interest to her, or she can
even pair a flight and hotel herself. We view this as labeling
with � and � the tuples of the Cartesian product of the two
tables (Figure 2). For instance, suppose the user pairs the
flight from Paris to Lille operated by Air France (AF) and
the hotel in Lille. This corresponds to labeling by � the
tuple (3) in the Cartesian product below.

From To Airline City Discount
Paris Lille AF NYC AA (1)
Paris Lille AF Paris None (2)

+ Paris Lille AF Lille AF (3)
+ Lille NYC AA NYC AA (4)

Lille NYC AA Paris None (5)
Lille NYC AA Lille AF (6)
NYC Paris AA NYC AA (7)

– NYC Paris AA Paris None (8)
NYC Paris AA Lille AF (9)
Paris NYC AF NYC AA (10)
Paris NYC AF Paris None (11)
Paris NYC AF Lille AF (12)

Figure 2: Cartesian product of tables from Figure 1.

Observe that both queries Q1 and Q2 are consistent with
this labeling i.e., both queries select the tuple (3). Natu-
rally, the objective is to use the labeling of further tuples
to identify the goal query i.e., the query that the user has
in mind. Not every tuple can however serve this purpose.
For instance, if the user labels next the tuple (4) with �,
both queries remain consistent. Intuitively, the labeling of
the tuple (4) does not contribute any new information about
the goal query and is therefore uninformative, an important
concept that we formalize in this paper. Since the input ta-
bles may be big, it may be unfeasible for the user to label
every tuple in the Cartesian product.

In this paper, we aim at limiting the number of tuples that
the user needs to label in order to infer the goal query. We
propose solutions that analyze and measure the potential
information about the goal query that labeling a tuple can
contribute and present to the user tuples that maximize this
measure. In particular, since uninformative tuples do not
contribute any new information, they are not presented to
the user. In the example of the flight&hotel packages, a
tuple whose labeling can distinguish between Q1 and Q2 is,
for instance, the tuple (8) because Q1 selects it and Q2 does
not. If the user labels the tuple (8) with �, then the query
Q2 is returned; otherwise Q1 is returned. We also point out
that the use of only positive examples, tuples labeled with
�, is not sufficient to identify all possible queries. As an
example, queryQ2 is contained inQ1, and therefore, satisfies
all positive examples that Q1 does. Consequently, the use
of negative examples, tuples with label �, is necessary to
distinguish between these two.

We make the following main contributions:

 We focus on equijoins and we characterize the poten-
tial information that labeling a given tuple may con-
tribute in the join inference process and identify unin-
formative tuples. We provide an alternative character-
ization of uninformative tuples that does not assume
the knowledge of the goal query and can be efficiently
tested.

 We propose a set of strategies for interactively inferring
a goal join predicate and we show their efficiency and
scalability within an experimental study on both TPC-
H and synthetic data.

 With the goal of extending our queries with the projec-
tion operator, we then study semijoins. We investigate
the consistency problem, a fundamental problem un-
derlying query inference, which is to decide whether
there exists a query consistent with a given set of ex-
amples. While for equijoins this problem is in PTIME,
it becomes NP-complete for semijoins, which precludes
the possibility of an efficient inference of semijoin queries
from examples.

Since our goal is to minimize the number of interactions
with the user, our research is of interest for novel database
applications e.g., joining datasets using crowdsourcing [11],
where minimizing the number of interactions entails lower fi-
nancial costs. Moreover, our research also applies to schema
mapping inference, assuming a less expert user than in [3,
4]. Indeed, in our case the annotations correspond to simple
membership queries [5] to be answered even by a user who
is not familiar with schema mapping. While the restriction
to joins of two relations only may seem very limiting, such
queries can be of practical use in the context of denormal-
ized databases having a small number of relations with large
numbers of attributes.

The paper is organized as follows. In Section 2, we intro-
duce some preliminary notions. In Section 3, we state our
problem setting and characterize our problems of interest.
In Section 4, we propose practical strategies of presenting
tuples to the user, while in Section 5, we experimentally
evaluate their performance. In Section 6, we show that con-
sistency checking becomes intractable when we add the pro-
jection. Finally, we summarize the conclusions and outline
directions of future work in Section 7.

Related work
Our work follows a very recent line of research on the infer-
ence of relational queries [19, 17, 7]. Zhang et al. [19] have
focused on computing a join query starting from a database
instance, its complete schema, and an output table. Clearly,
their assumptions are different from ours. In particular, we
do not assume any knowledge of the integrity constraints or
the query result. In our approach, the latter has to be incre-
mentally constructed via multiple interactions with the user,
along with the join predicate itself. Zhang et al. [19] con-
sider more expressive join queries than we do, but when the
integrity constraints are unknown, one can leverage our al-
gorithms to yield those and apply their approach thereafter.
Moreover, Tran et al. [17] have investigated the query by
output problem: given a database instance, a query state-
ment and its output, construct an instance-equivalent query
to the initial statement. Das Sarma et al. [7] have studied

452

the view definition problem i.e., given a database instance
and a corresponding view instance, find the most succinct
and accurate view definition. Both [17] and [7] essentially
use decision trees to classify tuples as selected or not selected
in the query output or in the view output, respectively. We
differ from their work in two ways: we do not know a priori
the query output, and we need to discover it from user in-
teractions; we have no initial query statement to start with.

Fan et al. [8] have worked on discovering conditional func-
tional dependencies using data mining techniques. We focus
on simpler join constraints, and exploit an interactive sce-
nario to discover them by interacting with the users.

Since our goal is to find the most informative tuples and
ask the user to label them, our research is also related to the
work of Yan et al. [18]. However, we do not use active learn-
ing and we do not consider keyword-based queries. Another
work strongly related to ours has been done by Abouzied et
al. [1, 2], who have formalized a query learning model using
membership questions [5]. They focus on learning quan-
tified Boolean queries for the nested relational model and
their main results are optimal algorithms for learning some
subclasses of such queries [1] and a system that helps users
specify quantifiers [2]. Primary-foreign key relationships be-
tween attributes are used to place quantified constraints and
help the user tune her query, whereas we do not assume such
knowledge. The goal of their system is somewhat differ-
ent, in that their goal is to disambiguate a natural language
specification of the query, whereas we focus on raw data to
guess the “unknown” query that the user has in mind. The
theoretical foundations of learning with membership queries
have been studied in the context of schema mappings by ten
Cate et al. [15]. Moreover, Alexe et al. [3, 4] have proposed
a system which allows a user to interactively design and re-
fine schema mappings via data examples. The problem of
discovering schema mappings from data instances have been
also studied in [9] and [12]. Our queries can be eventually
seen as simple GAV mappings, even though our problem
goes beyond data integration. Moreover, our focus is on
proposing tuples to the user, while Alexe et al. [3, 4] assume
that an expert user chooses the data examples. Addition-
ally, our notions of certain and uninformative tuples have
connections with the approach of Cohen and Weiss [6] for
XPath queries, even though joins are not considered there.
Furthermore, our notion of entropy of a tuple is related to
the work of Sellam and Kersten [14] on exploratory querying
big data collections.

2. PRELIMINARIES
We assume the setting of two relations R and P with dis-

joint sets of attributes attrspRq � tA1, . . . , Anu and attrspP q �
tB1, . . . , Bmu. We assume no other knowledge of the database
schema, in particular no knowledge of the integrity con-
straints between the two relations. By Ω we denote the
set attrspRq � attrspP q. Given a subset θ � Ω, by R 'θ P
we denote the following relational algebra expression:

R 'θ P � R '
�
pAi,BjqPθ

RrAis�P rBj s P

and we refer to θ as the equijoin predicate. Similarly, by
R
θP we denote the following relational algebra expression:

R
θ P � ΠattrspRqpR 'θ P q

and we refer to θ as the semijoin predicate.

