
WePIGE: The WebLab Provenance Information Generator
and Explorer

Clément Caron
EADS-Cassidian, Val-de-Reuil

LIP6-UPMC, Paris

Bernd Amann
LIP6 - UPMC, Paris

Camelia Constantin
LIP6 - UPMC, Paris

Patrick Giroux
EADS-Cassidian, Val-de-Reuil

ABSTRACT
WePIGE illustrates a new approach for extracting fine-grain-
ed provenance information from XML artefact-based work-
flow executions. The extraction framework relies on the us-
age of XPath mapping rules for inferring data and service
dependency links [2]. This demonstration illustrates the us-
age of the WePIGE graphical user interface for exploring the
provenance graph generated by a predefined set of mapping
rules and for semi-automatically inferring new provenance
mapping rules between user selected XML fragments.

1. INTRODUCTION
Capturing and exploring fine-grained provenance informa-

tion in complex data processing workflows is a challenging
task which can be essentially divided into two approaches
[8]. Database provenance is a “white-box” approach that
consists of inferring fine-grained data provenance links from
high-level (declarative) component specifications [3] or data-
base queries [6, 11]. Workflow provenance is based on a
“black-box” approach where dependency relationships are
declared at run-time or are generated by using implicit data
dependency patterns. The black-box setting has the ad-
vantage of not requiring any knowledge about the internal
service behavior (code), but it generally also produces less
precise provenance information with lower data granularity
than more intrusive white-box solutions.

In [2] we have proposed a new non-intrusive declarative
provenance model for XML data processing workflows. This
model introduces provenance mapping rules “connecting”the
results of two XPath expressions (extended by variables)
evaluated on the XML input/output data of service calls.
Defining such mapping rules requires the knowledge of
XPath and might be a difficult task. The model proposed
is quite similar and partly inspired of [5], the main differ-
ence remains in the use of the WebLab platform, and its
insertion-only semantic (data is never modified nor deleted).
The WePIGE prototype presented here intends to ease this
specification task by guiding the workflow designer through
a graphical interface that allows him to add new mappings,
visualize their effect on some XML documents and possibly
adapt them manually in order to be more precise. The re-
sulting data dependencies can be further explored by work-

EDBT/ICDT ’14 March 24 - 28 2014, Athens, Greece
(c) 2014, Copyright is with the authors. Published in Proceeding of the 17th
International Conference on Extending Database Technology (EDBT 2014)
on OpenProceedings.org. Distribution of this paper is permitted under the
terms of the Creative Commons license CC-by-nc-nd 4.0.

flow users (possibly the same as the designers) in order
to detect possible dysfunctional services or erroneous data
which led to unexpected execution results.

Some existing works on scientific workflow provenance,
such as Taverna [9], Kepler [1] or Vistrails [7] also use the
notion of provenance mappings for inferring data and ser-
vice dependencies. The main differences with our approach
is that in these systems, mappings are part of the workflow
description and take account of the control flow. In our
setting, mapping rules are defined for each service indepen-
dently of a given workflow (control-flow) and can be reused
in different contexts. This preserves the notion of service
reusability of the Service Oriented Architecture framework.
A second important feature of our artefact-based workflow
and provenance model is the possibility to generate prove-
nance information online (during the workflow execution)
and offline (after the workflow execution).

In the following, we will demonstrate the usage of WePIGE
for accomplishing two separate tasks : (i) the assisted de-
sign of provenance mapping rules and (ii) the exploration of
provenance information generated by these rules.

The rest of the article is organized as follows. We will
present our provenance generation model in Section 2. Sec-
tion 3 explains the overall architecture of our framework.
The WePIGE user interface and mapping generation algo-
rithm are described in Section 4 and the article finishes with
two demonstration scenarios in Section 5.

2. WEBLAB PROVENANCE MODEL
Within the WebLab platform (see Section 3), data used

and generated by a service workflow are collected within
a single XML document validated by a predefined DTD.
Each service call receives as input such a WebLab document
and extends it with new XML fragments. This “append”
semantic guarantees that no data is ever deleted and the
WebLab documents contains the final output but also all
intermediate results produced by each workflow step.

Consider the WebLab document in Figure 1 generated by
three subsequent service calls Normalizer at time instant t1,
LanguageExtractor at time instant t2 and Translator at time
instant t3. All nodes in the document are labeled by their
XML element name and the creation time-stamp (we assume
that each time-stamp identifies a unique service call). Nodes
that existed before the first service call are labeled by time
instant t0.

