
A Unified Framework for Efficiently Processing
Ranking Related Queries

Muhammad Aamir Cheema‡†, Zhitao Shen♢†, Xuemin Lin†§, Wenjie Zhang†

‡Clayton School of Information Technology, Monash University, Australia
†School of Computer Science and Engineering, The University of New South Wales, Australia

♢Cisco China Research and Development Center
§Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China

aamir.cheema@monash.edu, {shenz, lxue, zhangw}@cse.unsw.edu.au

ABSTRACT
The computation of k-lower envelope is a classical problem and
has been very well studied for main memory non-indexed data. In
this paper, we study the problem from the database perspective and
present the first algorithm which utilizes the presence of the index
and achieves access optimality, i.e., it accesses a node of the index
only if the correctness of the results cannot be guaranteed with-
out accessing this node. We also demonstrate the applications of
k-lower envelope in ranking systems. Let an object be called valu-
able if it is one of the top-k objects according to at least one linear
scoring function. In this paper, we answer the following important
questions that may be asked by different users: 1) I am not sure
what scoring function I should use, therefore, return me the set of
valuable objects so that I can select an object I like the most; 2)
How can I modify the attributes (e.g., price) of my product such
that it becomes a valuable object; 3) What are the preference func-
tions for which a given object is among the top-k objects. These
three questions are formalized and called k-snippet, k-depth con-
tour and reverse top-k query, respectively. We propose a unified
framework to solve these queries by utilizing k-lower envelope as
a common foundation. Our main algorithm is access optimal for
k-snippet and k-lower envelope computation. We also demonstrate
its access optimality for the k-depth contour problem when k is
smaller than the minimum number of objects in any leaf node of
the index structure. Our algorithms outperform state-of-the-art al-
gorithms by more than an order of magnitude in terms of both CPU
and I/O cost.

1. INTRODUCTION
Consider a set of lines L. Lower score of a point p is the number

of lines that lie strictly below p. k-lower envelope is the closure of
the set of points that have lower scores equal to k − 1. In Fig. 1,
assume that L consists of the five lines a∗ to e∗. The lower score
of point p is 1. The 2-lower envelope is shown using bold lines.
k-lower envelope (also known as k-level arrangement) is a clas-

sical problem and its computation is a core component of a wide
variety of algorithms (e.g., see [1] for a nice survey). In such al-

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

gorithms, the given set of points O is mapped to a set of lines
L using a dual space mapping [2] (details to be provided in Sec-
tion 2). Then, a k-lower envelope is computed on L and its prop-
erties are exploited to solve the underlying question. The effective-
ness of k-lower envelope has been established by utilizing it in a
wide range of applications such as in computing kth-order Voronoi
diagrams [3, 4, 5], designing data structures for half-space range
searching [6, 7], processing ranking queries [8, 9, 10] and solving
hyper-plane partitioning problems such as sandwich cuts [11] and
weak line-separators [12], to name a few.

Although the efficient computation of k-lower envelope has re-
ceived significant research attention, all of the existing algorithms
are designed based on the following two assumptions: 1) the algo-
rithms are index agnostic and are designed assuming non-indexed
data, i.e., these algorithms do not exploit the availability of the pre-
built indexes; 2) the algorithms assume that the data sets reside in
the main memory. These two assumptions seriously affect the suit-
ability of the existing algorithms for the scenarios where the data
set is indexed on disk. Note that even if sufficient main memory is
available, the existing algorithms need to access the whole data set
at least once in order to load it in the main memory. Furthermore,
the extension of the existing algorithms for the indexed data is ei-
ther non-trivial or inefficient as demonstrated by our experimental
study.

In this paper, we study the problem of k-lower envelope compu-
tation from database perspective. More specifically, we assume that
the set of objects O is disk-resident and is indexed by a branch-and-
bound data structure (e.g., R-tree, Quad-tree etc.). We develop two
CPU and I/O efficient index-aware algorithms namely SkyRider
and KnightRider. Our main algorithm, KnightRider, introduces a
must-first paradigm and is access optimal, i.e., no algorithm can
guarantee the correctness of the results unless it accesses at least
all the nodes that are accessed by our algorithm. In the must-first
paradigm, in each round, the algorithm identifies one or more nodes
of the index that must be accessed in order to guarantee the correct-
ness. Then, the algorithm accesses all such entries and proceeds to
the next round. In any round, if the algorithm does not find any such
entry, the algorithm terminates by returning the correct results.

Like most of the existing work on k-lower envelope, the focus
of this paper is on 2-dimensional data sets. Nevertheless, in Sec-
tion 4.3, we demonstrate that our claim of access optimality and
the pruning rules hold even for higher dimensionality1. In the past,

1We remark that the lower bound computational complexity of k-
lower envelope increases exponentially with dimensionality [13].
Hence, there is a need for approximate but efficient algorithms for
d-dimensional data sets and we intend to study this in an extended
version.

427 10.5441/002/edbt.2014.39

the computation of 2-dimensional k-lower envelope has been ex-
tensively studied because it is not only of stand-alone interest but
is also used in a variety of other algorithms. For instance, the
database community has utilized 2-dimensional k-lower envelope
for answering various ranking queries [8, 9, 10]. Next, we present a
few other novel ranking questions that can be efficiently answered
using k-lower envelope.

1.1 Representative Applications
Given a linear scoring function f and a set of objects O, a top-k

query returns k objects from O that have the smallest scores where
score of each object is computed using f . A linear scoring function
can be represented as a weighting vector −→w = (w1, w2). The score
of a point p = (p1, p2) with respect to −→w is w1p1 + w2p2. For
the ease of presentation, in this section, we restrict our discussion
to the case when only non-negative weights are allowed. Later in
Section 2, we demonstrate that our techniques can also handle the
case when both negative and positive weights are allowed.

PROBLEM 1 : k-snippet. Given a set of objects O, k-snippet is a
set consisting of every object o ∈ O such that o is among the top-k
objects for at least one linear scoring function.

Consider the example of Fig. 2 where O consists of 10 objects a
to j. 1-snippet is {a, b} because no other object can be the top-1
object no matter what linear scoring function is used. 2-snippet is
{a, b, c, d}. Note that k-snippet is different from k-skyband [14].
In Fig. 2, 1-skyband (i.e., skyline) is {a, h, c, b} whereas 1-snippet
is {a, b}. Section 5.4 provides more details about the relationship
between k-snippet and k-skyband.

Figure 1: k-lower envelope
(k = 2)

Figure 2: k-snippet, k-depth
contour and reverse top-k

Applications: k-snippet serves as a data summarization tool that
returns only the objects that may be important for the users or the
ranking system. Consider a user who wants to retrieve an object
of his choice from a set of objects. He may not be willing/able
to define suitable scoring functions due to various reasons such as
lack of knowledge about the data domain or due to incompatible
attributes on each dimension (e.g., dollars vs inches) [15]. The sys-
tem may help such users by returning the smallest subset of objects
that guarantees that no matter what linear scoring function is used
the top-k objects are present in this subset. The users may scan this
subset of objects to choose a suitable object. k-snippet is also im-
portant for ranking systems because every top-m (m ≤ k) query
(involving linear scoring function) can be answered using k-snippet
instead of accessing the whole database (e.g., see [16]).

PROBLEM 2 : k-depth contour. Given a set of objects O, k-depth
contour is a region such that i) every object p (not necessarily in O)
that lies outside it or on its boundary is in the k-snippet of {p∪O}
and ii) every object p′ (not necessarily in O) that lies inside this
region is not in the k-snippet of {p′ ∪O}.

Consider the example of Fig. 2 where 1-depth contour is the re-
gion shown using solid lines and encloses all of the objects. 2-depth
contour is the region shown using broken lines and contains all ob-
jects except a and b. Consider an object q which is not in the data
set O (i.e., the star in Fig. 2). q is outside 2-depth contour and is
one of the top-2 objects for at least one scoring function, e.g., for
the weighting vector −→w = (1, 0), only b has a better score than q.
Hence, q is in 2-snippet. Furthermore, q is inside 1-depth contour
and it can be confirmed that q is not the top-1 object for any linear
scoring function, i.e., q is not in 1-snippet. Note that the vertices
of k-depth contour are not necessarily the data objects (e.g., see
2-depth contour in Fig. 2).
Applications. Consider that the user of the ranking system is a
businessman who wants the system to help him in designing a com-
petitive product. More specifically, the businessman wants to make
sure that his product is among the top-k products for at least one
linear scoring function. The system may give him suggestions on
how to set the specifications of the product to achieve this goal,
i.e., the system can return him k-depth contour that enables him
to visualize all possible settings that can improve his product. For
instance, in Fig. 2, if the businessman wants his product q (shown
as a star) to be the top-1 product for at least one scoring function,
he must change the attributes of q such that it lies outside 1-depth
contour, e.g., if x-coordinate corresponds to the price, the business-
man may reduce the price of q to ensure that q is outside 1-depth
contour and hence is a top-1 object for at least one scoring func-
tion. k-depth contour may also help if the businessman wants to
increase the price of the product q but wants to make sure that it
remains one of the top-2 products for at least one scoring function.
He may increase the price of q ensuring that q remains outside the
2-depth contour.

k-depth contour is also known as k-hull [17] in computational
geometry and is a well studied problem. The k-depth contour on
2d data sets has many applications such as in outlier detection [18,
19, 20], regression analysis [21], clustering [22] and data visualiza-
tion [23]. Specifically, it is a robust tool for data picturization [23]
and can be used for a visual representation of location, spread, cor-
relation, skewness and tails of data [24]. The k-depth contour has
also been used for outlier detection [18] and has a nice feature that
it does not rely on the probability distribution of the underlying
data set. Ruts et al. [22] demonstrated the applications of k-depth
contours in clustering and discriminant analysis.