A database instance is a pair of sets of tuples I � pRI , P Iq.
The semantics of relational algebra expressions is standard
and in particular:

pR 'θ P q
I � tpt, t1q P RI � P I | @pAi, Bjq P θ. trAis � t1rBjsu,

pR
θ P q
I � tt P RI | Dt1 P P I . @pAi, Bjq P θ. trAis � t1rBjsu.

We also use the Cartesian product of the two relations and
denote it by DI � RI�P I . In the sequel, when the instance
is known from the context, we omit the superscript I when
it does not lead to confusion, and in particular, we write
simple R 'θ P to represent the set pR 'θ P qI .

For two join predicates θ1 and θ2 such that θ1 � θ2, we say
that θ1 is more general than θ2 and θ2 is more specific than
θ1. The most general join predicate is H and the most spe-
cific join predicate is Ω. We point out the anti-monotonicity
of the join operators w.r.t. the join predicate i.e., if θ1 � θ2,
then R 'θ2 P � R 'θ1 P and R
θ2 P � R
θ1 P .

Example 2.1 ConsiderR0 and P0 with attrspR0q � tA1, A2u
and attrspP0q � tB1, B2, B3u and the following instance:

R0 �

A1 A2

t1 0 1
t2 0 2
t3 2 2
t4 1 0

and P0 �

B1 B2 B3

t11 1 1 0
t12 0 1 2
t13 2 0 0

Take θ1 � tpA1, B1q, pA2, B3qu, θ2 � tpA2, B2qu, and θ3 �
tpA2, B1q, pA2, B2q, pA2, B3qu. We obtain:

R0 'θ1 P0 � tpt2, t
1
2q, pt4, t

1
1qu, R0
θ1 P0 � tt2, t4u,

R0 'θ2 P0 � tpt1, t
1
1q, pt1, t

1
2q, pt4, t

1
3qu, R0
θ2 P0 � tt1, t4u,

R0 'θ3 P0 � H, R0
θ3 P0 � H.
�

Next, we present the interactive inference of equijoins, the
main class of queries that we deal with in this paper. The
only exception is Section 6, where we consider semijoins.

3. INFERENCE OF EQUIJOINS
Take an instance I of two relations R and P and let D �

R � P . An example is a pair pt, αq, where t P D and α P
t�,�u. We say that an example of the form pt,�q is a
positive example while an example of the form pt,�q is a
negative example. A sample S is a set of examples i.e., a
subset of D � t�,�u. Given a sample S, we denote the
set of positive examples tt P D | pt,�q P Su by S� and
the set of negative examples tt P D | pt,�q P Su by S�.
An equijoin predicate θ is consistent with S iff θ selects all
positive examples and none of the negative ones i.e., S� �
R 'θ P and S�XpR 'θ P q � H. Naturally, the goal of the
inference should be the construction of a consistent equijoin
predicate.

We introduce an elementary tool that we employ for in-
ference of equijoins. We assume that the schema and the
instance are known from the context. Let t � ptR, tP q P D
be a tuple with tR P R and tP P P . We define the most
specific equijoin predicate selecting t as follows:

T ptq � tpAi, Bjq | tRrAis � tP rBjsu.

Additionally, we extend T to sets of tuples T pUq �
�
tPU T ptq.

Our interest in T follows from the observation that for a
given set of tuples U , if θ is a equijoin selecting U , then
θ � T pUq.

453

3.1 Consistency checking
Given a sample, one would like to decide whether there

exists a join predicate that selects all positive examples and
none of the negative ones. This permits for instance to check
whether the user who has provided the examples is honest,
has not made any error, and therefore, has labeled the tu-
ples consistently with some goal join predicate that she has
in mind. More formally, the consistency checking is the fol-
lowing decision problem: given a database instance I and a
sample S, decide whether there exists a consistent join pred-
icate i.e., a equijoin predicate θ such that S� � R 'θ P and
S� X pR 'θ P q � H.

For equijoins this problem has a simple solution that em-
ploys the construction of the most specific equijoin predicate:
it suffices to check that R 'T pS�q P selects no negative ex-
ample. The soundness of this procedure follows from the
fact that the most specific join predicate T pS�q selects all
positive examples. To show its completeness, assume there
exists a predicate θ selecting all positive examples and none
of the negative ones. Since T pS�q is the most specific equi-
join predicate selecting all positive examples, θ � T pS�q,
and since θ selects no negative example, neither does T pS�q.
Hence, T pS�q is also an equijoin predicate consistent with
the set of examples.

Example 3.1 Take the relations R0 and P0 and their in-
stances from Example 2.1. In Figure 3 we present the Carte-

A1 A2 B1 B2 B3 T
pt1, t11q 0 1 1 1 0 tpA1, B3q, pA2, B1q, pA2, B2qu
pt1, t12q 0 1 0 1 2 tpA1, B1q, pA2, B2qu
pt1, t13q 0 1 2 0 0 tpA1, B2q, pA1, B3qu
pt2, t11q 0 2 1 1 0 tpA1, B3qu

+ pt2, t12q 0 2 0 1 2 tpA1, B1q, pA2, B3qu
pt2, t13q 0 2 2 0 0 tpA1, B2q, pA1, B3q, pA2, B1qu
pt3, t11q 2 2 1 1 0 H

– pt3, t12q 2 2 0 1 2 tpA1, B3q, pA2, B3qu
pt3, t13q 2 2 2 0 0 tpA1, B1q, pA2, B1qu

+ pt4, t11q 1 0 1 1 0 tpA1, B1q, pA1, B2q, pA2, B3qu
pt4, t12q 1 0 0 1 2 tpA1, B2q, pA2, B1qu
pt4, t13q 1 0 2 0 0 tpA2, B2q, pA2, B3qu

Figure 3: The Cartesian product D0 � R0 � P0, the
value of T for each tuple from D0, and sample S0.

sian product D0 � R0 � P0, the value of T for each tuple
from D0, and the sample S0 s.t. S0,� � tpt2, t12q, pt4, t

1
1qu and

S0,� � tpt3, t12qu. The sample is consistent and the most spe-
cific consistent join predicate is θ0 � tpA1, B1q, pA2, B3qu.
Another consistent join predicate (but not minimal) is θ10 �
tpA1, B1qu. On the other hand, the sample S10 s.t. S10,� �
tpt1, t12q, pt1, t

1
3qu and S10,� � tpt3, t

1
1qu is not consistent. From

now on, we only consider consistent samples. �

3.2 Interactive scenario
Let us now consider the following interactive scenario of

join query inference. The user is presented with a tuple
from the Cartesian product and indicates whether the tuple
is selected or not by the join predicate that she has in mind
by labeling the tuple as a positive or negative example. This
process is repeated until a sufficient knowledge of the goal
join predicate has been accumulated (i.e., there exists at
most one join predicate consistent with the user’s labels).
This scenario is inspired by the well-known framework of

learning with membership queries proposed by Angluin [5].
Since the instance may be of big size, we do not want to ask
the user to label all tuples from the Cartesian product, but
only a part of them. Our goal is to minimize the number
of interactions with the user while being computationally
efficient. In this context, an interesting question is what
strategy of presenting tuples to the user we should adopt.
To answer this question, our approach leads through the
analysis of the potential information that labeling a given
tuple may contribute from the point of view of the inference
process.

We first need to introduce some auxiliary notions. We
assume the existence of some goal θG and that the user labels
the tuples in a manner consistent with θG. Furthermore, we
identify the fully labeled database SG s.t.

SG� � R 'θG P and SG� � pR� P q zpR 'θG P q.