In order to infer fine-grained provenance links between
the input and the output of services, the workflow designer

664 10.5441/002/edbt.2014.69

resource,t0
1

metadata,t0
2

content,t0
3

mediaUnit,t1
4

content,t1
5

annotation,t2
6

language,t2

7

’en’

mediaUnit,t3
8

content,t3
9

annotation,t3

10

language,t3

11

’fr’

M1

M2

M3

Figure 1: WebLab Document

has to specify provenance mapping rules that are based on
XPath patterns extended with variables which will be ap-
plied on the final document produced by the workflow exe-
cution (for more details about the mapping model and the
dependency graph generation, see [2]). For example, service
Normalizer transforms content resource 3© and produces a
normalized version, mediaUnit resource 4©, which is added
as a child of the initial resource node 1©. This input-output
data dependency of service Normalizer can be specified by
the following simple mapping rule:

M1 :
/resource/metadata/content

/resource/mediaUnit

Observe that the provenance mapping semantics takes ac-
count of the temporal dependencies between XML fragments
(a fragment can only depend on previously generated frag-
ments) [2]. Similarly, service LanguageExtractor identifies
the language of the normalized content element of some me-
diaUnit and adds the result as a child of type annotation:

M2 :
//mediaUnit[$x := @uri]/content

//mediaUnit[$x := @uri]/annotation[//language]

Defining such mapping rules is not easy and requires knowl-
edge of the XPath syntax and semantics. It is also obvious
that the expressivity of this rule language depends on the
expressivity of XPath and the underlying document DTD.
A particular challenge concerns workflows where the same
service can be called several times which makes the exact
characterization of the input corresponding to the output of
a specific service call difficult (each call generates data of the
same type). The formal study of this expressivity remains
an open question. However, we believe that our mapping
language is sufficient for many real-world workflows and a
first step towards a high-level provenance information gen-
eration language.

3. ARCHITECTURE
We have integrated this provenance model into WebLab,

an open environment for composing software components
into complex media mining workflows. Following the core ar-
chitecture of the platform, all components are implemented
in Java and deployed within the service-oriented process-

ing middle-ware PEtALS1. The workflow execution engine
is based on XML for representing data and on RDF for en-
coding meta-data and ontologies.

The overall architecture is shown in Figure 2. It is com-
posed of three separate systems. The WebLab Platform
is responsible for the execution of the workflows. The Ser-
vice Catalog contains meta-data about services including the
service endpoints and signatures. Each Workflow execution
generates a single XML document in the XQuery-enabled
WebLab repository. All XML fragments generated by a given
service call are identified in the repository and stored by the
Recorder with all generated meta-data (workflow execution
identifier, service identifier, timestamp) in the Execution
Trace triple-store for future use by the WebLab PROV sys-
tem. The WebLab PROV system [2] generates and stores

Provenance BrowserMapping DesignerDocument Browser

Execution Trace

WebLab repository

Provenance Generator

WebLab PROV

WePIGE

Provenance GraphMapping Rules

Recorder

Workflow execution

WebLab Platform

Service catalog

Figure 2: Architecture of WebLab PROV

the provenance graphs of service executions. The mapping
rules are stored in the Mapping Rules RDF repository. The
Provenance Generator represents the heart of the system. It
applies mapping rules to WebLab documents by combining
them with the corresponding execution trace information.
The generated data and service dependencies are stored in
the Provenance Graph RDF repository. Provenance infor-

1http://petals.ow2.org/

665

mation is stored according to the RDF-PROV ontology [4]
and using an RDF triple-store allows us to use SPARQL
endpoints for querying generated provenance graphs2. The
WePIGE system allows users to interact with the WebLab
PROV system to explore WebLab document trees and the
data dependency graphs generated by a set of provenance
mappings. The main component of WePIGE is the Map-
ping Designer, which helps the user to create provenance
mapping rules for services.

4. WePIGE USER INTERFACE
The WePIGE user interface can be used in two different

modes: (i) the Provenance Browser mode, that assists users
in exploring provenance links to detect possible data or ex-
ecution errors and (ii) the Mapping Designer mode, that
visually assists workflow designers in defining provenance
mapping rules. The general user interface is illustrated in

Figure 3: WePIGE User Interface Layout

Figure 3. It is divided into six separate frames identified
by letters A to F. Frame F is available in both modes and
contains control buttons. In the following, we will describe
in more detail the other frames and their usage in both in-
terface modes.

