
A Tale of Two Graphs: Property Graphs as RDF in Oracle
 Souripriya Das Jagannathan Srinivasan Matthew Perry

 Eugene Inseok Chong Jayanta Banerjee

Oracle
One Oracle Drive, Nashua, NH 03062

firstname.lastname@oracle.com

ABSTRACT

Graph Databases are gaining popularity, owing to pervasiveness of

graph data in social networks, physical sciences, networking, and

web applications. A majority of these databases are based on the

property graph model, which is characterized as key/value-based,

directed, and multi-relational. In this paper, we consider the problem

of supporting property graphs as RDF in Oracle Database. We

introduce a property graph to RDF transformation scheme. The main

challenge lies in representing the key/value properties of property

graph edges in RDF. We propose three models: 1) named graph

based, 2) subproperty based, and 3) (extended) reification based, all

of which can be supported with RDF capabilities in Oracle Database.

These models are evaluated with respect to ease of SPARQL query

formulation, join complexities, skewness in generated RDF data,

query performance, and storage overhead. An experimental study

with a real-life Twitter social network dataset on Oracle Database

12c demonstrates the feasibility of representing property graphs as

RDF and presents a quantitative performance comparison of the

proposed models.

Categories and Subject Descriptors

H.2.m [Database Management]: Miscellaneous

General Terms

Algorithms, Performance, Design, Experimentation, Theory.

Keywords

Property Graph, RDF, SPARQL, Graph Database, Social Network.

1. INTRODUCTION
Graph Databases are gaining popularity, owing to pervasiveness of

graph data in social networks, physical sciences, networking, and

web applications. A majority of these databases (such as Neo4j [6],

DEX [7], InfiniteGraph [8]) are based on the property graph model

[2].

In a property graph, each vertex is identified with a unique identifier

(unique within the graph). Each (directed) edge, identified with a

unique identifier and labeled with a string, connects a source vertex

to a destination vertex. A vertex or an edge may also be associated

with a collection of key/value properties. Figure 1 shows a sample

property graph, which is key/value-based, directed, and multi-

relational.

Figure 1. A sample property graph.

Property graph data is typically accessed through the de facto

standard Blueprints Java API [3] or some proprietary query language.

The query languages over property graphs (such as Cypher [14])

have typically focused on finding paths once the start node, or

qualifying start nodes identified with certain key/values are specified.

The edges themselves can be traversed by considering the associated

key/value pairs. Throughout the paper, we use the words node and

vertex interchangeably.

In contrast, RDF [1] provides a way of specifying directed, labeled

graphs. Each directed, labeled edge is represented by a triple:

<subject, predicate, object> where the predicate is the label for a

directed edge from the subject node to the object node. The use of

quads, instead of triples, is becoming popular in practice and is

included in the new W3C RDF1.1 Recommendation [33]. A quad

extends a triple by allowing an optional named graph component and

is represented as: <subject, predicate, object, graph>. Each of the

components of a triple or a quad must be an RDF term. RDF terms

can be of three types: Internationalized Resource Identifier (IRI),

blank node, or literal. Restrictions on types of RDF terms that can be

used in a component position are: 1) subject must be an IRI or a

blank node; 2) predicate must be an IRI; 3) object must be an IRI, a

blank node, or a literal; 4) graph, if present, must be an IRI or a blank

node.

RDF graphs are typically queried using the standard SPARQL query

language [9, 16] by specifying a graph pattern, which returns

matching subgraphs. Although pattern matching has been the

primary focus, the W3C SPARQL 1.1 Recommendation has

provided options for querying for paths using the property path

construct.

The RDF representation has been adopted by several graph databases

including RDBMS-based RDF stores (such as Oracle Database

Spatial and Graph Option [10], Openlink Virtuoso [11]) and native

RDF stores (such as AllegroGraph [12], OntoText OWLIM [13]).

Typically, most RDF stores, including Oracle, natively support

standard entailment regimes (such as RDFS [4], OWL 2 RL [15]).