Given a sample S we also identify all join predicates consis-
tent with the sample

CpSq � tθ � Ω | S� � R 'θ P and S� XR 'θ P � Hu.

Initially, S � H, and hence, CpSq � PpΩq. Because S is
consistent with θG, CpSq always contains θG. Ideally, we
would like to devise a strategy of presenting elements of
D to the user to get us “quickly” from H to some S s.t.
CpSq � tθGu.

3.3 Instance-equivalent join predicates
It is important to note that the content of the instance I

may not be rich enough to allow the exact identification of
the goal join predicate θG i.e., when CpSGq contains elements
other than θG. In such a case, we want to return to the user
a join predicate which is equivalent to θG w.r.t. the instance
I, and hence, indistinguishable by the user. We shall return
T pS�q which is equivalent to θG over the instance I i.e.,
pR 'θG P qI � pR 'T pS�q P q

I , and hence indistinguishable
by the user.

For example, take the relations R1 and P1 below with
their corresponding instances:

R1 �
A1 A2

t1 1 1
P1 �

B1

t11 1

and θG1 � tpA1, B1qu. If we present the only tuple of the
Cartesian product to the user, she labels it as a positive
example, which yields the sample S1 � tppt1, t11q,�qu. Then,
CpS1q � PpattrspR1q � attrspP1qq and all its elements are
equivalent to θG1 w.r.t. this instance. In particular, in this
case we return to the user the join predicate T pS1,�q �
tpA1, B1q, pA2, B1qu, where θG1 � T pS1,�q.

Another example when we return an instance-equivalent
join predicate is when R 'θG P is empty, and therefore,
the user labels all given tuples as negative examples. We
also return T pS�q, which in this case equals Ω � attrspRq�
attrspP q, which again is equivalent to θG over I.

3.4 Uninformative tuples
In this section, we identify the tuples that do not yield new

information when presented to the user. For this purpose,
let us assume for a moment that the goal θG is known. We
say that an example pt, αq from SG is uninformative w.r.t. a
sample S if CpSq � CpSYtpt, αquq. In this case, we say that
t is an uninformative tuple w.r.t. S. We denote by Uninf pSq

454

the set of all uninformative examples w.r.t. S:

Uninf pSq � tpt, αq P SG | CpSq � CpS Y tpt, αququ.

For instance, if we take instance of the relations R0 and P0

from Example 2.1, the goal join predicate θG0 � tpA2, B3qu,
and S0 s.t. S0,� � tpt2, t12qu and S0,� � tpt1, t13qu, then the
examples ppt4, t11q,�q and ppt2, t11q,�q are uninformative.

Ideally, a smart inference algorithm should avoid present-
ing uninformative tuples to the user, but it is impossible
to identify those tuples using the definition above without
the knowledge of θG. This motivates us to introduce the
notion of certain tuples w.r.t. a sample S, which is indepen-
dent of the goal join predicate θG. Then we prove that the
notions of uninformative and certain tuples are equivalent
and we show that testing membership is in PTIME. We also
mention that the notion of certain tuples is inspired by pos-
sible world semantics and certain answers [10] and already
employed for XML querying for non-expert users by Cohen
and Weiss [6]. Formally, given a sample S, we define the set
CertpSq as follows:

Cert�pSq � tt P D | @θ P CpSq. t P R 'θ P, u,

Cert�pSq � tt P D | @θ P CpSq. t R R 'θ P, u,

CertpSq � Cert�pSq � t�u Y Cert�pSq � t�u.

As already mentioned, we assume w.l.o.g. that all samples
that we manipulate are consistent. In case of an inconsistent
sample S, we have CpSq � H, in which case the notion of
certain tuples is of no interest. Next, we show that the
notions of uninformative and certain tuples are equivalent.

Lemma 3.2 Given a sample S, Uninf pSq � CertpSq.

Proof. First, we show the inclusion Uninf pSq � CertpSq.
Case 1. Take a tuple t s.t. pt,�q P Uninf pSq. From the
definition of C we know that for any join predicate θ from
CpS Y tpt,�quq it holds that t P R 'θ P . Because CpSq �
CpS Y tpt,�quq, we infer that for any join predicate θ from
CpSq it holds that t P R 'θ P , and therefore, t P Cert�pSq.
Case 2. Take a tuple t s.t. pt,�q P Uninf pSq. From the
definition of C we know that for any join predicate θ from
CpS Y tpt,�quq it holds that t R R 'θ P . Because CpSq �
CpS Y tpt,�quq, we infer that for any join predicate θ from
CpSq it holds that t R R 'θ P , and therefore, t P Cert�pSq.

Next, we prove the inclusion CertpSq � Uninf pSq. Case
1. Take a tuple t in Cert�pSq, which means that for any join
predicate θ in CpSq it holds that t P R 'θ P , which implies
CpSq � CpS Y tpt,�quq, hence pt,�q P Uninf pSq. Case 2.
Take a tuple t in Cert�pSq, which means that for any join
predicate θ in CpSq it holds that t R R 'θ P , which implies
CpSq � CpS Y tpt,�quq, in other words pt,�q P Uninf pSq. �

Next, we characterize the tuples from Cert�.

Lemma 3.3 Given a sample S and a tuple t from D, t be-
longs to Cert�pSq iff T pS�q � T ptq.

Proof. For the if part, assume T pS�q � T ptq. From the
definitions of C and T , we infer that for any θ in CpSq, it
holds that θ � T pS�q. This implies that for any θ in CpSq,
θ � T ptq, hence t P R 'θ P , in other words t P Cert�pSq.

For the only if part, assume t P Cert�pSq, which means
that for any θ P CpSq it holds that t P R 'θ P . From the
definitions of C and T , we infer that T pS�q P CpSq, and
therefore, t P R 'T pS�q P , which yields T pS�q � T ptq. �

We also characterize the tuples from Cert�.

Lemma 3.4 Given a sample S and a tuple t from D, t
belongs to Cert�pSq iff there exists a tuple t1 in S� s.t.
T pS�q X T ptq � T pt1q.

Proof. For the if part, take a tuple t1 in S� s.t. T pS�qX
T ptq � T pt1q. This implies that for any θ in CpS Y tpt,�quq
it holds that t1 P R 'θ P , hence CpS Y tpt,�quq � H.
Because CpS Ytpt,�quqY CpS Ytpt,�quq � CpSq, we obtain
CpSYtpt,�quq � CpSq, which means that pt,�q P Uninf pSq,
and therefore, t P Cert�pSq.

For the only if part, assume t P Cert�pSq, which means
that for any θ in CpSq it holds that t R R 'θ P . This
implies that CpSq � tθ � Ω | t R R 'θ P u. Moreover,
given a sample S, note that the set CpSq can be expressed
equivalently as PpT pS�qq zp

�
t1PS�

PpT pt1qqq, which yields

PpT pS�qq zp
¤

t1PS�

PpT pt1qqq � tθ � Ω | t R R 'θ P u p�q.

From the definition of C we infer that for any θ P PpΩq z CpSq
none of the join predicates θ1 � θ belongs to CpSq. From this
remark and (*) we conclude that there exists a tuple t1 in
S� s.t. T pS�q X T ptq � T pt1q. �

Recall that we have defined Uninf pSq w.r.t. the goal join
predicate, then we have shown in Lemma 3.2 that Uninf pSq �
CertpSq, which means that we are able to characterize the
uninformative tuples by using only the given sample, with-
out having the knowledge of the goal join predicate. Fur-
thermore, given a sample S and a tuple t from D, deciding
whether pt,�q belongs to Uninf pSq can be done in poly-
nomial time using the characterization from Lemma 3.3.
Similarly, deciding whether pt,�q belongs to Uninf pSq can
be done in polynomial time due to Lemma 3.4. We say
that a tuple t from D is informative w.r.t. a sample S if
there does not exist a label α P t�,�u s.t. pt, αq P S or
pt, αq P Uninf pSq. When the sample S is clear from the
context, we may write simply that a tuple is informative in-
stead of informative w.r.t. S. Using all remarks above, we
can state the main result of this section.