PROBLEM 3 : Reverse top-k query [25]. Given a set of objects
O and a query object q (not necessarily in O), find every linear
scoring function for which q is one of the top-k objects in {q∪O}.

Consider the example of Fig. 2 and assume that the query object
is b and k = 1. Note that b is the top-1 object when weighting
vector is −→w = (1, 0). In fact, b is the top-1 object when the weight
of first attribute w1 (i.e., x-coordinate) is within range 0.5 to 1
(the weight w2 changes accordingly assuming that the sum of both
weights is 1). Hence, the answer of the reverse top-1 query is the
range of scoring functions where w1 varies from 0.5 to 1.
Applications. Consider the example of a businessman who wants
to analyze the impact of his product in the presence of other prod-
ucts in the market. The reverse top-k query returns him the scoring
functions for which his product is one of the top-k products so that
he can target the users that have similar preferences. For instance,
in Fig. 2, the product b is the top-1 product when the weight of
first attribute varies from 0.5 to 1. Assume that the first attribute
corresponds to the price. This means that the product b is the best
product for the users who give price more importance than the other

428

attribute. Hence, the businessman may target such users and adver-
tise his product by highlighting its low price.

The reverse top-k query can also be used to mine user prefer-
ences. For instance, a user that selects a product o ∈ O is likely
to have preferences similar to the scoring functions for which o is
among the top-k products. Hence, even when the users do not spec-
ify any scoring function, the system may learn about their prefer-
ences based on the objects they select. For a more detailed descrip-
tion of the applications of reverse top-k queries, see [25, 8].

1.2 Contributions
Below are the details of our contributions for each problem.

k-lower envelope. We are the first to propose an access optimal al-
gorithm for computing k-lower envelope on disk-resident data sets.
Based on an intuitive preliminary algorithm (called Rider), we de-
velop two CPU and I/O efficient algorithms namely SkyRider and
KnightRider. KnightRider is proven to be access optimal, i.e., it
only accesses the nodes that must be accessed in order to guarantee
the correctness. While KnightRider outperforms SkyRider in terms
of I/O cost, SkyRider is slightly more efficient than KnightRider in
terms of CPU cost. This is because, in order to achieve access op-
timality, KnightRider needs to spend more computational efforts to
prune the unnecessary nodes. Both algorithms outperform the ex-
isting algorithms by more than an order of magnitude in terms of
both I/O and CPU cost.
k-snippet. To the best of our knowledge, we are the first to study
the problem of k-snippet that serves as a data summarization tool
for queries involving linear scoring functions. Our main algorithm,
KnightRider, is access optimal for this problem.
k-depth contour. We are the first to propose an index-aware algo-
rithm for k-depth contour on disk-resident data. One of our pro-
posed algorithms is access optimal for the case when k is smaller
than the minimum number of children in any leaf node of the R-
tree. Although we are unable to claim the optimality for larger val-
ues of k, our experimental results show that the I/O cost of our al-
gorithm is almost the same as the lower bound I/O cost even when k
is very large, i.e., k = 100, 000. Our proposed algorithms perform
up to three orders of magnitude better than the existing algorithms.
Reverse top-k query. Our algorithm is up to two orders of mag-
nitude faster than the state-of-the-art algorithm [25]. Furthermore,
once the k-lower envelope has been computed, the cost of answer-
ing the reverse top-k query is very low. Hence, if multiple reverse
top-k queries are issued, our algorithms can answer all queries with
the total cost quite close to the cost of answering a single query be-
cause k-lower envelope is required to be computed only once.

The rest of the paper is organized as follows. Section 2 demon-
strates how to answer various ranking related queries using k-lower
envelope. Our first algorithm called SkyRider is presented in Sec-
tion 3. Our main algorithm, KnightRider, is presented in Section 4.
In Section 5, we present our experimental study. The related work
is presented in Section 6 followed by conclusion in Section 7.

2. PRELIMINARIES
In this section, we show that k-snippet, reverse top-k queries and

k-depth contour can be solved using k-lower envelope and k-upper
envelope.

DEFINITION 1 : k-lower (resp. upper) envelope. Consider a set
of lines L. Lower (resp. upper) score of a point p is the number
of lines below (resp. above) p. k-lower (resp. upper) envelope is
the closure of the set of points that have lower (resp. upper) score
equal to k − 1.

Fig. 3(d) shows 2-lower envelope and 2-upper envelope using bold
lines. Next, we briefly describe the concept of dual mapping.
Dual Mapping. A point p = (u, v) in primal space is mapped to a
line p∗ : y = ux+ v in the dual space and a line L : y = −ux+ v
in the primal space is mapped to a point L∗ = (u, v) in the dual
space (e.g., see [2]). The transformation from/to primal to/from
dual is denoted by using a superscript ∗, e.g., a point p in primal
is denoted as p∗ in dual and a line L in primal is denoted as L∗ in
dual. The weighting vector −→w = (w1, w2) is mapped to a vertical
line x = w1

w2
. A weighting vector −→w is denoted as w∗ in dual.

Fig. 3(a) shows 5 objects a to e in primal space and Fig. 3(c) shows
their corresponding dual lines a∗ to e∗ in dual space.

(a) Objects in primal (b) Lemma 1

(c) k-snippet and reverse top-k (d) k-depth contour

Figure 3: Solving the queries in dual space

Consider two points a = (a1, a2) and b = (b1, b2) in the primal
space. Given a weighting vector −→w = (w1, w2), the score of a is
a.score = w1a1+w2a2. Similarly, b.score = w1b1+w2b2. The
two points a and b are mapped to dual space as a∗ : y = a1x+ a2

and b∗ : y = b1x+ b2 (see a∗ and b∗ in Fig. 3(b)). The weighting
vector is mapped as a vertical line (see the broken line in Fig. 3(b)).
Let the y-coordinate value of the point where a∗ (resp. b∗) meets
the vertical line w∗ be called ya (resp. yb). The following lemma
shows that the relative ranking of a an b w.r.t. the weighting vector
−→w can be determined by comparing ya and yb.

LEMMA 1 : Consider a weighting vector −→w = (w1, w2). When
w2 > 0, a.score < b.score iff ya < yb. When w2 < 0,
a.score < b.score iff ya > yb.

PROOF. Since ya is the point where a∗ : y = a1x+a2 intersects
w∗ : x = w1/w2, the value of ya can be determined by replacing
x in the equation of a∗ by w1/w2, i.e., ya = a1

w1
w2

+ a2 or ya =
1
w2

(a1w1+a2w2). Since a.score = a1w1+a2w2, ya = a.score
w2

.
Similarly, yb = b.score

w2
. Hence, it is immediate that, when w2 > 0,

a.score < b.score iff ya < yb. Also, it is obvious that when
w2 < 0, a.score < b.score iff ya > yb.

Consider the example of Fig. 3(b) and assume that −→w = (0.2, 0.8).
The score of b is better (i.e., smaller) than a because b∗ intersects

429

w∗ below the point where a∗ intersects w∗. On the other hand, if
−→w = (−0.2,−0.8) then a has a better rank because ya > yb. We
remark that the case when w2 = 0 can be easily handled by treating
w2 as having a positive but infinitely small value.

LEMMA 2 : Consider a weighting vector −→w = (w1, w2). When
w2 > 0, top-k objects correspond to the k-lowest lines intersecting
w∗ in the dual space. When w2 < 0, top-k objects correspond to
the k-highest lines intersecting w∗.

The proof immediately follows from Lemma 1. Consider the ex-
ample of Fig. 3(a), where 5 objects a to e are shown. In Fig. 3(c),
these objects are mapped to lines a∗ to e∗ in dual space (ignore
the dotted line q∗ for this example). Consider the weighting vector
−→w = (0, 1) (w∗ is shown as a vertical broken line in Fig. 3(c)).
The top-2 objects are b and d because b∗ and d∗ are the two lowest
lines intersecting w∗. If the weighting vector −→w = (0,−1) then
the top-2 objects are c and e because c∗ and e∗ are the two highest
lines intersecting w∗.

2.1 Computing k-snippet in dual space
First, we assume that only non-negative weights are allowed.

The shaded area in Fig. 3(c) corresponds to the space for which
x ≥ 0 and is called the positive dual space. The white area is
called the negative dual space. Note that if the weighting vector
is allowed to have only non-negative weights then every weighting
vector −→w has its dual w∗ in the positive dual space. Next two lem-
mas show how to compute k-snippet in dual space. The proofs are
omitted but can be easily obtained by using Lemma 2.

LEMMA 3 : If only non-negative weights are allowed, an object
o ∈ O is an object in k-snippet if and only if at least one point of
o∗ lies on or below the k-lower envelope in the positive dual space.