On a cursory look, it appears that the property graph model is more

general than RDF because key/values can be associated with both

vertices and edges in the property graph model. In contrast, RDF

(c) 2014, Copyright is with the authors. Published in Proc. of 17th

International Conference on Extending Database Technology (Athens,
Greece, March 24–28, 2014) EDBT’14, on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative

Commons license CC-by-nc-nd 4.0

1
2

Name=“Amy”

age=23
Name=“Mira”
age=22

follows

since=2007

knows

firstMetAt=“MIT”

762 10.5441/002/edbt.2014.82

supports asserting datatype and object properties1 for resources (i.e.,

nodes or vertices), but does not allow directly asserting any

properties for a specific edge, that is, for a triple itself. For example,

one may conclude that the edge properties since and

firstMetAt shown in the sample property graph of Figure 1 are

not expressible in the RDF representation.

We argue, however, that a deeper look would show that RDF is fully

capable of representing any property graph. Our specific goal is to

enable RDF stores to become an alternate platform for storing and

processing property graphs.

The key benefits of supporting property graphs as RDF are:

 RDF stores can benefit from the ability to associate key/value

pairs with edges.

 Semantically rich property graph applications can be developed

that link with ontologies and domain-specific knowledge bases

and exploit native inference capabilities.

 Property graph data can easily be published as RDF linked data

on the web.

 RDF stores can serve as backend storage for large property

graph datasets. Note that RDF stores have virtually no limit on

scale of data and have already exhibited handling of a trillion

triples [34], whereas graph databases rely on in-memory graph

analysis engines and hence have limits on the graph sizes they

can support (for example, Neo4j has a limit of 34 billion edges).

 RDF stores are based on W3C RDF and SPARQL standards,

and property graph users can benefit from this standardization.

 Standards based RDF stores offer mature tools and products. In

addition, RDBMS backed RDF stores such as Oracle have the

advantage of built-in transactional support, which becomes

available by default for property graph applications.

The basic idea for supporting property graphs in RDF is to introduce

edge-IRIs – IRIs to identify individual edges in a property graph.

Specifically, we propose three schemes 1) named graph based, 2)

subproperty based, and 3) (extended) reification [35] based, that use

edge-IRIs in different ways for representing property graphs as RDF.

All of these schemes can be supported with the capabilities of an

RDF store (in our case, Oracle). Furthermore, the proposed

representations can be queried using standard SPARQL constructs.

That is, the user does not have to learn yet another query language.

Use of edge-IRIs in RDF allows more flexible modeling than

property graphs because both datatype and object properties may be

asserted for edge-IRIs. In property graphs, key/value properties for

edges can only be scalars. RDF, in contrast, allows edges to be

associated with object properties as well. That is, in property graph

terms, a key/value can link an edge to another vertex. For example,

in the property graph of Figure 1, the knows edge has a key/value

pair firstMetAt/“MIT”, where the key’s value “MIT” is a

scalar. An RDF graph model would let the value part be an IRI

resource (a vertex), :MIT, which universally represents the resource.

Although less expressive than RDF, property graph implementations

do allow for a compact representation, since vertex and edge

identifiers are local to a graph, and key/values can also be efficiently

encoded. A characteristic that is often quoted as a criterion for

property graph implementations, or for graph databases in general, is

the notion of index-free adjacency. That is, every element contains a

direct pointer to its adjacent elements and no index lookups are

1 Note that datatype and object properties differ in that the range

of the former is literals, whereas the range of the latter is resources

(IRIs and blank nodes).

necessary. Such pointers are useful for in-memory graph analysis,

which typically is the case for most property graph implementations.

As an alternative, one could consider directly storing graph data in

relational tables. However, requiring a user to express graph oriented

queries in SQL is cumbersome, so a graph oriented query language is

necessary. The SPARQL syntax allows simpler query formulation

for RDF data because it was designed with the assumption that the

underlying store is a single table (or logical structure) with just four

columns (considering quads). Specifically, use of variables or

constants in any of the four positions of a triple-pattern, optionally

enclosed in a GRAPH clause, implicitly identifies the column being

referred to and multiple uses of the same variable specifies equi-join.

SQL cannot provide such simple syntax because it was designed for

the general case where multiple tables with many columns are being

queried. As the number of equi-joins and use of constants increase in

a query, the SQL query becomes increasingly complex to specify and

difficult to read and understand. To see the relative simplicity of

SPARQL queries, consider the following query that involves a 4-way

join and uses 5 constants: find the company that John’s uncle works

for.

SPARQL query:
PREFIX : <http://x/> .

SELECT ?company WHERE {

?x :name “John” . ?x :hasFather ?f .