Theorem 3.5 Testing if a tuple is informative is in PTIME.

4. STRATEGIES
In this section, we use the developments from the previ-

ous section to propose efficient strategies for interactively
presenting tuples to the user. We introduce first the general
inference algorithm, then we claim that there exists an opti-
mal strategy that is however exponential. Consequently, we
propose several efficient strategies that we essentially clas-
sify in two categories: local and lookahead.

4.1 General inference algorithm
A strategy Υ is a function which takes as input a Carte-

sian product D and a sample S, and returns a tuple t in
D. The general inference algorithm (Algorithm 1) consists
of selecting a tuple w.r.t. a strategy Υ and asking the user to
label it as a positive or negative example; this process con-
tinues until the halt condition Γ is satisfied. The algorithm
continuously verifies the consistency of the sample, if at any
moment the user labels a tuple s.t. the sample becomes in-
consistent, the algorithm raises an exception.

455

We have chosen to investigate strategies that ask the user
to label informative tuples only because we aim to mini-
mize the number of interactions. Therefore, the sample that
we incrementally construct is always consistent and our ap-
proach does not yield any error in lines 6-7. In our approach,
we choose the strongest halt condition i.e., to stop the in-
teractions when there is no informative tuple left:

Γ :� @t P D. Dα P t�,�u. pt, αq P S YUninf pSq.

At the end of the interactive process, we return the inferred
join predicate θ � T pS�q i.e., the most specific join predicate
consistent with the examples provided by the user. However,
the halt condition Γ may be weaker in practice, as the user
might decide to stop the interactive process at an earlier
time if, for instance, she finds the most specific consistent
query T pS�q to be satisfactory.

Algorithm 1 General inference algorithm.

Input: the Cartesian product D
Output: a join predicate consistent with the user’s labels
Parameters: strategy Υ, halt condition Γ
1: let S � H
2: while Γ do
3: let t � ΥpD,Sq
4: query the user about the label α for t
5: S :� S Y tpt, αqu
6: if S is not consistent (with T pS�q) then
7: error
8: return T pS�q

An optimal strategy exists and can be built by employing
the standard construction of a minimax tree [13]. While the
exact complexity of the optimal strategy remains an open
question, a straightforward implementation of minimax re-
quires exponential time (and is in PSPACE), which unfortu-
nately renders it unusable in practice. As a consequence, we
propose a number of time-efficient strategies that attempt
to minimize the number of interactions with the user. All
of the proposed strategies are based on the notion of lattice
of join predicates, which we present next. For comparison
we also introduce the random strategy (RND) which chooses
randomly an informative tuple.

4.2 Lattice of join predicates
The lattice of the join predicates is pPpΩq,�q with H as

its bottom-most node and Ω as its top-most node. We focus
on non-nullable join predicates i.e., join predicates that se-
lect at least one tuple, because we expect the user to label
at least one positive example during the interactive process.
We also consider Ω in case the user decides to label all tu-
ples as negative. Naturally, the number of non-nullable join
predicates may still be exponential since all join predicates
are non-nullable iff there exist two tuples t P R and t1 P P
s.t. trA1s � . . . � trAns � t1rB1s � . . . � t1rBms.

Figure 4 presents the non-nullable nodes (and Ω) of the
lattice corresponding to the instance from Example 2.1. We
point out a correspondence between the nodes and the tuples
in the Cartesian product D: a tuple t P D corresponds to
a node of the lattice θ if T ptq � θ. Not every node of the
lattice has corresponding tuples and in Figure 4 only nodes
in boxes have corresponding tuples (cf. Figure 3).

In the remainder of this section, we present the strate-
gies of presenting tuples to the user. The main insight is

that we propagate labels in the lattice using Lemma 3.3
(for positive examples) and Lemma 3.4 (for negative exam-
ples), which allow us to prune parts of the lattice corre-
sponding to the tuples that become uninformative. Basi-
cally, labeling a tuple t corresponding to a node θ as posi-
tive renders tuples corresponding to all nodes above θ un-
informative and possibly some other nodes depending on
tuples labeled previously. Conversely, labeling t as nega-
tive prunes at least the part of the lattice below θ. For
instance, take the lattice from Figure 4, assume an empty
sample, and take the join predicate tpA1, B2q, pA1, B3qu and
the corresponding tuple t� � pt1, t13q. If the user labels t�

as a positive example, then the tuple pt2, t13q corresponding
to tpA1, B2q, pA1, B3q, pA2, B1qu becomes uninformative (cf.
Lemma 3.3). On the other hand, if the user labels the tuple
t� as a negative example, then the tuples pt2, t11q and pt3, t11q
corresponding to tpA1, B3qu and H respectively, become un-
informative (cf. Lemma 3.4). If we reason at the lattice level,
the question“Which is the next tuple to present to the user?”
intuitively becomes“Labeling which tuple allows us to prune
as much of the lattice as possible?”

4.3 Local strategies
The principle behind the local strategies is that they pro-

pose tuples to the user following a simple order on the lattice.
We call these strategies local because they do not take into
account the quantity of information that labeling an infor-
mative tuple could bring to the inference process. As such,
they differ from the lookahead strategies that we present
in the next section. In this section we propose two local
strategies, which essentially correspond to two basic vari-
ants of navigating in the lattice: the bottom-up strategy and
the top-down strategy.

The bottom-up strategy (BU) (Algorithm 2) intuitively
navigates the lattice of join predicates from the most gen-
eral join predicate (H) towards the most specific one (Ω). It
visits a minimal node of the lattice that has a corresponding
informative tuple and asks the user to label it. If the label is
positive, (at least) the part of the lattice above the node is
pruned. If the label is negative, the current node is pruned
(since the nodes below are not informative, they must have
been pruned before). Recall the instance from Example 2.1
and its corresponding lattice in Figure 4. The BU strategy
asks the user to label the tuple t0 � pt3, t11q corresponding
to H. If the label is positive, all nodes of the lattice are
pruned and the empty join predicate returned. If the label
is negative, the strategy selects the tuple pt2, t11q correspond-
ing to the node θ1 � tpA1, B3qu for labeling, etc. The BU
strategy discovers quickly the goal join predicate H, but is
inadequate to discover join predicates of bigger size. In the
worst case, when the user provides only negative examples,
the BU strategy might ask the user to label every tuple from
the Cartesian product.