In Fig. 3(c), 2-snippet is {a, b, d} because each of a∗, b∗ and d∗

have at least one point on or below the 2-lower envelope in the
positive dual space (the shaded area).

LEMMA 4 : If both positive and negative weights are allowed then
an object o ∈ O is in k-snippet if and only if at least one point p
of o∗ satisfies one of the following two conditions: 1) p lies on or
below k-lower envelope; 2) p lies on or above k-upper envelope.

In Fig. 3(d), 2-snippet consists of all the objects because each line
contains at least one point that satisfies at least one of the two con-
ditions.

2.2 Computing reverse top-k in dual space
Consider a query point q that is mapped to a line q∗ in dual space

as shown in Fig. 3(c). Assume that we consider only non-negative
weights. According to Lemma 2, in Fig. 3(c), q∗ is among the
top-k objects for every weighting vector w∗ lying in the positive
dual space where q∗ (the dotted line) lies below k-lower envelope.
Hence, a reverse top-k query can be answered by computing the
intersection of q∗ with k-lower envelope in the positive dual space.

If both the positive and negative weights are allowed then the
reverse top-k query can be answered by computing the segments of
q∗ that lie below k-lower envelope and the segments of q∗ that lie
above k-upper envelope.

2.3 Computing k-depth contour in dual space
It has been shown that k-depth contour can be computed using

the k-lower and k-upper envelopes [20]. Before we describe the
procedure, we introduce a few concepts.

DEFINITION 2 : Upper (lower) hull. Let Z be the convex hull
of a set of points P . The Upper (resp. lower) hull of P is the set
of edges of Z that lie on or above (resp. on or below) every point
p ∈ P .

In Fig. 3(a), convex hull of the set of objects a to e is the outer
polygon. The upper hull consists of the edges ac and ce and the
lower hull is the set of edges ab, bd and de. In Fig. 3(d), the upper
hull of the points in k-lower envelope is shown using dotted lines.

DEFINITION 3 : Convex vertices. Let UH be the upper hull of
the points on k-lower envelope and LH be the lower hull of the
points on k-upper envelope. The vertices of UH and LH are called
the convex vertices.

Fig. 3(d) shows all the convex vertices as hollow circles. Now,
we describe how to compute k-depth contour in the dual space. For
a more detailed description, see [20].
1. Map all objects in O to lines in a dual space.
2. Compute k-lower envelope and k-upper envelope of these lines
and determine the convex vertices (by computing upper and lower
hulls).
3. Map the convex vertices to lines in primal space and use these
lines to obtain the k-depth contour. In Fig. 3(a), the dotted lines
correspond to the convex vertices of Fig. 3(d). For instance, the
vertex in Fig. 3(d) where c∗ and d∗ intersect each other corresponds
to the line cd in Fig. 3(a). The shaded area in Fig. 3(a) is 2-depth
contour that is obtained by using the dotted lines.

When only the non-negative weights are allowed, the computa-
tion of the k-depth contour is exactly the same except that only the
k-lower envelope and only the positive dual space is considered.

3. THE SKYRIDER ALGORITHM
In the rest of the paper, we present efficient algorithms to com-

pute k-lower envelope. The computation of k-upper envelope is
similar. Although our techniques and optimality claims hold for all
branch-and-bound data structures, in the rest of the paper, we re-
strict our discussion to the case when objects are indexed by R-tree.
Also, we present our techniques for the case when k ≤ n/2 where
n is total number of objects. This is because k-lower envelope is
the same as (n−k+1)-upper envelope [2]. Hence, if k > n/2, the
k-lower envelope can be obtained by computing k′-upper envelope
where (k′ = n− k + 1) ≤ n/2.

Like most of the existing techniques (e.g., see [26]), we assume
that no two lines are parallel and no three lines are concurrent when
the objects are mapped to the dual space. We remark that this as-
sumption is made only for the ease of presentation. Later in Sec-
tion 4.3, we show that such situations can be handled easily.

3.1 The Rider: An Elementary Algorithm
First, we present a basic disk-based algorithm for computing k-

lower envelope. This is called Rider algorithm and is also used as
a subroutine in our main algorithms, SkyRider and KnightRider.
Intuitive description. Assume that all objects in O have been
mapped to lines in a dual space. Let origin line Lo be the line with
the k-th smallest slope. Let destination line Ld be the line with the
k-th largest slope. Assume that all lines are roads and a bike rider
starts traveling from the right most point on the origin line (i.e., at
x = ∞). The rider always travels towards his left (i.e., towards de-
creasing value of x). Whenever he reaches at an intersection of two
lines, he makes a turn. The rider keeps traveling until it reaches the
left most point of the destination line (i.e., at x = −∞). It is easy
to verify that the path that the rider travels on corresponds to the

430

k-lower envelope. This is because when the rider starts at the right
most point on the origin line, there are exactly k − 1 lines above
him and each turn ensures that he remains below exactly k−1 lines.
The proof is straightforward and intuitive and is omitted.

In Fig. 3(c), assuming k = 2, the origin line is b∗ and the des-
tination line is d∗. The rider starts from the right most point of b∗

and travels towards left. When he reaches at the intersection m,
he makes a turn and continues traveling on a∗. The algorithm con-
tinues until the rider reaches the left most point of d∗. The path
(shown in bold) is the path traveled by the rider and corresponds to
k-lower envelope.

Algorithm 1 presents a more formal description.

Algorithm 1: Rider Algorithm
1 Find the origin line and call it Lc. Set the current location

current_loc as the point on Lc with x =∞;
2 Among the lines that intersect Lc on left of current_loc, find the line

L′ that intersects Lc at the right most point. Let z be the intersection
of L′ and Lc. Add z to k-lower envelope;

3 Terminate the algorithm if there does not exist any such L′ at line 2.
Otherwise, set the current location as z (i.e., current_loc← z) and
current line as L′ (i.e., Lc ← L′) and go to line 2;

Implementing rider algorithm on disk-resident data. In this sec-
tion, we show how to implement the rider algorithm when the data
objects (i.e., the lines in dual space) are indexed by a disk-resident
branch-and-bound data structure (i.e., R-tree). More specifically,
we briefly describe how to implement the first two lines of the al-
gorithm (the third line is self describing).
Line 1. Note that the origin line is the line with the k-th smallest
slope and it corresponds to the object in primal space that has the k-
th smallest x-coordinate value. Such an object can be easily found
using a best-first search algorithm on R-tree.
Line 2. Before we present the details, we discuss how a rectangle
in primal space is mapped to dual space.
Spectrum of a rectangle. Consider the rectangle R shown in Fig. 4(a).
In Fig. 4(b), we map the four corners of the rectangle (a to d) to four
lines in dual space (a∗ to d∗). The 1-upper envelope and 1-lower
envelope of these four lines are shown using bold lines. The space
between the 1−upper envelope and 1-lower envelope is called the
spectrum of rectangle R and is denoted as R∗. In Fig. 4(b), the
spectrum of R is shown shaded. It is easy to verify that, for any
point p ∈ R, its corresponding line p∗ in dual space lies entirely in
R∗. In Fig. 4, the point p lies in the rectangle R and p∗ lies in R∗.

(a) Primal Space (b) Dual Space

Figure 4: Mapping a rectangle to dual space

Consider a line Lc and a spectrum R∗ as shown in Fig. 4. For
every point p ∈ R, p∗ intersects the line Lc on the segment of Lc

that lies inside the spectrum. A branch-and-bound algorithm can be
used to execute the line 2 of Algorithm 1. Since our main algorithm

is KnightRider (presented in Section 4.2), we only give a high level
idea of this algorithm. The algorithm iteratively processes the en-
tries of the R-tree. For each accessed entry e, the algorithm checks
the intersection of Lc with e∗ and decides whether to prune e or in-
sert its children for processing in next round. Specifically, an entry
e can be pruned if the segment of Lc that lies within e∗ lies on the
right of current_loc, i.e., no line in e∗ can intersect L on the left
of current_loc (as shown in Fig. 4(b)). Hence, e can be pruned.

3.2 The SkyRider: An I/O Efficient Rider
A major problem with the rider algorithm is that it traverses R-

tree using a branch-and-bound algorithm as many times as the num-
ber of vertices of the k-lower envelope. This results in a very high
I/O cost. Next, we present an observation that significantly reduces
the I/O cost of the rider algorithm.

Consider the example of Fig. 5 where 5 objects are shown in
primal space and dual space. Note that o∗ does not contribute to
the 2-lower envelope and can be pruned. Lemma 5 identifies the
conditions that can be used to prune such objects. For a point p,
we use px and py to denote the value of p in x and y coordinates,
respectively.

(a) Primal Space (b) Dual Space

Figure 5: Pruning irrelevant data points

LEMMA 5 : An object o can be pruned if both of the following
conditions hold: i) there exist at least k objects such that for each
such object r, rx < ox and ry < oy (see objects a and b in
Fig. 5(a)); and ii) there exist at least k objects such that for each
such object s, sx > ox and sy < oy (see objects c and d in
Fig. 5(a)).