?f :hasBrother ?b . ?b :worksFor ?company}

SQL query (against a 3-column triples(sub, pred, obj) table):
SELECT t4.obj company

FROM triples t1, triples t2,

 triples t3, triples t4

WHERE t1.sub = t2.sub AND t2.obj = t3.sub AND

 t3.obj = t4.sub AND

 t1.pred = ‘<http:/x/name>’ AND

 t1.obj = ‘”John”’ AND

 t2.pred = ‘<http://x/hasFather>’ AND

 t3.pred = ‘<http://x/hasBrother>’ AND

 t4.pred = ‘<http://x/worksFor>’;

To demonstrate the feasibility of our proposed scheme for

implementing property graphs on an RDF store, we evaluate the

approach with a real-life Twitter social network dataset [23] on

Oracle Database.

The key contributions of the paper are as follows:

 To the best of our knowledge, this is the first proposal to

support storing property graphs as standard RDF and querying

using standard SPARQL. The entire scheme can be supported

with capabilities of an RDF store (e.g., Oracle Database).

 Named graph based, subproperty based, and (extended)

reification based schemes which have varying query

performance and storage implications

 The SPARQL query formulation and comparison of various

schemes

 An experimental evaluation of all the aspects with a real-life

Twitter social network dataset

Note that although we show evaluation of our proposal with RDF

capabilities of Oracle, the proposed scheme is general enough to be

supported on other RDF stores as well.

1.1 Related Work
In the wake of emerging applications such as social networks, and

big data analytics, where fast graph traversal is required, graph

databases have recently started to gain traction. Many graph

763

databases (Neo4j [6], DEX [7], InfiniteGraph [8]) for property

graphs [2] have been introduced implementing the Blueprints API

[3]. Graph traversal languages such as Cypher [14] and Gremlin [22]

have also been implemented.

Graph databases use indexless adjacency access to process graph

traversal queries efficiently and are basically main-memory based.

Some graph databases claim to be disk-based, but true indexless

adjacency requires in-memory based access. There have been some

studies to compare the performance of graph databases and RDF

databases [20, 21]. While in-memory graph databases achieve

impressive performance in graph traversal, especially in reachability

queries, RDF databases show acceptable performance and perform

better for data types other than string [21].

RDF [1] related products (Oracle Spatial and Graph Option [10],

Virtuoso [11], AllegroGraph [12], OWLIM [13]) have appeared

much earlier and are quite mature. Unlike its property graph

counterparts, RDF has a standard query language SPARQL [9, 16]

and has the capability of inference based on standard rules [4, 5, 15].

The SPARQL language is declarative, which enables users to focus

on specification and lets the task of optimal execution be left to the

query engine.

There have been efforts to incorporate graph traversal capability and

support for edge attributes into RDF databases. One such effort is G-

SPARQL [19]. The authors try to use special symbols to distinguish

graph attributes and path information from triple pattern queries. Our

approach differs from their approach as standard SPARQL (that is,

without any changes) can be used for querying both paths and

attributes allowing seamless merging of triple pattern queries with

graph traversal capabilities, including handling of vertex and edge

attributes. Our approach achieves the objective by reformulating the

SPARQL query to handle property graphs. However, this

reformulation is required only if the graph contains edge attributes.

The rest of the paper is organized as follows. Section 2 introduces the

key concepts, and provides qualitative evaluation of the proposed

schemes. Section 3 describes how a property graph is supported

using Oracle’s RDF capabilities. Section 4 describes a performance

evaluation using a real-life Twitter social network dataset. Section 5

provides further discussion of a couple aspects related to supporting

property graphs in RDF, and Section 6 concludes the paper.

2. KEY CONCEPTS
This section presents the key concepts.

2.1 Representing Property Graphs as RDF
A Property Graph associates three pieces of information with an edge

(besides the start and end vertices): a unique identifier, a label, and a

possibly empty set of key/value pairs. RDF on the other hand

associates only a single piece of information with an edge: a label

called the predicate. Thus translating an edge in a Property Graph to

an equivalent RDF representation requires more than just an edge (or

triple) in RDF.

We will consider the Property Graph of Figure 1 (excluding the

knows edge and associated key/value) to illustrate three different

ways of transforming it to an equivalent RDF graph (shown in Figure

2). For each of these translations, we will show a SPARQL query to

find “who follows whom since when?”