Algorithm 2 Bottom-up strategy BUpD,Sq

1: let m � minpt|T ptq| | t P D s.t. t is informativeuq
2: return informative t s.t. |T ptq| � m

The top-down strategy (TD) (Algorithm 3) intuitively starts
to navigate in the lattice of join predicates from the most
specific join predicate (Ω) to the most general one (H). It
has basically two behaviors depending on the contents of the
current sample. First, when there is no positive example yet

456

H

tpA1, B1qu tpA1, B2qu tpA1, B3qu tpA2, B1qu tpA2, B2qu tpA2, B3qu

{pA1, B1q,
pA2, B1q}

{pA1, B1q,
pA2, B2q}

{pA1, B1q,
pA2, B3q}

{pA1, B2q,
pA1, B3q}

{pA1, B2q,
pA2, B1q}

{pA1, B3q,
pA2, B3q}

{pA2, B2q,
pA2, B3q}

{pA1, B1q,
pA1, B2q
pA2, B3q}

{pA1, B2q,
pA1, B3q
pA2, B1q}

{pA1, B3q,
pA2, B1q
pA2, B2q}

Ω

tpA1, B1qu tpA1, B2qu tpA1, B3qu tpA2, B1qu tpA2, B2qu tpA2, B3qu

{pA1, B1q,
pA2, B1q}

{pA1, B1q,
pA2, B2q}

{pA1, B1q,
pA2, B3q}

{pA1, B2q,
pA1, B3q}

{pA1, B2q,
pA2, B1q}

{pA1, B3q,
pA2, B3q}

{pA2, B2q,
pA2, B3q}

{pA1, B1q,
pA1, B2q
pA2, B3q}

{pA1, B2q,
pA1, B3q
pA2, B1q}

{pA1, B3q,
pA2, B1q
pA2, B2q}

Figure 4: Lattice of join predicates for the instance from Example 2.1

(lines 1-2), this strategy chooses a tuple t corresponding to
a �-maximal join predicate i.e., whose T ptq has no other
non-nullable join predicate above it in the lattice (line 2).
For example, for the instance corresponding to the lattice
from Figure 4, we first ask the user to label the tuple cor-
responding to tpA1, B1q, pA1, B2q, pA2, B3qu, then the tuple
corresponding to tpA1, B2q, pA1, B3q, pA2, B1qu, etc. Note
that the relative order among these tuples corresponding to
�-maximal join predicates is arbitrary. If the user labels
all �-maximal join predicates as negative examples, we are
able to infer the goal Ω without asking her to label all the
Cartesian product (using Lemma 3.4). Thus, the TD strat-
egy overcomes the mentioned drawback of the BU. On the
other hand, if there is at least one positive example, then the
goal join predicate is a non-nullable one, and the TD strat-
egy turns into BU (lines 3-5). As we later show in Section 5,
the TD strategy seems a good practical compromise.

Algorithm 3 Top-down strategy TDpD,Sq

1: if S� � H then
2: return informative t s.t. Et1 P D. T ptq � T pt1q
3: else
4: let m � minpt|T ptq| | t P D s.t. t is informativeuq
5: return informative t s.t. |T ptq| � m

4.4 Lookahead strategies
In this section, we present the lookahead strategies. The

key difference between them and the local strategies is that
the lookahead strategies take into account the quantity of
information that labeling an informative tuple could bring
to the process of inference. We need to introduce first some
auxiliary notions. Given an informative tuple t from D and
a sample S, let uαt,S be the number of tuples which become

uninformative if the tuple t is labeled with α:

uαt,S � |Uninf pS Y tpt, αquq zUninf pSq|.

Now, the entropy of an informative tuple t w.r.t. a sample S,
denoted entropySptq, is the pair pminpu�t,S , u

�
t,Sq,maxpu�t,S , u

�
t,Sqq,

which captures the quantity of information that labeling the
tuple t can provide. The entropy of uninformative tuples is
undefined, however we never make use of it. In Figure 5 we
present the entropy for each tuple from the Cartesian prod-
uct of the instance from Example 2.1, for an empty sample.

T u�t,S u�t,S entropyS
pt1, t11q tpA1, B3q, pA2, B1q, pA2, B2qu 0 2 (0,2)
pt1, t12q tpA1, B1q, pA2, B2qu 0 1 (0,1)
pt1, t13q tpA1, B2q, pA1, B3qu 1 2 (1,2)
pt2, t11q tpA1, B3qu 2 1 (1,2)
pt2, t12q tpA1, B1q, pA2, B3qu 1 1 (1,1)
pt2, t13q tpA1, B2q, pA1, B3q, pA2, B1qu 0 4 (0,4)
pt3, t11q H 11 0 (0,11)
pt3, t12q tpA1, B3q, pA2, B3qu 0 2 (0,2)
pt3, t13q tpA1, B1q, pA2, B1qu 0 1 (0,1)
pt4, t11q tpA1, B1q, pA1, B2q, pA2, B3qu 0 2 (0,2)
pt4, t12q tpA1, B2q, pA2, B1qu 1 1 (1,1)
pt4, t13q tpA2, B2q, pA2, B3qu 0 1 (0,1)

Figure 5: The Cartesian product corresponding to
the instance from Example 2.1 and the entropy for
each tuple, for an initial empty sample.

Given two entropies e � pa, bq and e1 � pa1, b1q, we say
that e dominates e1 if a ¥ a1 and b ¥ b1. For example,
p1, 2q dominates p1, 1q and p0, 2q, but it does not dominate
p2, 2q nor p0, 3q. Next, given a set of entropies E, we define
the skyline of E, denoted skylinepEq, as the set of entropies
e that are not dominated by any other entropy of E. For
example, for the set of entropies of the tuples from Figure 5,
the skyline is tp1, 2q, p0, 11qu.

457

Next, we present the one-step lookahead skyline strategy
(L1S) (Algorithm 4). We illustrate this strategy for the in-
stance from Example 2.1, for an initial empty sample. First
(line 1), we compute the entropy for each informative tuple
from the Cartesian product. This corresponds to comput-
ing the last column from Figure 5. Then (line 2), we calcu-
late the maximal value among all minimal values of the en-
tropies computed at the previous step. For our example, this
value is 1. Finally (lines 3-4), we return an informative tuple
whose entropy is in the skyline of all entropies, and more-
over, has as minimal value the number computed at the pre-
vious step. For our example, the skyline is tp1, 2q, p0, 11qu,
thus the entropy corresponding to the value computed pre-
viously (i.e., 1) is p1, 2q. Consequently, we return one of the
tuples having the entropy p1, 2q, more precisely either pt1, t13q
or pt2, t11q. Intuitively, according to L1S strategy, we choose
to ask the user to label a tuple which permits to eliminate
at least one and at most two additional tuples. Note that
by min (resp. max) we denote the minimal (resp. maximal)
value from either a given set or a given pair of numbers,
depending on the context.

Algorithm 4 One-step lookahead skyline L1SpD,Sq

1: let E � tentropySptq | t P D s.t. t is informativeu
2: let m � maxptminpeq | e P Euq
3: let e the entropy in skylinepEq s.t. minpeq � m
4: return informative t s.t. entropySptq � e

The L1S strategy naturally extends to k-steps lookahead
skyline strategy (LkS). The difference is that instead of tak-
ing into account the quantity of information that labeling
one tuple could bring to the inference process, we take into
account the quantity of information for labeling k tuples.
Note that if k is greater than the total number of informa-
tive tuples in the Cartesian product, then the strategy be-
comes optimal and thus inefficient. For such a reason, in the
experiments we focus on a lookahead of two steps, which is a
good trade-off between keeping a relatively low computation
time and minimizing the number of interactions. Therefore,
we present such strategy in the remainder.