PROOF. For an object o mapped to a line o∗ in dual space, ox
corresponds to the slope of o∗ and oy corresponds to the y-intercept
of o∗. If the first condition is satisfied then it implies that there are
at least k lines that lie strictly below o∗ in the positive dual space
(the shaded area in Fig. 5(b)). This is because each such line r∗

has y-intercept below the y-intercept of o∗ and slope smaller than
the slope of o∗ (see objects a and b in Fig. 5(a) and lines a∗ and b∗

in Fig. 5(b)). Hence, o∗ cannot be a part of the k-lower envelope
in the positive dual space. Following the similar arguments, it can
be shown that o∗ cannot be a part of the k-lower envelope in the
negative dual space (see objects c and d in Fig. 5(a) and c∗ and d∗

in Fig. 5(b)).

Note that the conditions defined in Lemma 5 have similarity to
the concept of dominance [14, 27]. An object o′ dominates another
object o if o′ is preferable to o on every attribute. A k-skyband [14]
consists of every object that is dominated by at most k− 1 objects.
Assume that the preference function f1 prefers smaller values on
both coordinates x and y. Then, an object o satisfies the first con-
dition of Lemma 5 if it is dominated by at least k objects accord-
ing to f1 (i.e., in Fig. 5(a), o is dominated by a and b according

431

to f1). In other words, o satisfies the first condition if it is not a
k-skyband object according to preference function f1. Similarly,
assume that another preference function f2 prefers smaller values
on y-coordinate and larger values on x-coordinate. The object o
satisfies the second condition of Lemma 5 if o is not a k-skyband
according to f2.

The above discussion implies that the objects that are k-skyband
objects according to f1 or f2 are sufficient be used to correctly
compute the k-lower envelope. Hence, SkyRider algorithm first
computes these two k-skybands using BBS [14] that stores k-skyband
objects in a main-memory R-tree which is then used by the rider al-
gorithm (Algorithm 1).

4. THE KNIGHTRIDER ALGORITHM

4.1 The Algorithm

4.1.1 Outline
In this paper, we propose a must-first paradigm. An entry e is

called a must-entry if it must be accessed in order to guarantee the
correct results, i.e., no algorithm can guarantee the correctness of
the results unless e is accessed. In each round, a must-first algo-
rithm identifies and processes all must-entries and proceeds to the
next round. Note that an optimal algorithm must produce the cor-
rect results and terminate when there does not exist any must-entry.

Note that an optimal best-first algorithm (e.g., [14]) is also a
must-first algorithm because in such algorithms the best entry is
always a must-entry. However, not all the best-first algorithms are
must-first algorithms. There is another major difference between
the must-first paradigm and the best-first paradigm. That is, the
best-first algorithms access one entry at a time. In contrast, the
must-first algorithm may open all the must-entries at the same time
because all such entries are to be accessed anyway before the al-
gorithm can terminate. Hence, the must-first algorithm allows bulk
access of the entries. Next, we briefly outline our algorithm.

Initially, the root node of the R-tree is inserted in a queue. In
each round, we identify the must-entries present in the queue and,
for each must-entry, we insert its children (i.e., corresponding spec-
trums) in the queue. In each round, by using the spectrums in
the queue, we compute two approximations of k-lower envelope
named best envelope and worst envelope such that the k-lower en-
velope is guaranteed to lie on or above the best envelope and is
guaranteed to lie on or below the worst envelope. The algorithm
terminates by reporting the correct results when no must-entry is
found in the queue.

Before we present the algorithmic details, we introduce the best
and worst envelopes (Section 4.1.2) and show how to identify the
must-entries (Section 4.1.3).

4.1.2 Best (worst) envelope
Top-layer of a spectrum R∗ is the upper boundary of the spec-

trum and bottom-layer of a spectrum is the lower boundary of the
spectrum. In Fig. 4(b), the top-layer of R∗ is the upper boundary
shown in bold and the bottom-layer is the lower boundary (also
shown in bold). The cardinality of a spectrum R∗ is the number of
objects in the corresponding node R of the R-tree.

Assuming that the lower the k-lower envelope is the better it
is, the best (resp. worst) envelope denotes the best (resp. worst)
possible k-lower envelope. Next, we give a formal definition.

DEFINITION 4 : Best k-lower envelope. Assume a set of bottom-
layers where each layer is assigned a number that denotes the car-
dinality of the corresponding spectrum. For a point p, lower car-
dinality (resp. upper cardinality) is the sum of the cardinalities of

all bottom-layers that lie below (resp. above) it. Best k-lower en-
velope is the closure of the set of points that lie on bottom-layers,
and have lower cardinality at most k − 1 and upper cardinality at
most n− k where n is the total number of objects.

In Fig. 6, three spectrums R∗
1 (the dotted spectrum), R∗

2 (the shaded
spectrum) and R∗

3 (the spectrum with broken thin lines) are shown
with cardinalities 3, 4 and 2, respectively. The lower cardinality of
the point p is 0 and its upper cardinality is 6 because the bottom
layers of R2 and R3 lie above p. Since the total number of objects
n is 9, the point p is a point on best 2-lower envelope. The worst
k-lower envelope is defined similarly with the only difference that
top-layers are used instead of bottom-layers in Defintion 4. Unless
specifically mentioned, hereafter we use the term best (resp. worst)
envelope to refer to best (resp. worst) k-lower envelope. In Fig. 6,
solid bold lines are used to show the best envelope and broken bold
lines are used for the worst envelope (k = 2).

LEMMA 6 : Every point p of k-lower envelope lies between the
best and worst envelopes, i.e., p lies on or above the best envelope
and lies on or below the worst envelope.

We omit the proof due to space limitation. However, we give an
intuitive explanation. Note that every object o ∈ R has its dual line
o∗ inside R∗. This implies that o∗ is on or below the top-layer of
R∗ and on or above the bottom-layer of R∗. Hence, it is easy to
verify that the k-lower envelope lies on or above the best envelope
and lies on or below the worst envelope.

Figure 6: Best and worst k-
lower envelopes

Figure 7: Illustration of
Lemma 8

We remark that the best (resp. worst) envelopes can be easily
computed using a slightly modified version of the rider algorithm
(Algorithm 1) applied on the set of bottom (resp. top) layers. More
specifically, at each intersection, the rider decides whether to make
a turn or not based on which of the two lines satisfies the definition
of best (resp. worst) envelope.

4.1.3 Identifying the must-entries
In this section, we define how to identify a must-entry, i.e., an

entry that must be accessed in order to produce correct results.

DEFINITION 5 : Underlap. A spectrum R∗ underlaps an enve-
lope if at least one point of R∗ lies on or below the envelope.

Note that if a spectrum R∗ does not underlap an envelope it
means that every point of R∗ lies strictly above the envelope. In
Fig. 6, the best envelope is shown using solid bold lines. R∗

1 and
R∗

2 underlap the best envelope. On the other hand, R∗
3 does not

underlap the best envelope because each point of R∗
3 lies strictly

above the best envelope.

LEMMA 7 : An entry R is a must-entry if its spectrum R∗ under-
laps k-lower envelope.

432

PROOF. There may be two cases: i) R∗ lies completely below
k-lower envelope (i.e., every point of R∗ lies strictly below k-lower
envelope); ii) R∗ does not lie completely below k-lower envelope.
We show that the first case can never happen (Lemma 8). For the
second case, we show that such R∗ must be accessed. We prove this
by contradiction. Assume that k-lower envelope can be computed
without accessing such a rectangle R. Since R∗ underlaps the k-
lower envelope and satisfies the second case, there exists at least
one point p of k-lower envelope that lies inside the spectrum R∗.
Since p is a point inside R∗, its lower score depends on the loca-
tions of objects in R, i.e., for each object o ∈ R, o∗ may or may not
lie below p. Hence, the lower score of p cannot be computed unless
such rectangle R is accessed, i.e., it cannot be determined whether
p is a point on k-lower envelope or not unless R is accessed.

LEMMA 8 : There does not exist any rectangle R such that every
point of R∗ lies strictly below k-lower envelope.

PROOF. As stated earlier in Section 3, two lines (origin line Lo

and the destination line Ld) are always the lines on k-lower enve-
lope. Origin line Lo has the k-th smallest slope and the destination
line Ld has the k-th largest slope. Consider a rectangle R and its
spectrum R∗ (both shown in Fig. 7). For a line L, let L.slope de-
note its slope. R∗ cannot lie completely below k-lower envelope
unless both of the following hold: i) c∗ lies below Lo as c∗ tends
to ∞ (i.e., c∗.slope ≤ Lo.slope); and ii) d∗ lies below Ld as d∗

tends to −∞. (i.e., d∗.slope ≥ Ld.slope).
We show that these two conditions cannot hold simultaneously.

Without loss of generality, assume that the first condition holds,
i.e., c∗.slope ≤ Lo.slope. We prove by contradiction that the sec-
ond condition cannot hold. Note that Lo.slope ≤ Ld.slope be-
cause Lo is the k-th smallest slope whereas Ld is the k-th largest
slope (recall k ≤ n/2 as stated in Section 3). This implies that
c∗.slope ≤ Ld.slope. This means that if the second condition
holds then c∗.slope ≤ d∗.slope. However, we know that c∗.slope >
d∗.slope because2 c∗ corresponds to the upper right corner of R in
primal space and d∗ corresponds to the lower right corner of R (see
Fig. 7). Hence, the two conditions cannot hold simultaneously.