Translation using reification: In order to accommodate the id,

label, and the key/value pairs for an edge, reification in RDF can

create a new resource pg:e3 (based on the edge 3) to represent the

reified RDF statement “v1 follows v2”. The pg:e3 is the subject

of three triples, with predicates being rdf:subject,

rdf:predicate and rdf:object, with values pg:v1,

rel:follows and pg:v2 respectively.

SELECT ?xname ?yname ?yr WHERE {

 ?r rdf:subject ?x .

 ?r rdf:predicate rel:follows .

 ?r rdf:object ?y .

 ?r key:since ?yr .

 ?x key:name ?xname .

 ?y key:name ?yname }

Translation using unique RDF properties for edges: Id, label, and

key/values for an edge can be modeled by creating a unique RDF

property for each edge to represent the edge id, creating an RDF

triple with that property as the predicate, associating the key/value

pair with that property, and then making the property a subproperty

of another property created based on the edge label. In this example,

the unique property pg:e3 (based on edge 3) is created, an RDF

triple <pg:v1, pg:e3, pg:v2> is created, and pg:e3 is made

a subproperty of the property rel:follows (created from edge

label “follows”), and two resources pg:v1 and pg:v2

(corresponding to vertices with id 1 and 2) are the subject and object,

respectively.

SELECT ?xname ?yname ?yr WHERE {

 ?x ?p ?y .

 ?p rdf:subPropertyOf rel:follows .

 ?p key:since ?yr .

 ?x key:name ?xname .

 ?y key:name ?yname }

Translation using RDF named graphs: This alternative involves

the use of quads (as opposed to triples) to create a unique named

graph IRI for each edge. Then the label and the key/value properties

of the edge are associated with the graph IRI. In this example, the

property rel:follows (based on the edge label “follows”) and

the RDF named graph IRI pg:e3 (based on edge id 3) have been

used to create the quad: <pg:v1, rel:follows, pg:v2,

pg:e3>, and the graph IRI pg:e3 has been associated with the

key/value properties.

Note that the triples representing edge key values have been included

in the corresponding named graph to allow for clustering edge

key/values with the corresponding edge.

SELECT ?xname ?yname ?yr WHERE {

 GRAPH ?g {?x rel:follows ?y .

 ?g key:since ?yr }

 ?x key:name ?xname .

 ?y key:name ?yname }

For the rest of the paper, we only consider the subproperty based and

named graph based approaches as they lead to compact storage and

can be queried using simpler SPARQL graph patterns

Discussion. Although, for reification and subproperty-based

schemes, pg:v1 rel:follows pg:v2 can be implicitly

derived, we propose to have it explicitly asserted as a triple, thereby

allowing traditional SPARQL (e.g., ?x rel:follows ?y) to be

used for querying when no edge key values (such as key:since)

are referenced.

764

Figure 2. a) (Extended) Reification-based, b) RDF subproperty-based c) Named graph based representation of a property graph

The proposed representation does blur the distinction

between topology triples and KVs triples. Thus, for a

predicate variable occurring in a SPARQL query, if the

context does not provide sufficient information, the

isUri() and isLiteral() built-in functions can be used

to distinguish between object and datatype properties (see

Section 2.3 for details). The SPARQL 1.1 Update [36] defines

an update language for RDF graphs. The simplicity of the

RDF model dictates a DELETE and INSERT pattern for

updates. The <subject, property, object, graph> quad forms a

four part key, so any update basically creates a new quad. In

terms of incremental DML operations, the key performance

metric that distinguishes the three approaches is time taken to

locate existing quads to delete, which is tied to query

performance. We will consequently focus on query

performance and leave a detailed study of DML performance

for future work.

2.2 Transforming Property Graphs to RDF
This section describes the vocabulary used to transform a property

graph to RDF. We assume property graph data is available in a

representative relational schema consisting of Edges and ObjKVs

tables. Figure 3 shows the relational representation of the property

graph in Figure 1.

Figure 3. A sample property graph in relational format.

The vertices and edges map to RDF resources. For example,

vertex 1 maps to <http://pg/v1> and edge 3 maps to

<http://pg/e3>. Similarly, labels and keys get mapped to

predicate IRIs. For example, label follows maps to

<http://pg/r/follows> and key age maps to

<http://pg/k/age>. No distinction is made between edge and

node keys as a key may be common to an edge and a node. The

namespace prefixes rel: and key: denote <http://pg/r/>

and <http://pg/k/>, respectively.