Algorithm 5 entropy2
Sptq

1: for α P t�,�u do
2: let S1 � S Y tpt, αqu
3: if Et1 P D s.t. t1 is informative w.r.t. S1 then
4: let eα � p8,8q
5: continue
6: let E � H
7: for t1 P D s.t. i is informative w.r.t. S1 do
8: let u� � |Uninf pSYtpt, αq, pt1,�quq zUninf pSq|
9: let u� � |Uninf pSYtpt, αq, pt1,�quq zUninf pSq|

10: E :� E Y tpminpu�, u�q,maxpu�, u�qqu
11: let m � maxptminpeq | e P Euq
12: let eα the entropy in skylinepEq s.t. minpeαq � m
13: let m � minptminpe�q,minpe�quq
14: return eα s.t. minpeαq � m

We need to extend first the notion of entropy of a tuple
to the notion of entropy2 of a tuple. Given an informative
tuple t and a sample S, the entropy2 of t w.r.t. S, denoted
entropy2

Sptq, intuitively captures the minimal quantity of in-
formation that labeling t and another tuple can bring to the

inference process. The construction of the entropy2 is quite
technical (Algorithm 5) and we present an example below.
Take the sample S � tppt1, t13q,�q, ppt3, t

1
1q,�qu. Note that

Uninf pSq � tppt2, t13q,�q, ppt1, t
1
2q,�q, ppt2, t

1
2q,�q, ppt3, t

1
3q,�q,

ppt4, t13q,�qu. There are five informative tuples left: pt1, t11q,
pt2, t11q, pt3, t

1
2q, pt4, t

1
1q, and pt4, t12q. Let compute now the

entropy2 of pt2, t11q w.r.t. S using Algorithm 5. First, take
α � � (line 1), then S1 � S Y tppt2, t11q,�qu (line 2), note
that there is no other informative tuple left (line 3), and
therefore, e� � p8,8q (lines 4-5). This intuitively means
that given the sample S, if the user labels the tuple pt2, t11q
as positive example, then there is no informative tuple left
and we can stop the interactions. Next, take α � � (line
1), then S1 � S Y tppt2, t11q,�qu (line 2), and the only tu-
ples informative w.r.t. S1 are pt4, t11q and pt4, t12q, we obtain
E � tp3, 3qu (lines 6-10), and e� � p3, 3q (lines 11-12). Fi-
nally, entropy2

Sppt2, t
1
1qq � p3, 3q (lines 13-14), which means

that if we ask the user to label the tuple pt2, t11q and any ar-
bitrary tuple afterwards, then there are at least three other
tuples that become uninformative. The computation of the
entropies of the other informative tuples w.r.t. S is done
in a similar manner. The 2-steps lookahead skyline strategy
(L2S) (Algorithm 6) returns a tuple corresponding to the
“best” entropy2 in a similar manner to L1S. In fact, Al-
gorithm 6 has been obtained from Algorithm 4 by simply
replacing entropy by entropy2. As we have already men-
tioned, the approach can be easily generalized to entropyk

and LkS, respectively.

Algorithm 6 2-steps lookahead skyline L2SpD,Sq

1: let E � tentropy2
Sptq | t P D s.t. t is informativeu

2: let m � maxptminpeq | e P Euq
3: let e the entropy in skylinepEq s.t. minpeq � m
4: return informative t s.t. entropy2

Sptq � e

5. EXPERIMENTS
In this section, we present an experimental study devoted

to proving the efficiency and effectiveness of our join infer-
ence strategies. Precisely, we compare the three classes of
strategies presented above: the random strategy (RND), the
local strategies (BU and TD), and the lookahead strategies
(L1S and L2S). For each database instance I and for each
goal join predicate θ, we have considered two measures: the
number of user interactions (i.e., the number of tuples that
need to be presented to the user in order to infer the join
predicate), and the total time needed to infer the goal join
predicate, using each of the above strategies as strategy Υ
(cf. Section 4.1), and reiterating the user interactions until
no informative tuple is left (halt condition Γ).

In the experiments, we have used two datasets: the TPC-
H benchmark datasets (Section 5.1) and randomly generated
synthetic datasets that we have built (Section 5.2). For the
synthetic datasets we have used all non-nullable join pred-
icates (cf. Section 4.2) as goal predicates, while for TPC-H
we could settle some specific goals, as suggested by the key-
foreign key relationships. We show in Table 1 the description
of all datasets along with the summary of results.

Our algorithms have been implemented in Python. All
our experiments were run on an Intel Core i7 with 4 � 2.9
GHz CPU and 8 GB RAM.

458

5.1 Setup of experiments on TPC-H
We have considered the following goal join predicates over

the TPC-H benchmark [16]:

Join 1: Part[Partkey] = Partsupp[Partkey],

Join 2: Supplier[Suppkey] = Partsupp[Suppkey],

Join 3: Customer[Custkey] = Orders[Custkey],

Join 4: Orders[Orderkey] = Lineitem[Orderkey],

Join 5: Partsupp[Partkey] = Lineitem[Partkey] ^

^ Partsupp[Suppkey] = Lineitem[Suppkey].

They indeed correspond to key-foreign key relationships be-
tween different combinations of relations from TPC-H. Note
that the strategies are not aware of these constraints and
select tuples to present to the user only by reasoning on the
user annotations. The goal of such experiments on TPC-
H is to evict the goal join predicates that rely on integrity
constraints. It may easily happen in the benchmark to have
other attributes that match with the keys and foreign keys
as they exhibit compatible types. For instance, a value “15”
of an attribute of a tuple may as well represent a key, a size,
a price, or a quantity, etc. We have repeated these experi-
ments on all scaling factors (SF) for TPC-H i.e., in the inter-
val between 1 and 100000. For conciseness, we only present
the results on the minimum and maximum scaling factors
in Figure 6 and a summary of these TPC-H experiments in
the top half of the table from Table 1. We discuss these
experiments along with the synthetic ones in Section 5.3.

5.2 Setup of experiments on synthetic data
Since the size of TPC-H join predicates is only 1 or 2, we

have implemented a synthetic datasets generator. The goal
of these experiments was to tweak our strategies on various
sizes of the join predicate. A configuration of our generator
is a quadruple (|attrspRq|, |attrspP q|, l, v), where |attrspRq|
(resp. |attrspP q|) is the number of attributes in the relation
R (resp. P), l is the number of tuples in the instance of
each relation, and v is the number of possible values of the
attributes of the relations. For example, the configuration
p3, 3, 50, 100q generates instances of two relations s.t. each
of them has 3 attributes and 50 lines, and the values in
the instance can be only numbers in the set t0, 1, . . . , 99u.
The results presented for our synthetic datasets are obtained
after averaging over 100 runs. We include in Figure 7 and
the bottom half of Table 1 the results for the following six
configurations: p3, 3, 100, 100q, p3, 3, 50, 100q, p3, 4, 50, 100q,
p2, 5, 50, 100q, p2, 4, 50, 50q, and p2, 4, 50, 100q. The first two
of them are particularly interesting in practice as they could
represent triples of RDF stores.

5.3 Discussion
In this section, we discuss the experimental results for the

two settings presented above. We first introduce an addi-
tional notion. Given an instance I, the join ratio of I is
the average of the sizes of the unique join predicates θ for
which there exists a tuple t in the Cartesian product s.t.
T ptq � θ. Formally, let N � tθ P PpΩq | Dt P D. T ptq � θu.
Then, the join ratio of I is p

°
θPN |θ|q{p|N |q. In the above

definition, unique join predicates denotes predicates select-
ing tuples and considered only once. Indeed, if two tuples
are selected by the same most specific join predicate, then
they are basically equivalent w.r.t. the inference process. In
such a case, we will consider such a predicate only once.

For example, the instance from Example 2.1 has a total of
12 tuples in the Cartesian product, each of them yielding
a unique most specific join predicate: 1 of size 0, 1 of size
1, 7 of size 2, and 3 of size 3. Thus, the join ratio of this
instance is p0 � 1 � 7 � 2 � 3 � 3q{12 � 2. The join ratio
intuitively captures the complexity of an instance i.e., the
bigger the join ratio of an instance is, the more non-nullable
join predicates are in the lattice (cf. Section 4.2), and there-
fore, more interactions are needed to infer a join predicate
on that instance.