Lemma 7 shows how to determine whether an entry R∗ is a must
entry or not by checking whether it underlaps k-lower envelope or
not. However, the algorithm cannot employ Lemma 7 because k-
lower envelope is not known. The next lemma resolves this issue
by showing that a must entry can be identified by using the best
envelope.

LEMMA 9 : An entry R is a must-entry if its spectrum R∗ under-
laps the best envelope.

PROOF. Recall that k-lower envelope is always on or above the
best envelope (Lemma 6). Since R∗ underlaps the best envelope,
the spectrum R∗ also underlaps the k-lower envelope. Hence, R∗

is a must-entry.

4.1.4 Pseudocode
Before we present the algorithm, we define a condition that prunes

the entries of R-tree that are not required to compute k-lower enve-
lope. Pruning these entries improves the efficiency of the algorithm
mainly because fewer entries are to be considered to update the best
and worst envelopes in each round.
2Note that the proof does not hold if c∗.slope = d∗.slope =
Lo.slope = Ld.slope, i.e., R is not a rectangle but a vertical line
and the four lines c∗, d∗, Lo and Ld are parallel which is against
our assumption that no two lines are parallel. Later in Section 4.3,
we show that such special cases can be easily handled.

PRUNING RULE 1 : An entry R can be pruned if its spectrum R∗

does not underlap the worst envelope.

PROOF. Let p be a point on k-lower envelope. According to
Lemma 6, p lies on or below the worst envelope. Since R∗ does
not underlap the worst envelope, for every object o ∈ R, o∗ passes
above p. Hence, o∗ does not affect the lower score of any point p
of k-lower envelope and can be pruned.

In Fig. 6, the worst envelope is shown using bold broken lines.
R3 can be pruned because its spectrum does not underlap the worst
envelope.

Algorithm 2 provides the details of our access optimal algorithm.
The algorithm initializes two sets Q and S where Q contains the
root of the R-tree and S contains top and bottom layers of the root
node. Throughout the execution of the algorithm, Q maintains the
entries of R-tree that are to be accessed in next round (i.e., must-
entries) and S maintains the spectrums that are used to compute the
best and worst envelopes. For each entry e in Q, the algorithm first
removes its corresponding top and bottom layers from S (line 5).
Then, the algorithm uses pruning rule 1 and inserts every child c in
S that cannot be pruned (line 8).

Algorithm 2: KnightRider Algorithm
1 initialize a queue Q with root of the R-tree;
2 insert top and bottom layers of root of R-tree in S;
3 while Q is not empty do
4 for each entry e in Q do
5 remove top and bottom layers of e∗ from S;
6 for each child c of e do
7 if c cannot be pruned using pruning rule 1 then
8 insert top and bottom layers of c∗ in S;

9 recompute best and worst envelopes using S;
10 remove entries from S using pruning rule 1;
11 Q← intermediate or leaf nodes of S that underlap best envelope;

12 Return the best envelope;

After every entry e of Q is processed as described above, the
algorithm recomputes the best and worst envelopes using the up-
dated S (line 9). Since the worst envelope has been recomputed,
there may be some entries in S that can be pruned using pruning
rule 1. Hence, the algorithm prunes such entries (line 10). Then,
the algorithm identifies the must-entries that are to be opened in
next iteration. More specifically, during the computation of the
best envelope at line 9, the algorithm keeps track of each entry e
that underlaps the best envelope. Among these entries, the entries
that are intermediate or leaf nodes of the R-tree are inserted in Q
and will be accessed in the next iteration (line 11). The while loop
terminates when no such entry e is found in Q. Lemma 10 shows
that the best envelope at this stage is the same as k-lower envelope.
Hence, the best envelope is returned (line 12).

4.1.5 Proof of Correctness

LEMMA 10 : Best envelope is the same as k-lower envelope when
Algorithm 2 terminates.

PROOF. According to Lemma 6, every point that lies on k-lower
envelope either lies on or lies above the best envelope. We prove
the correctness by showing that, when the algorithm terminates,
every point p′ that lies above the best envelope cannot be a point on
k-lower envelope (hence, k-lower envelope is the same as the best
envelope).

433

Consider a vertical line passing through p′ that intersects the best
envelope at a point p (see Fig. 8). By definition, the point p on the
best envelope has lower cardinality L at most k − 1 and upper
cardinality U at most n − k, i.e., L ≤ k − 1 and U ≤ n − k (see
Fig. 8). Since the total number of lines is n, the sum of cardinalities
of the bottom-layers passing through p is X = n− (U + L).

Note that the algorithm terminates when there does not exist an
intermediate or leaf node such that its spectrum underlaps the best
envelope. This implies that every spectrum R∗ that underlaps p
has cardinality 1, i.e., R is a data point and the spectrum R∗ is its
corresponding line in dual. Hence, the total number of lines that lie
on or below p is X + L = n− U . Since p′ is a point above p, the
number of lines that lie strictly below p′ is at least X+L = n−U .
Recall that U ≤ n− k which implies that (X +L = n−U) ≥ k.
Hence, the lower score of p′ is at least k. Hence, p′ is not a point
on k-lower envelope.

4.2 Optimality Claims
Due to the space limitations, we restrict the proofs for the general

case of when both negative and positive weights are allowed. The
proofs for the case when only non-negative weights are allowed can
be obtained by following similar arguments.

4.2.1 k-lower envelope
KnightRider is access optimal for the problem of k-lower enve-

lope because it accesses only the must-entries (see line 11 of Algo-
rithm 2 and Lemma 9).

4.2.2 k-depth contour
KnightRider is access optimal for the case when k is smaller

than the minimum number of objects in a leaf node of the R-tree.
To compute k-depth contour, we need to compute both k-upper
and k-lower envelopes. First, we briefly describe how KnightRider
can be used to compute both k-upper and k-lower envelopes in one
traversal of the R-tree. Then, we prove the optimality.

Figure 8: Proof of correct-
ness

Figure 9: Illustration of
Lemma 11

It is easy to modify Algorithm 2 such that it computes both k-
upper and k-lower envelopes in one traversal of R-tree. Specifi-
cally, we say that a spectrum R∗ overlaps an envelope if at least
one point of R∗ lies on or above the envelope. In each iteration of
the algorithm, every intermediate or leaf node that either underlaps
the best k-lower envelope or overlaps the best k-upper envelope
is chosen to be accessed in the next round. Hence, the algorithm
only accesses the spectrums that either underlap k-lower envelope
or overlap k-upper envelope.

Although the algorithm is access optimal for computing k-upper
and k-lower envelopes, it cannot be shown optimal for k-depth
contour computation. This is because k-depth contour computa-
tion does not require exact computation of k-upper (lower) enve-
lope (only the convex vertices are to be computed as stated in Sec-

tion 2.3). Nevertheless, we show that this k-depth contour algo-
rithm is access optimal when k is smaller than the minimum num-
ber of objects in a leaf node of the R-tree. We prove this by show-
ing that: i) every rectangle R must be accessed if its cardinality
is greater than k and it does not completely lie within the k-depth
contour (Lemma 11); and ii) for a rectangle R that does not lie
completely within k-depth contour, its spectrum either underlaps
k-lower envelope or overlaps k-upper envelope (Lemma 12). As
described above, our algorithm only accesses an entry if it either
underlaps k-lower envelope or overlaps k-upper envelope.

LEMMA 11 : In order to compute the k-depth contour, every rect-
angle R that does not completely lie within the k-depth contour and
has a cardinality greater than k must be accessed.

PROOF. We prove by contradiction. Assume that k-depth con-
tour has been computed without accessing such a rectangle R. Fig. 9
shows this k-depth contour (the shaded polygon abcde) and such
a rectangle R. Since R has not been accessed, we do not know
anything about the orientation of objects inside it (except that it
contains more than k objects and is a minimum bounding rectangle
of these objects). We show that k-depth contour may be incorrect
if R is not accessed, i.e., there exists at least one point p outside
the contour that is not among top-k objects for any linear scoring
function.

Let L be a line passing through a point p. Let |
−→
L | and |L−→| be

the number of objects lying above and below L, respectively. It is
known that a point p cannot be among the top-k objects for any
linear scoring function if and only if, for every line L that passes
through p, |

−→
L | ≥ k and |L−→| ≥ k (e.g., see [16]). To complete the

proof, we show this for at least one point p outside k-depth contour.
Since k-depth contour is always a convex polygon [20], at least

one corner of R lies outside it (e.g., z in Fig. 9). Without loss
of generality, assume that k objects lie infinitely close to the this
corner and the remaining objects lie elsewhere (e.g., on the opposite
corner). Construct a triangle by joining z with any two arbitrary
points inside the k-depth contour (e.g., see △qrz). Since z lies
outside k-depth contour, there exists at least one point p that lies
inside △qrz and outside the k-depth contour. Note that any line L
passing through p has the corner z on one side and at least one of q
or r on the other side. Without loss of generality, assume that z lies
above L and q lies below L (see Fig. 9). Since z contains k objects,
it is obvious that |

−→
L | ≥ k. Now, we show that |L−→| ≥ k. We draw a

line L′ that is parallel to L and passes through point q. Since q lies
inside k-depth contour, |L′

−→| ≥ k (because otherwise q is among
top-k objects for at least one linear scoring function). Note that
|L′
−→| ≥ k implies |L−→| ≥ k which completes the proof.