The value component is mapped to an RDF literal by taking the data

type into account (e.g., value 23 mapped to

"23"^^<http://www.w3.org/2001/XMLSchema#int>).

Using the URIs and literals generated in this manner, RDF triples or

quads, as appropriate, are generated for various schemes.

2.3 Analysis of Various Schemes
This section provides an analysis of the various ways a property

graph can be transformed to and modeled as RDF triples or quads

and then queried using SPARQL.

Overview of PG-as-RDF models: The three RDF representations

for property graphs illustrated in Section 2 differ based on how the id

and label (type of relationship) of an edge in a property graph are

modeled in RDF. To characterize them, we use the following

notations:

 The form b-i-r-d denotes a property graph edge with

(unique) id i and label r connecting source vertex b to

destination vertex d.

 The symbols s, e, p, and o are used to denote the IRIs

generated from b, i, r, and d, respectively (by augmenting

them with some prefix and suffix strings).

 The form e-s-p-o denotes an RDF quad with e as the named

graph and -s-p-o denotes an RDF triple (i.e., not in a named

graph).

 The forms -n-K-V and -e-K-V denote RDF triples for

key/value properties of a property graph vertex or an edge,

respectively, where n, e, and K are IRIs generated from the

vertex id, edge id, and key in a property graph, respectively, and

V is an RDF literal corresponding to the value of a key/value

property.

Using the above notations, the three PG-as-RDF models can be

described as follows (also summarized in Table 1):

 RF: The traditional reification based approach (excluding the

“rdf:type rdf:Statement” triple) represents b-i-r-d using the

following three triples: -e-rdf:subject-s, -e-

StartVertex Edge Label EndVertex

1 3 follows 2

1 4 knows 2

Edges

ObjKVs ObjId Key Type Value

1 name VARCHAR Amy

1 age NUMBER 23

...

3 since NUMBER 2007

pg:v1 pg:v2

rdf:subject rdf:object

rel:follows

rdf:predicate key:since

pg:e3

“Amy” 23 “Mira” 22

key:age
key:name

2007

rel:follows

key:name
key:age

pg:v1 pg:v2

rel:follows

s

rdfs:subPropertyOf
key:since

“Amy” 23 “Mira” 22

2007

rel:follows

key:age

key:name

key:name
key:age

pg:e3
pg:e3

pg:v1 pg:v2

pg:e3
pg:e3

key:since

“Amy” 23 “Mira” 22

2007

key:age

key:name

key:name

key:age

rel:follows

s

765

rdf:predicate-p, and -e-rdf:object-o. In addition,

the triple -s-p-o is included as well to allow posing SPARQL

property path queries.

 NG: The named graph based approach represents b-i-r-d

using a single RDF quad: e-s-p-o. Although not essential for

the model, any KVs for the edge are placed in the same named

graph e, for clustering of all the triples for the edge.

 SP: The subproperty based approach represents b-i-r-d using

the triples: -s-e-o and -e-rdfs:subPropertyOf-p. In

addition, the (derivable) triple -s-p-o is included as well for

the same reasons as in the RF case.

Table 1. RDF representation for three models

PG-as-RDF

model

RDF quads/triples for PG element type

Topology edge EdgeKV NodeKV

RF -e-rdf:subject-s

 -e-rdf:predicate-p

 -e-rdf:object-o

 -s-p-o

 -e-K-V -n-K-V

NG e-s-p-o e-e-K-V -n-K-V

SP -s-e-o

 -e-rdfs:subPropertyOf-p

 -s-p-o

 -e-K-V -n-K-V

Special case: If a property graph has a vertex v with no KVs or

inbound or outbound edges, then we use the following RDF triple for

all the models: -v-rdf:type-rdf:Resource.

Skewness in generated RDF data: RDF datasets generated for the

PG-as-RDF models exhibit different characteristics compared to

traditional RDF datasets. Relevant cardinalities of a property graph

and those for the RDF datasets generated using the different PG-as-

RDF models are shown in Table 2.