4.1 Provenance Browser mode
The graphical user interface (GUI) in the Provenance

Browser mode assists the workflow user in exploring the
provenance graph generated by some predefined mapping
rules on a specific WebLab document. The expert first will
choose an execution identifier and then browse the corre-
sponding document and the workflow execution.

Frame A (Figure 4(a)) contains the Document Browser.
At initialization, it shows the document tree structure of
the final document generated by the selected workflow exe-
cution. Frame B (Figure 4(b)) contains the list of all service
calls of the chosen workflow execution. Finally, frame C dis-
plays the provenance graph generated by a set of predefined
provenance mapping rules displayed in Frame E (see Sec-
tion 4.2 for the generation of these rules). Frame C uses
different arrow types depending on their semantics: dashed
arrows for hierarchical XML child relations, double arrows

2Since most of the other WebLab components are compli-
ant with the W3C standards (XML, RDF), we chose the
W3C recommendation PROV-O as provenance ontology in-
stead of other approaches like the Open Provenance Model
(OPM, http://openprovenance.org/). OPM was developed
as a generic provenance model in the context of workflow
provenance, while PROV-O includes a standard mapping
to RDF and can directly be used in the WebLab platform
which follows a semantic web approach.

(a) Frame A (b) Frame B (c) Frame C

(d) Frame E

Figure 4: Zoom on frames A and C

for provenance links, and simple arrow for reflecting both,
hierarchical and provenance, semantics.

In order to track down a problem within a workflow execu-
tion, users can browse within each of these three frames by
clicking on any document node and/or service call. For ex-
ample, suppose the user selected a call to service Language-
Extractor which extracted a language annotation node from
a mediaunit resource. Frame C then automatically shows
the data provenance sub-graph (Figure 4(c)) whereas frame
A displays the document state before the service call. All
input resources of the service call are highlighted in frame
A, whereas the newly created resources are colored in red in
the provenance graph. This automatic synchronization be-
tween frames allows the expert to explore step by step the
data generation process by selecting service executions and
document nodes.

4.2 Mapping Designer Mode
This mode assists the workflow designer to generate map-

ping rules semi-automatically. The main difference between
the provenance browsing mode and the mapping designer
mode concerns the semantics of user actions on frame A
and the interaction with frame D (Figure 5(a)) which dis-
plays the data dependency rules generated by the mapping
generation algorithm described below.

(a) Frame D

Figure 5: Frame D

The user will first choose in frame B a service call he wants
to define a mapping rule for. As in the provenance browser
mode, frame A displays the document state which existed
just before the service call (this information can be inferred
thanks to the time-stamps generated by the Recorder during
the workflow execution), and highlights all nodes detected
as input with the current data dependency rule. Frame C
displays the provenance graph generated by the default rule
//∗ → //∗ (frame E) which links all input resources to all
new resources created by the service call. The user can then
refine the default rule by choosing a set of input fragments
I in frame A and a set of output fragments O in frame

666

C. The mapping generation algorithm presented below pro-
duces a set of candidate mappings displayed in frame D
(this part is empty in the browsing mode). The user can
choose among these candidates one mapping which is then
displayed in frame E. Using this frame, the expert can also
modify XPath mapping rules manually if needed. At each
moment, the interface provides feedback to the user by con-
tinuously synchronizing the provenance graph displayed in
frame C according to the mapping rule in frame E.

Mapping Generation;.
The main goal of the mapping generation algorithm is to

infer mapping rules from a set of user selected input frag-
ments I to a set of user selected output fragments O of some
document d. We implemented two algorithms.

The first algorithm is based on the query learning al-
gorithm work described in [10]. This algorithm computes
for both sets I and O the most precise common XPath
expressions xp(I) and xp(O) such that I ⊆ xp(I)(d) and
O ⊆ xp(O)(d). The resulting mapping rule is:

xp(I)→ xp(O)

The second algorithm is an extension of the first algorithm
by adding variables shared between the input and output
XPath expressions. This is based on the simple heuristic
that service calls generally extend the XML document lo-
cally with respect to some specific XML fragment. The
algorithm computes the nearest common ancestor a of all
nodes in I and O. If a is different from the document root,
there exists a common prefix xp(a) of xp(I) and xp(O) such
that xp(I) = xp(a)/xp1 and xp(O) = xp(a)/xp2. We can
then define a new mapping rule:

xp(a)[$x = @uri]/xp1 → xp(a)[$x = @uri]/xp2

Both results are displayed for the users, as explained in
the next section.