LEMMA 12 : For every rectangle R that does not lie completely
within k-depth contour, R∗ either underlaps k-lower envelope or
overlaps k-upper envelope.

PROOF. Let p ∈ R be a point outside or on k-depth contour. By
definition of k-depth contour, p is one of the top-k objects for at
least one linear scoring function. This implies that, in dual space,
there exists at least one point z on p∗ such that z either lies on
or below k-lower envelope or lies on or above k-upper envelope.
Hence, p∗ either underlaps k-lower envelope or overlaps k-upper
envelope.

4.2.3 k-snippet
We compute k-lower envelope and k-upper envelope in one traver-

sal of the R-tree by accessing only the entries that either underlap
k-lower envelope or overlap k-upper envelope (as described in Sec-
tion 4.2.2). The next lemma proves the optimality.

434

LEMMA 13 : To compute k-snippet, every optimal algorithm must
access every spectrum R∗ that either underlaps k-lower envelope or
overlaps k-upper envelope.

PROOF. Unless the entry R is accessed, the algorithm cannot
determine whether there exists an object o ∈ R such that o∗ in-
tersects k-lower envelope or k-upper envelope. As stated in Sec-
tion 2.1, every object o is a k-snippet object if at least one point p
of o∗ lies on or below k-lower envelope or lies on or above k-upper
envelope. Hence, the algorithm may miss an object of k-snippet if
R is not accessed.

4.3 Discussion

4.3.1 Handling special cases
For the ease of presentation, we assumed that the dual mapping

does not contain more than two concurrent lines and no two lines
are parallel. Our techniques can be easily applied even when these
assumption do not hold. More specifically, the former case can be
handled by modifying the rider algorithm such that when the rider
reaches an intersection of more than two lines it continues traveling
on a line that has lower score equal to k − 1. The latter case can
be handled by assuming that the parallel lines intersect each other
at infinity [26].

Recall that the proof of Lemma 8 does not hold if, for a rectangle
R, Lo.slope = Ld.slope = c∗.slope = d∗.slope where Lo, Ld,
c and d are the origin line, destination line, upper right corner of R
and upper left corner of R, respectively. We can prune such rect-
angle R if Lemma 8 does not hold, i.e., R∗ lies strictly below the
best envelope. This is because k-lower envelope lies on or above
the best envelope, therefore, R∗ does not affect any point of the
k-lower envelope.

4.3.2 k-lower envelope in higher dimensionality
k-lower envelop in higher dimensionality (d > 2) is defined

as follows. Given a set of d-dimensional hyper-planes H, lower
score of a point p is the number of hyper-planes that lie strictly
below p. The k-lower envelope is the closure of the set of points
that have lower scores equal to k − 1. Below, we briefly describe
how our framework can be used to compute k-lower envelope in
d-dimensional space and outline the challenges.

In a d-dimensional space, a point in primal is mapped to a hyper-
plane in dual and a hyper-plane in primal is mapped to a point in
dual (e.g., see [8]). The pruning rules presented in this paper can
be immediately applied in higher dimensionality because the basic
properties of dual space mapping are preserved in higher dimen-
sionality, e.g., a point p in primal lies above a hyper-plane H if
and only if p∗ lies above H∗. Hence, our framework can be used
to prune the intermediate and leaf nodes of the R-tree. In fact, it
can be proved that all the pruning rules and lemmas presented in
Section 4 are applicable in d-dimensional space (by following the
similar arguments as in Section 4). These guarantee the access op-
timality of our algorithm for d-dimensional space.

However, a major computational challenge is to efficiently com-
pute the best and worst envelope in higher dimensional space. This
is because the computational complexity of k-lower envelope in-
creases exponentially with the increase in dimensionality [13]. Al-
though the existing techniques [1, 28] can be extended and embed-
ded in our framework to achieve the access optimality, the algo-
rithms remain computationally very expensive due to the exponen-
tial increase in the computational complexity. In future, we intend
to explore the development of approximate but efficient algorithms
to compute k-lower envelope in d-dimensional space

5. EXPERIMENTS

5.1 Experimental settings
All algorithms are implemented in C++ and complied by GNU

GCC. The experiments are performed on PCs with Intel Xeon 2.66
GHz CPU and 4GB memory under Debian Linux.
Synthetic data. We generate several data sets each following a
different data distribution. More specifically, we generate data sets
following Normal (norm for short), Correlated (corr), Anti-correlated
(anti) [29] and Uniform (unif) distributions in a unit square. We
also generate data sets that follow Uniform distribution in a unit
circle (circ for short).
Real data. We use roads data set which contains 2,249,727 streets
of California (http://www.rtreeportal.org). We generate 5 million
objects such that each street contains around 2 objects on average.
Each object represents a house and has two attributes. The first
attribute indicates its distance to the nearest beach and the second
attribute corresponds to the distance to nearest airport. The loca-
tions of beaches and airports are taken from a collection of points
of interest in California [30]. The users may prefer houses close
to (or far from) a beach and an airport. k-snippet then represents
the set of houses such that each house is among top-k houses for at
least one linear scoring function.

The table 1 shows different parameters used in our experiments
and the bold values are the default values used in the experiments
unless mentioned otherwise. The objects are indexed by an R-tree
with page size set to 4KB (the minimum number of objects in any
leaf node was 36).

Parameter Range
Data distribution real, norm, unif, anti, corr, circ
of objects n (in millions) 1, 2, 5, 10, 15, 20
k 1, 10, 25, 50, 75, 100

Table 1: Experiment Parameters

5.2 Evaluation for k-lower envelope, k-snippet
and k-depth contour

Recall that k-snippet and k-depth contour can be cheaply com-
puted if k-lower envelope and k-upper envelope are known. Hence,
as a benchmark, we evaluate our algorithms for the problem of
k-depth contour and compare with state-of-the-art algorithms for
k-depth-contour and k-lower envelopes. Later in Section 5.4, we
present a more detailed evaluation specific to the problem of k-
snippet. Below are the competitors we consider in this section.
BELT [26]. Computational geometry community proposed several
algorithms with complexities close to the optimal. Despite the fact
that these algorithms provide nice complexity guarantees, unfortu-
nately, these do not work well in practice. Nevertheless, we choose
one such algorithm called BELT algorithm [26] that computes k-
upper and k-lower envelopes with computational complexity guar-
antees close to optimal.
FDC [18]. We compare our algorithm with FDC algorithm which
is known to be the most efficient algorithm for k-depth contour.
FDC-Index. Note that both BELT and FDC are main memory al-
gorithms and do not exploit the pre-built indexes. While it is non-
trivial to extend BELT to utilize the index, we enhance FDC such
that it utilizes the pre-built R-tree. In each round, FDC requires
computing convex hull of a set of points. To do so, FDC employs
a main-memory index-agnostic convex hull algorithm. To improve
the performance, we replace the convex hull computation with an
index-aware algorithm [31] that is I/O optimal for convex hull com-

435

putation on the data sets indexed by R-tree. This variation of FDC
is called FDC-Index.

5.2.1 Comparison with lower bound I/O cost
As shown in Section 4.2, KnightRider algorithm is access opti-

mal for k-lower envelope and k-snippet problems. Unfortunately,
KnightRider is not access optimal for k-depth contour problem
when k is large. Nevertheless, our experimental results demon-
strate that the I/O cost of KnightRider is quite close to a lower
bound cost for the k-depth contour problem even when k is very
large.

It is easy to show that every optimal k-depth contour algorithm
must access every spectrum R∗ that contains a convex vertex (this
can be shown by following similar arguments as in the proof of
Lemma 7). Hence, to obtain the lower bound I/O cost, we assume
that an oracle computes all the convex vertices (without incurring
any I/O). Then, we traverse R-tree accessing only the entries such
that their spectrums overlap one of these convex vertices. These
I/Os are counted and correspond to the lower bound I/O cost.

k 1 10 100 1000 10,000 100,000
SkyRider 147 400 933 2081 9864 53907
KnightRider 114 241 453 670 2444 12294
Lower Bound 114 241 452 667 2442 12293

Table 2: Number of I/Os for k-depth contour problem

Table 2 demonstrates that the I/O cost of KnightRider algorithm
is almost the same as the lower bound I/O cost even when k =
100, 000. Recall that we were unable to show the optimality be-
cause k-depth contour may be computed correctly even if only the
convex vertices are computed instead of k-upper and k-lower en-
velopes. We observe that it is extremely rare that a rectangle affects
the k-upper and k-lower envelopes but does not affect the convex
vertices. This is the reason that the I/O cost of our algorithm is
almost the same as the lower bound I/O cost.

5.2.2 Effect of data set size
In Fig. 10, we vary the data set size and evaluate I/O and CPU

costs of all algorithms. Since FDC and BELT assume that the data
reside in main-memory, they need to access the whole data set at
least once in order to load it in the memory. We remark that, for
FDC and BELT, we do not count the time it takes to load the data
in memory.