We show in Table 1 the summary of the experimental re-
sults. We can observe that in the majority of cases TD and
L2S are better than the other strategies w.r.t. minimizing
the number of interactions. However, none of them seems
to win over the other. In fact, their performance essentially
depends on both the size of the goal join predicate and the
join ratio of the instance. Concerning the size of the goal join
predicate, note that a goal join predicate of smaller size can
be generally inferred with less interactions. For example, in
Figure 6 for the TPC-H benchmark, four joins have size 1
while the fifth one has size 2 (cf. Section 5.1). For both pre-
sented scaling factors, join predicates of size 1 are inferred
with less interactions than the join predicate of size 2. A
similar behavior can be observed on the synthetic datasets
in Figure 7, where joins of size 0 and 1 are inferred with less
interactions than joins of size greater or equal to 2. More-
over, if we look more in detail at the joins of size greater
or equal to 2, we observe that in fact those of size 2 need
slightly more interactions than those of size 3 and 4. In-
tuitively, this happens because in the lattice corresponding
to the synthetic instances, non-nullable join predicates have
sizes between 0 and 4. Thus, the joins of size 2 are some-
where in the intermediate part of the lattice, and therefore
much more difficult to infer.

Next, let us discuss how the number of interactions needed
for each strategy depends on the size of the goal join pred-
icate and the impact of the join ratio. Trivially, the goal
join predicate of size 0 (i.e., H), can be inferred using only
one interaction, thus making the BU the best strategy for
it as expected (cf. Section 4.3). By opposite, for goal join
predicates of size greater or equal to 1, TD and L2S give the
smallest number of interactions. In particular, for the goal
join predicates of size 1, L2S is better than TD unless the
join ratio is very small (i.e., around 1). A small join ratio
means that there are very few non-nullable join predicates in
the lattice hence the lookahead might not be necessarily use-
ful. Of course, L2S exhibits a better performance than TD
in all those cases when the join ratio is more significant. A
bigger join ratio entails more non-nullable join predicates in
the lattice, and therefore, inferring a join predicate requires
more interactions. More precisely, L2S is the best strategy
for joins of size 1 and joins of size 3 and 4. This trend is
confirmed by experiments on both kinds of datasets1. By
opposite, for joins of size 2 TD is the best strategy as it re-
quires the smallest number of interactions for both synthetic
data and TPC-H data.

Finally, the time to execute the strategies stays reasonable
for all the strategies, within the order of seconds. Of course,
the L2S strategy is the most expensive compared to the other
strategies, but its worst run is not more than 73.57 seconds.

1Notice that joins of size 3 and 4 occur only within the
synthetic data, since in TPC-H such joins do not make sense
(cf. Section 5.1).

459

(a) Number of interactions, SF=1. (b) Number of interactions, SF=100000.

BU TD L1S L2S RND
Join 1 0.001 0.001 0.015 0.072 0.001
Join 2 0.001 0.001 0.008 0.046 0.001
Join 3 0.001 0.001 0.01 0.042 0.001
Join 4 0.012 0.01 3.452 56.167 0.013
Join 5 0.019 0.014 2.53 73.57 0.013

(c) Inference time (seconds), SF=1.

BU TD L1S L2S RND
Join 1 0.001 0.001 0.017 0.072 0.001
Join 2 0.001 0.001 0.013 0.074 0.001
Join 3 0.001 0.001 0.006 0.033 0.001
Join 4 0.007 0.004 0.627 9.694 0.006
Join 5 0.004 0.003 0.312 4.423 0.004

(d) Inference time (seconds), SF=100000.

Figure 6: Number of interactions and inference time for TPC-H experiments for two SF.

Size of the
Cartesian product
(number of tuples)

Join ratio
Best strategy

(w.r.t. number of
interactions)

Time of
best strategy
(in seconds)

TPC-H
experiments

SF = 1

Join 1 (size 1) 2.5 � 105 1 BU{TD{L2S (2 int.) 0.001{0.001{0.072

Join 2 (size 1) 2.5 � 105 1 TD (2 int.) 0.001

Join 3 (size 1) 2.5 � 106 1.142 TD{L2S (2 int.) 0.001{0.042

Join 4 (size 1) 9.1 � 107 2.109 L2S (4 int.) 56.167

Join 5 (size 2) 9.1 � 106 1.681 TD (25 int.) 0.014

SF = 100000

Join 1 (size 1) 2.5 � 105 1 BU{TD{L2S (2 int.) 0.001{0.001{0.072

Join 2 (size 1) 2.5 � 105 1 TD (2 int.) 0.001

Join 3 (size 1) 1.5 � 107 1.166 TD (2 int.) 0.001

Join 4 (size 1) 9.6 � 108 2.03 L2S (3 int.) 9.694

Join 5 (size 2) 1.5 � 107 1.523 TD (12 int.) 0.003

Synthetic
dataset

experiments

p3, 3, 100, 100q

Joins of size 0 104 1.647 BU (1 int.) 0.002

Joins of size 1 104 1.647 L2S (4 int.) 8.95

Joins of size 2 104 1.647 TD (15 int.) 0.006

Joins of size 3 104 1.647 L2S (14 int.) 10.241

Joins of size 4 104 1.647 L2S (13 int.) 9.924

p3, 3, 50, 100q

Joins of size 0 2.5 � 103 1.341 BU (1 int.) 0.001

Joins of size 1 2.5 � 103 1.341 L2S (4 int.) 1.373

Joins of size 2 2.5 � 103 1.341 TD (9 int.) 0.002

Joins of size 3 2.5 � 103 1.341 L2S (7 int.) 1.28

Joins of size 4 2.5 � 103 1.341 L2S (8 int.) 1.332

p3, 4, 50, 100q

Joins of size 0 2.5 � 103 1.458 BU (1 int.) 0.001

Joins of size 1 2.5 � 103 1.458 L2S (5 int.) 6.698

Joins of size 2 2.5 � 103 1.458 TD (13 int.) 0.004

Joins of size 3 2.5 � 103 1.458 L2S (10 int.) 7.1

Joins of size 4 2.5 � 103 1.458 L2S (9 int.) 7.344

p2, 5, 50, 100q

Joins of size 0 2.5 � 103 1.377 BU (1 int.) 0.001

Joins of size 1 2.5 � 103 1.377 L2S (5 int.) 2.502

Joins of size 2 2.5 � 103 1.377 TD (10 int.) 0.003

Joins of size 3 2.5 � 103 1.377 L2S (9 int.) 2.859

Joins of size 4 2.5 � 103 1.377 L2S (10 int.) 3.719

p2, 4, 50, 50q

Joins of size 0 2.5 � 103 1.596 BU (1 int.) 0.004

Joins of size 1 2.5 � 103 1.596 L2S (4 int.) 10.71

Joins of size 2 2.5 � 103 1.596 TD (13 int.) 0.011

Joins of size 3 2.5 � 103 1.596 L2S (13 int.) 14.058

Joins of size 4 2.5 � 103 1.596 L2S (13 int.) 14.177

p2, 4, 50, 100q

Joins of size 0 2.5 � 103 1.633 BU (1 int.) 0.001

Joins of size 1 2.5 � 103 1.633 L2S (4 int.) 0.666

Joins of size 2 2.5 � 103 1.633 TD (8 int.) 0.001

Joins of size 3 2.5 � 103 1.633 L2S (7 int.) 0.954

Joins of size 4 2.5 � 103 1.633 L2S (9 int.) 1.072

Table 1: Description and summary of all experiments.

460

(a) Number of interactions, p3, 3, 100, 100q. (b) Number of interactions, p3, 3, 50, 100q.

|θG| BU TD L1S L2S RND
0 0.002 0.002 0.127 6.147 0.002
1 0.004 0.004 0.335 8.95 0.004
2 0.008 0.006 0.916 17.648 0.006
3 0.01 0.008 1.085 10.241 0.008
4 0.01 0.008 1.132 9.924 0.008

(c) Inference time (seconds), p3, 3, 100, 100q.

|θG| BU TD L1S L2S RND
0 0.001 0.001 0.04 0.999 0.001
1 0.002 0.002 0.097 1.373 0.002
2 0.003 0.002 0.189 2.19 0.002
3 0.003 0.002 0.185 1.28 0.002
4 0.003 0.002 0.185 1.332 0.003

(d) Inference time (seconds), p3, 3, 50, 100q.