5. DEMONSTRATION SCENARIO
During the demonstration, we plan to make a full presen-

tation of the prototype using different datasets created from
different media mining projects.

The presentation will be divided into three main parts. At
first, we will get familiar with the GUI by browsing a sim-
ple resource (around 20 identified nodes and a dozen prove-
nance links) created by a previously setup workflow from the
WebLab platform, composed of fully functional rules. This
resource will contain a text and its translation, as well as
several segments corresponding to the keywords extracted
with a named entity extractor. During this part, we will see
how a user can apply data dependency rules on services, ex-
plore data and service calls through their provenance links
and detect possible problems within an execution.

In the second part of the demonstration, we will show how
a user can add a service in the previous workflow, and how
the application will help him to write new rules.

In the last part, we will show how the application reacts
during the generation of large provenance graphs for large
XML files. We will use data produced by executions of ac-
tual WebLab workflows extracting information from videos
within the AXES3 project. These workflows generate thou-
sands of identified XML resources, where each resource is

3FP7 programme AXES ICT-269980

composed of multiple annotations and video segments, in-
cluding links to the normalised version of the video, the
transcription, the extraction of key shots, and more. We will
generate a dozen of workflow executions in advance and ap-
ply provenance rules which will generate thousands of prove-
nance links for each workflow.

6. CONCLUSION
In our future work we plan to increase the expressiveness

of our provenance model by extending provenance rules with
negation and by adding a (meta-)provenance layer annotat-
ing each provenance link with its generation rule(s). We are
also currently working on the extension of our provenance
model with a quality inference layer for analyzing and im-
proving the results of complex text mining workflows.

7. REFERENCES
[1] I. Altintas, C. Berkley, E. Jaeger, M. Jones,

B. Ludäscher, and S. Mock. Kepler: An extensible
system for design and execution of scientific
workflows. In Proc. SSDBM, pages 423–424,
Washington, DC, USA, 2004.

[2] B. Amann, C. Constantin, C. Caron, and P. Giroux.
Weblab prov: computing fine-grained provenance links
for xml artifacts. In Proc. of the Joint EDBT/ICDT
Workshops, pages 298–306. ACM, 2013.

[3] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo,
J. Stoyanovich, and V. Tannen. Putting lipstick on
pig: enabling database-style workflow provenance.
Proc. VLDB Endow., 5(4):346–357, Dec. 2011.

[4] K. Belhajjame, J. Cheney, D. Corsar, D. Garijo,
S. Soiland-Reyes, S. Zednik, and J. Zhao. PROV-O:
The PROV ontology. Technical report, 2012.

[5] S. Bowers, T. McPhillips, and B. Ludäscher.
Declarative rules for inferring fine-grained data
provenance from scientific workflow execution traces.
In Proc. of the 4th Int. Conf. on Provenance and
Annotation of Data and Processes, pages 82–96,
Berlin, Heidelberg, 2012.

[6] P. Buneman, J. Cheney, and S. Vansummeren. On the
expressiveness of implicit provenance in query and
update languages. ACM Trans. Database Syst.,
33(4):28:1–28:47, Dec. 2008.

[7] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger,
C. T. Silva, and H. T. Vo. Vistrails: visualization
meets data management. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data, pages
745–747, New York, NY, USA, 2006.

[8] F. Chirigati and J. Freire. Towards integrating
workflow and database provenance. In Proc. of the 4th
Int. Conf. on Provenance and Annotation of Data and
Processes, pages 11–23, Berlin, Heidelberg, 2012.

[9] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R.
Pocock, P. Li, and T. Oinn. Taverna: a tool for
building and running workflows of services. Nucleic
acids research, 34:W729–W732, July 2006.

[10] S. Staworko and P. Wieczorek. Learning twig and path
queries. In Proc. of ICDT, pages 140–154. ACM, 2012.

[11] Y. Theoharis, I. Fundulaki, G. Karvounarakis, and
V. Christophides. On provenance of queries on
semantic web data. IEEE Internet Computing,
15(1):31–39, Jan. 2011.

667