 0

 1000

 2000

 3000

 4000

 5000

1 2 5 10 15 20

IO

 SkyRider
KnightRider
FDC-Index

(a) Varying n (in millions)
 0.1

 1

 10

 100

 1000

 10000

1 2 5 10 15 20

T
im

e
(in

 s
ec

)

BELT
FDC

FDC-Index

SkyRider
KnightRider

(b) Varying n (in millions)

Figure 10: Effect of data sizes

Fig. 10(a) shows the I/O cost for each algorithm. The number
of I/Os for FDC and BELT varies from 14, 634 to 291, 533 and is
not shown in Fig. 10(a) for a better illustration of the comparison
between the other algorithms. The I/O cost for FDC-Index is much
higher than our algorithms. KnightRider has a lower I/O cost than
SkyRider because KnightRider is I/O optimal for smaller values of
k and is almost I/O optimal for larger values.

Fig. 10(b) shows the CPU time for each algorithm. Our algo-
rithms are up to three orders of magnitude faster than the other
algorithms. Although KnightRider is access optimal and outper-
forms SkyRider in terms of I/O cost, it can be noted that SkyRider
is more efficient than KnightRider in terms of CPU cost. This is
mainly because KnightRider needs to spend more computational
efforts in order to prune the nodes and achieve access optimality.

5.2.3 Effect of k
In Fig. 11, we vary the value of k and evaluate the performance

of each algorithm. Fig. 11(a) shows that our algorithms do not only
have much lower I/O cost but also scale much better. The number
of I/Os for FDC and BELT is 73, 133 and is not shown in the figure.

 0

 5000

 10000

 15000

 20000

1 10 25 50 75 100

IO

SkyRider
KnightRider
FDC-Index

(a) Varying k
 0.001

 0.01

 0.1

 1

 10

 100

 1000

1 10 25 50 75 100

T
im

e
(in

 s
ec

)

BELT
FDC

FDC-Index

SkyRider
KnightRider

(b) Varying k

Figure 11: Effect of k

Fig. 11(b) shows that our algorithms are up to three orders of
magnitude faster than the other algorithms. Note that when k =
1, the problem of k-depth contour is the same as the problem of
computing the convex hull. Also, FDC-Index in this case is the
same as the I/O optimal algorithm proposed in [31]. Although our
algorithms are designed to solve a more complicated problem, our
algorithms perform quite well even for the convex hull problem
(i.e., k = 1).

5.2.4 Effect of data distribution
Fig. 12 studies the effect of data distribution on our algorithms.

Since the I/O and CPU costs of BELT, FDC and FDC-Index are
quite high, in Fig. 12, we only show the costs of our algorithms for
a better illustration of their comparison. Fig. 12(a) shows that the
I/O cost of KnightRider is significantly smaller than the I/O cost
of SkyRider. Fig. 12(b) shows that CPU cost of SkyRider is lower
than KnightRider for all data sets except the circ data set. This is
because the difference in the number of unpruned data points by the
two algorithm becomes more significant (e.g., Fig. 15(b) shows the
difference of almost 7 times for circ data set). Consequently, the
computational cost of the Rider algorithm dominates the pruning
cost which results in a larger overhead for SkyRider.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Real Norm Anti Unif Circ

IO

SkyRider
KnightRider

56
0

38
4

59
5

80
6

13
34

20
0

21
5 33

1 42
3

10
01

(a) Varying distribution

 0

 2

 4

 6

 8

Real Norm Anti Unif Circ

T
im

e
(in

 s
ec

)

SkyRider
KnightRider

0.
7

0.
11 0.
28

0.
14

5.
91

1.
9

0.
29 0.
52

0.
45

2.
96

(b) Varying distribution

Figure 12: Effect of different data distributions

5.2.5 Effectiveness of the rider algorithm
An alternative approach to compute the k-lower envelope is to

first compute k-skybands using BBS (as discussed in Section 3.2)

436

and then use some existing main-memory algorithm (e.g., FDC)
instead of the rider algorithm. We call such algorithm Sky-FDC
algorithm. In this section, we demonstrate the effectiveness of the
rider algorithm by showing that SkyRider is significantly more ef-
ficient than Sky-FDC algorithm. Fig. 13 shows the results for vary-
ing n and varying k and demonstrates that SkyRider is up to two
orders of magnitude faster than Sky-FDC (note that Fig. 13(b) uses
logscale). I/O costs are not shown because both SkyRider and Sky-
FDC have the same I/O cost (both algorithms use BBS to compute
k-skybands).

 0

 1

 2

 3

 4

 5

 6

 7

1 2 5 10 15 20

T
im

e
(in

 s
ec

)

Sky-FDC
SkyRider

(a) Varying n (in millions)

 0.01

 0.1

 1

 10

 100

 1000

1 10 25 50 75 100

T
im

e
(in

 s
ec

)

Sky-FDC
SkyRider

(b) Varying k

Figure 13: Effectiveness of the rider algorithm

5.3 Reverse top-k queries
We compare our algorithm with MRTopK [25] which is the state-

of-the-art algorithm for answering a reverse top-k query. Since
MRTopK studies the queries involving only non-negative weights,
we also conduct the experiments for the non-negative weights. I/O
costs are not shown because MRTopK accesses the whole data set at
least once and has significantly higher I/O cost than our algorithm.
We issue a single reverse top-k query for each setting and study the
effect of varying n and varying k in Fig. 14(a) and Fig. 14(b), re-
spectively. KnightRider is up to two orders of magnitude faster than
MRTopK. In Fig, 14(c), we issue multiple reverse top-k queries
having the same value of k, i.e., k = 25 for each query. Note that
when the number of queries |Q| increases, our algorithm scales
much better. This is mainly because, once our algorithm computes
k-lower envelope, each query q can be answered cheaply by merely
computing the intersection of q∗ and the envelope.

 0.1

 1

 10

 100

1 2 5 10 15 20

T
im

e
(in

 s
ec

)

KnightRider
MRTopK

(a) Varying n (in
millions)

 0

 2

 4

 6

1 10 25 50 75 100

T
im

e
(in

 s
ec

)

KnightRider
MRTopK

(b) Varying k

 0

 100

 200

 300

 400

 500

1 25 50 75 100

T
im

e
(in

 s
ec

)

KnightRider
MRTopK

(c) Varying |Q|

Figure 14: Reverse top-k queries

5.4 k-snippet vs k-skyband
k-snippet and k-skyband are closely related and both serve as

data summaries that can be used to answer all top-m (m < k)
queries. The difference between these two problems is that k-
skyband considers all monotonic scoring functions whereas k-snippet
considers only the linear monotonic functions. Although we do not
claim that k-snippet is superior to k-skyband in all applications, it
should be preferred to k-skyband when only linear scoring func-
tions are to be considered. This is mainly because the size of k-
snippet is up to 7 times smaller than the size of k-skyband as shown
in Fig. 15(a) and 15(b). Hence, k-snippet provides a more compact
summary.

Next, we compare the performance of our KnightRider algorithm
with BBS [14] which is an access optimal algorithm for k-skyband
under the same settings as used by our algorithm, i.e., for the disk-
resident data indexed by R-tree. We compare the I/O costs of both
algorithms in Fig. 15(c) and 15(d) and the CPU costs of both al-
gorithms in Fig. 15(e) and 15(f). Since both algorithms are I/O
optimal for their respective problems, the I/O cost of KnightRider
is lower because it requires to return a smaller set of objects. In
terms of CPU cost, BBS performs better than KnightRider except
for circ data set which is the most challenging data set for both of
the algorithms. The performance of BBS is better because the re-
quirement to prune objects for k-snippet is significantly more com-
plicated than k-skyband.

6. RELATED WORK
k-lower envelope. k-lower envelope has received significant re-
search attention from the computational geometry community (see [1]
for a nice survey). As mentioned earlier, all the existing algorithms
assume that the data reside in main memory and is not indexed.
In [9, 8], k-lower envelope has been used to answer the top-k
queries involving linear scoring functions. However, they rely on
the existing techniques to compute k-lower envelope.
k-snippet. To the best of our knowledge, we are the first to propose
the concept of k-snippet. k-skyband [14] is a similar problem has
received significant research attention and serves as a data summa-
rization tool for all monotonic scoring functions. While k-skyband
handles more general functions than the k-snippet, it contains un-
necessary objects if the users are only interested in linear scoring
functions. Several techniques [32, 33, 34] have been developed to
return a fix number of objects from 1-skyband. However, these
techniques cannot guarantee that the object that the user prefers the
most is among the returned objects.
k-depth contour. Due to its various applications in statistics, the
computation of k-depth contour on two dimensional data has re-
ceived significant research attention from the statistics community.
Ruts and Rousseeuw developed a series of algorithms to compute
k-depth contour (e.g., ISODEPTH [22], HALFMED [35] and BAG-
PLOT [24]). The researchers from the computational geometry
community have also proposed several efficient algorithms for k-
depth contour computation [17, 20, 19]. Inspired by the usefulness
of k-depth contour in outlier detection, Johnson et al. [18] pro-
posed an algorithm that was shown to outperform all of the existing
algorithms. Unfortunately, all of the above algorithms are main-
memory algorithms and are not suitable for disk-resident data sets.
Böhm and Kriegel [31] proposed I/O optimal algorithms for com-
puting convex hull which is a special case of k-depth contour where
k = 1. We remark that solving k-depth contour is considerably
more challenging and it is non-trivial to extend their techniques to
solve this problem.
Reverse top-k queries. Vlachou et al. [25] are the first to intro-
duce the reverse top-k queries. They proposed two variants of the
reverse top-k queries namely monochromatic and bichromatic re-
verse top-k queries. A monochromatic query returns every possi-
ble scoring function for which q is one of the top-k objects. On the
other hand, in a bichromatic query, a set of scoring functions F is
given and every function f ∈ F is returned for which q is one of
the top-k objects. Note that we study the monochromatic reverse
top-k query that is more general, i.e., bichromatic query can be eas-
ily answered if the results of the monochromatic query are known.
Chester et al. [36] propose an index specific for a fixed value k
such that multiple reverse top-k queries can be efficiently answered
using this index. If the value of k is unknown at the query time
(which is usually the case), the index is to be constructed on-the-fly