(e) Number of interactions, p3, 4, 50, 100q. (f) Number of interactions, p2, 5, 50, 100q.

|θG| BU TD L1S L2S RND
0 0.001 0.001 0.1 3.949 0.001
1 0.004 0.003 0.32 6.698 0.003
2 0.007 0.004 0.693 11.26 0.005
3 0.008 0.006 0.856 7.1 0.006
4 0.01 0.007 1.049 7.344 0.006

(g) Inference time (seconds), p3, 4, 50, 100q.

|θG| BU TD L1S L2S RND
0 0.001 0.001 0.057 1.718 0.001
1 0.002 0.002 0.155 2.502 0.002
2 0.004 0.003 0.316 4.074 0.003
3 0.005 0.004 0.385 2.859 0.004
4 0.006 0.004 0.516 3.719 0.005

(h) Inference time (seconds), p2, 5, 50, 100q.

(i) Number of interactions, p2, 4, 50, 50q. (j) Number of interactions, p2, 4, 50, 100q.

|θG| BU TD L1S L2S RND
0 0.004 0.005 0.216 8.739 0.005
1 0.008 0.008 0.505 10.71 0.008
2 0.016 0.011 1.306 18.713 0.012
3 0.019 0.015 1.492 14.058 0.014
4 0.019 0.015 1.576 14.177 0.014

(k) Inference time (seconds), p2, 4, 50, 50q.

|θG| BU TD L1S L2S RND
0 0.001 0.001 0.027 0.544 0.001
1 0.001 0.001 0.059 0.666 0.001
2 0.002 0.001 0.112 1.046 0.002
3 0.003 0.002 0.138 0.954 0.002
4 0.003 0.002 0.141 1.072 0.002

(l) Inference time (seconds), p2, 4, 50, 100q.

Figure 7: Number of interactions and inference time for six synthetic datasets. A configuration is: (|attrspRq|,
|attrspP q|, number of tuples in the instance of each table, number of possible values).

461

6. INTRACTABILITY OF SEMIJOINS
In this section, we approach the problem of inferring semi-

join predicates from examples given by the user. First, we
have to adapt some notions that we have previously intro-
duced in Section 3 to take into account the projection on
attrspRq. More precisely, an example is now a pair pt, αq,
where t P R and α P t�,�u. Similarly to Section 3, we
say that an example of the form pt,�q is a positive example
while an example of the form pt,�q is a negative example.
A sample is a set of examples i.e., a set S � R � t�,�u.
Given a sample S, we denote the set of positive examples
tt P R | pt,�q P Su by S� and the set of negative examples
tt P R | pt,�q P Su by S�. For example, take the relations
and their instances from Example 2.1. Consider the sample
S1 s.t. S1� � tt1, t2u and S1� � tt3u. The semijoin predi-
cate θ1 � tpA1, B2qu is consistent with the sample S1 i.e.,
S1� � R
θ1 P and S1� XR
θ1 P � H.

The basic problem of interest is the consistency checking
i.e., given a database instance and a sample, decide whether
there exists a semijoin predicate that selects all positive ex-
amples and none of the negative ones. Formally, we have
the following decision problem:

CONS
 � tpR,P, Sq | Dθ. S� � R
θP^S�XpR
θP q � Hu.

Unfortunately, this fundamental decision problem is intractable,
as we state below.

Theorem 6.1 CONS
 is NP-complete.

Theorem 6.1 shows that consistency checking is intractable
for semijoins, which implies that deciding whether a tuple is
uninformative is also intractable. This precludes a tractable
adaptation for semijoins of the interactive scenario proposed
in Section 3.

7. CONCLUSIONS AND FUTURE WORK
We have focused on interactive inference of join queries

without assuming referential integrity constraints. We have
precisely characterized join predicates with equality and de-
fined the potential information that labeling a tuple may
contribute to the inference process. Whether a tuple is in-
formative or not can be indeed decided in polynomial time.
Then, we have proposed several efficient strategies of pre-
senting tuples to the user and we have discussed their per-
formance on TPC-H benchmark and synthetic datasets. Fi-
nally, towards the goal of extending our queries to include
projection, we have shown the intractability of consistency
checking.

As future work, we would like to investigate lookahead
strategies using probabilistic graphical models, which will
in principle improve the current strategies. We also would
like to design heuristics for the interactive inference of semi-
joins, and we would like to check whether the presence of
only positive examples makes the problem more tractable.
Our early attempt indicates that deciding the minimality of
a semijoin predicate in the presence of only positive exam-
ples is coNP-complete, but it is not yet clear whether such
a minimal semijoin predicate is unique or not. Another in-
teresting direction for future work is to extend our approach
to other algebraic operators and to join paths. Finally, our
study makes sense in realistic crowdsourcing scenarios, thus
we could think of crowdsourcing users to provide positive
and negative examples for join inference.

8. REFERENCES
[1] A. Abouzied, D. Angluin, C. H. Papadimitriou, J. M.

Hellerstein, and A. Silberschatz. Learning and
verifying quantified boolean queries by example. In
PODS, pages 49–60, 2013.

[2] A. Abouzied, J. M. Hellerstein, and A. Silberschatz.
Playful query specification with DataPlay. PVLDB,
5(12):1938–1941, 2012.

[3] B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan.
Designing and refining schema mappings via data
examples. In SIGMOD Conference, pages 133–144,
2011.

[4] B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan.
EIRENE: Interactive design and refinement of schema
mappings via data examples. PVLDB,
4(12):1414–1417, 2011.

[5] D. Angluin. Queries and concept learning. Machine
Learning, 2(4):319–342, 1988.

[6] S. Cohen and Y. Weiss. Certain and possible XPath
answers. In ICDT, pages 237–248, 2013.

[7] A. Das Sarma, A. Parameswaran, H. Garcia-Molina,
and J. Widom. Synthesizing view definitions from
data. In ICDT, pages 89–103, 2010.

[8] W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering
conditional functional dependencies. IEEE Trans.
Knowl. Data Eng., 23(5):683–698, 2011.

[9] G. Gottlob and P. Senellart. Schema mapping
discovery from data instances. J. ACM, 57(2), 2010.

[10] T. Imielinski and W. Lipski Jr. Incomplete information
in relational databases. J. ACM, 31(4):761–791, 1984.

[11] A. Marcus, E. Wu, D. Karger, S. Madden, and
R. Miller. Human-powered sorts and joins. PVLDB,
5(1):13–24, 2011.

[12] L. Qian, M. J. Cafarella, and H. V. Jagadish.
Sample-driven schema mapping. In SIGMOD
Conference, pages 73–84, 2012.

[13] S. J. Russell and P. Norvig. Artificial Intelligence - A
Modern Approach (3. internat. ed.). Pearson
Education, 2010.

[14] T. Sellam and M. L. Kersten. Meet Charles, big data
query advisor. In CIDR, 2013.

[15] B. ten Cate, V. Dalmau, and P. G. Kolaitis. Learning
schema mappings. ACM Trans. Database Syst.,
38(4):28, 2013.

[16] TPC. TPC benchmarks, http://www.tpc.org/.

[17] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query
by output. In SIGMOD Conference, pages 535–548,
2009.

[18] Z. Yan, N. Zheng, Z. G. Ives, P. P. Talukdar, and
C. Yu. Actively soliciting feedback for query answers
in keyword search-based data integration. PVLDB,
6(3):205–216, 2013.

[19] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and
D. Srivastava. Reverse engineering complex join
queries. In SIGMOD Conference, pages 809–820, 2013.

462