437

1 10 25 50 75 100

re

su
lts

k-skyband
k-snippet

60

49
5

11
50

22
05

32
32

41
65

26 13
0

26
2 48

1 68
9 89

7

(a) Varying k
Real Corr Norm Anti Circ

re

su
lts

k-skyband
k-snippet

36
1

55 29
6 11

50

75
20

17
0

46 15
0

26
2 11

41

(b) Varying distribution

 0

 100

 200

 300

1 10 25 50 75 100

IO

BBS
KnightRider

(c) Varying k
Real Corr Norm Anti Circ

IO

BBS
KnightRider

14
6

28

88

19
3

33
6

12
4

28

78

14
0

23
7

(d) Varying distribution

 0

 0.2

 0.4

 0.6

 0.8

1 10 25 50 75 100

T
im

e
(in

 s
ec

)

BBS
KnightRider

(e) Varying k

 0

 0.5

 1

 1.5

Real CorrNorm Anti Circ

T
im

e
(in

 s
ec

)

BBS
KnightRider

0.
02

58
17

0.
00

07
22

0.
01

73
62

0.
08

29
39

1.
18

51
3

0.
11

67
21

0.
02

59
31

0.
05

80
1

0.
18

88
81

0.
93

76
66

(f) Varying distribution

Figure 15: Comparison with k-skyband and BBS [14]: a-b) Result size; c-d) I/O cost; e-f) CPU time

which becomes the bottleneck. Furthermore, the proposed index
pays off only when numerous queries use the same value of k. Vla-
chou et al. [37] proposed a branch-and-bound algorithm to solve
bichromatic reverse top-k queries. However, the proposed algo-
rithm is not applicable to the monochromatic reverse top-k query.
Yu et al. [8] focused on presenting efficient solutions for continu-
ous bichromatic reverse top-k queries for the case when the set of
objects O and/or the set of scoring functions F change.

7. CONCLUSIONS
We are the first to study the problem of k-lower envelope compu-

tation on disk-resident indexed data sets. We develop two efficient
I/O and CPU efficient algorithms including an access optimal al-
gorithm. We also complement the ranking systems by proposing
solutions to several interesting queries namely k-snippet, k-depth
contour and reverse top-k queries. Our main algorithm is access op-
timal for the problem of k-lower envelope and k-snippet. It is also
optimal for k-depth contour for the smaller values of k. Our exper-
iments demonstrate that our algorithms are up to several orders of
magnitude better than the existing algorithms for these problems.

Acknowledgments. Muhammad Aamir Cheema is supported by
ARC DE130101002 and DP130103405. Xuemin Lin is supported
by NSFC61232006, NSFC61021004, ARC DP120104168 and DP
110102937. Wenjie Zhang is supported by ARC DE120102144
and DP120104168. This research was partially conducted while the
first two authors were with The University of New South Wales.

8. REFERENCES
[1] P. K. Agarwal and M. Sharir, “Arrangements and their applications,”

in Handbook of Computational Geometry, 1998, pp. 49–119.
[2] J. Matoušek, Lectures on discrete geometry. Springer Verlag, 2002.
[3] P. K. Agarwal, M. de Berg, J. Matousek, and O. Schwarzkopf,

“Constructing levels in arrangements and higher order voronoi
diagrams,” SIAM J. Comput., vol. 27, no. 3, pp. 654–667, 1998.

[4] T. M. Chan, “Random sampling, halfspace range reporting, and
construction of (<= k)-levels in three dimensions,” SIAM J. Comput.,
2000.

[5] B. Chazelle and H. Edelsbrunner, “An improved algorithm for
constructing k th-order voronoi diagrams,” IEEE Trans. Computers,
1987.

[6] B. Chazelle and F. P. Preparata, “Halfspace range search: An
algorithmic application of k-sets,” Discrete & Computational
Geometry, 1986.

[7] K. L. Clarkson, “New applications of random sampling in
computational geometry,” Discrete & Computational Geometry,
1987.

[8] A. Yu, P. K. Agarwal, and J. Yang, “Processing a large number of
continuous preference top-k queries,” in SIGMOD Conference, 2012.

[9] G. Das, D. Gunopulos, N. Koudas, and N. Sarkas, “Ad-hoc top-k
query answering for data streams,” in VLDB, 2007, pp. 183–194.

[10] Z. Shen, M. A. Cheema, and X. Lin, “Loyalty-based selection:
Retrieving objects that persistently satisfy criteria,” in CIKM, 2012.

[11] A. Borobia, “Mirror property for nonsingular mixed configurations of
lines and points in r3,” Discrete & Computational Geometry, 1994.

[12] H. Everett, J.-M. Robert, and M. J. van Kreveld, “An optimal
algorithm for the (<= k)-levels, with applications to separation and
transversal problems,” Int. J. Comput. Geometry Appl., 1996.

[13] P. Agarwal and J. Matoušek, “Dynamic half-space range reporting
and its applications,” Algorithmica, vol. 13, no. 4, pp. 325–345, 1995.

[14] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline
computation in database systems,” ACM Trans. Database Syst., 2005.

[15] R. Fagin, R. Kumar, and D. Sivakumar, “Efficient similarity search
and classification via rank aggregation,” in SIGMOD, 2003.

[16] D. Xin, C. Chen, and J. Han, “Towards robust indexing for ranked
queries,” in VLDB, 2006, pp. 235–246.

[17] R. Cole, M. Sharir, and C.-K. Yap, “On k-hulls and related
problems,” in STOC, 1984, pp. 154–166.

[18] T. Johnson, I. Kwok, and R. T. Ng, “Fast computation of
2-dimensional depth contours,” in KDD, 1998, pp. 224–228.

[19] S. Krishnan, N. H. Mustafa, and S. Venkatasubramanian,
“Hardware-assisted computation of depth contours,” in SODA, 2002.

[20] K. Miller, S. Ramaswami, P. Rousseeuw, J. A. Sellarès, D. L.
Souvaine, I. Streinu, and A. Struyf, “Fast implementation of depth
contours using topological sweep,” in SODA, 2001, pp. 690–699.

[21] L. Kong and Y. Zuo, “Smooth depth contours characterize the
underlying distribution,” J. Multivariate Analysis, 2010.

[22] I. Ruts and P. Rousseeuw, “Computing depth contours of bivariate
point clouds,” Computational Statistics & Data Analysis, 1996.

[23] J. W. Tukey, “Mathematics and picturing of data,” in International
Congress of Mathematicians, 1974.

[24] P. J. Rousseeuw, I. Ruts, and J. W. Tukey, “The bagplot: A bivariate
boxplot,” The American Statistician, vol. 53, no. 4, Nov. 1999.

[25] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg, “Reverse
top-k queries,” in ICDE, 2010, pp. 365–376.

[26] H. Edelsbrunner and E. Welzl, “Constructing belts in two dimensi-
onal arrangements with applications,” SIAM J. Comput., 1986.

[27] M. A. Cheema, X. Lin, W. Zhang, and Y. Zhang, “A safe zone based
approach for monitoring moving skyline queries,” in EDBT, 2013.

[28] K. Mulmuley, “On levels in arrangements and voronoi diagrams,”
Discrete & Computational Geometry, 1991.

[29] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline operator,”
in ICDE, 2001, pp. 421–430.

[30] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H. Teng,
“On trip planning queries in spatial databases,” in SSTD, 2005.

[31] C. Böhm and H.-P. Kriegel, “Determining the convex hull in large
multidimensional databases,” in DaWaK, 2001, pp. 294–306.

[32] D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. Xu,
“Regret-minimizing representative databases,” PVLDB, 2010.

[33] Y. Tao, L. Ding, X. Lin, and J. Pei, “Distance-based representative
skyline,” in ICDE, 2009, pp. 892–903.

[34] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang, “Selecting stars: The k
most representative skyline operator,” in ICDE, 2007, pp. 86–95.

[35] P. J. Rousseeuw and I. Ruts, “Constructing the bivariate tukey
median,” Statistica Sinica, pp. 827–839, 1998.

[36] S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides, “Indexing
reverse top-k queries in two dimensions,” in DASFAA, 2013.

[37] A. Vlachou, C. Doulkeridis, K. Nørvåg, and Y. Kotidis,
“Branch-and-bound algorithm for reverse top-k queries,” SIGMOD
2013.

438