Table 2. Property graph vs. RDF cardinalities

Property Graph cardinalities

E edges (E1 of them with >=1 edge-KVs), V vertices,

eKV edge-KVs, nKV node-KVs, eL distinct edge-labels (rel. types),

eK distinct keys for edge-KVs, and nK distinct keys for node-KVs

RDF cardinalities for models RF NG SP

Named Graphs 0 E 0

Obj-prop triples/quads 4 * E E (quads) 3 * E

Data-prop triples (quads in NG) eKV+nKV

Distinct sub/obj count V+E V+E1 V+E

Distinct obj-properties eL+3 eL eL+E+1

Distinct data-properties Distinct (eK UNION nK)

Since the three PG-as-RDF models differ mainly in how they map a

property graph edge into RDF, an important measure to examine is

the count of object-property triples or quads. In the NG model, the

mapping is straightforward because all four components of a

property graph edge are accommodated in a single quad. On the other

hand, for the RF and SP models, multiple triples are needed. Thus,

the number of object-property triples are 4*E, E (quads), and 3*E

for the RF, NG, and SP models, respectively. (As we show later, this

difference affects the number of joins in the SPARQL queries for

accessing edges and their edge-KVs.) Note that if a property graph

edge does not have any edge-KVs, then it is possible to represent it in

RDF using just a single -s-p-o triple. We have not accounted for

this optimization in the cardinalities shown in the Table 2.

Several aspects of the generated RDF datasets have differences with

respect to traditional RDF datasets: 1) In the NG model, the number

of distinct named graphs, E, is same as the number of object-property

quads. The proportion of one object-property quad per named graph

is very low when compared to traditional RDF datasets. 2) In the SP

model, the number of distinct object-properties, eL+E+1, is much

larger than a typical RDF dataset. Also, the proportion of object-

property triples and distinct object-properties, 3*E / (eL + E

+1), is less than 3. In contrast, LUBM datasets [25] have only a

handful of distinct object properties and those are used for hundreds

of millions or billions of triples.

Although, among the three models, the NG model has the lowest

storage cost in terms of number of triples/quads and number of

distinct values, the NG model has a drawback if one wants to extend

or augment the generated RDF data with traditional RDF data or

combine data generated from multiple property graphs. Consider an

e-s-p-o RDF quad created for a property graph edge. If one wants

to keep all the RDF generated from the property graph in a separate

named graph g (probably because he/she wants to put the content

from multiple property graphs and organize them into different

named graphs), then the quads such as e-s-p-o generated for NG

have to be inserted into quads g-s-p-o and the SPARQL graph

patterns for querying will get complicated. The complication arises

from presence of the triple -s-p-o in the named graph e as well as

in the named graph g.

SPARQL Query formulation for the PG-as-RDF models: We

illustrate the mapping of property graph queries to SPARQL graph

patterns using queries shown in Table 3.

Property graph queries may be broadly divided into two categories

based on whether or not a query accesses any edge-KVs. Queries that

do not access edge-KVs can be expressed in SPARQL the same way

regardless of whether we use the RF, NG, or SP scheme. This is due

to the presence of -s-p-o triple (in RF and SP) or e-s-p-o quad

(in NG) that represents each edge. Query Q1 shows an example of

such a query. Queries that need to access edge-KVs, however, will

differ for RF, NG, and SP schemes due to differences in how edge-

KVs are represented in each scheme. Query Q2 shows an example of

such a query.

An aspect of a property graph query that affects SPARQL query

formulation, regardless of the use of RF, NG, or SP, is when only the

KVs or only the outbound topological edges of a node need to be

retrieved, but not both. To select only the intended triples, the use of

a FILTER clause to check if the object component of triple is a literal

(using isLiteral()) or if it is an IRI (using isIRI()) is needed. Queries

Q3 and Q4 show the use of such filters.

Rules for constructing SPARQL graph patterns for property graph

queries may be formulated as follows:

1. If a query needs access to an edge but not any of its edge-

KVs then the SPARQL graph pattern is quite simple.

a) If the edge label is bound, then simply use a triple-pattern

of the form ?x <label> ?y (see Q1).

b) If the edge label is a variable (and the query does not want

to retrieve node-KVs of the source vertices), then use

Filter clause to restrict (see Q4).

2. If an edge-KV is accessed, then for each different PG-as-RDF

model we need to use the appropriate set of triple-patterns to

access the edge resource first (see Q2).

766

3. If a node-KV needs to be accessed and

a) the key is bound, then simply use a triple-pattern of the

form ?x <key> ?V (see Q1 and Q3).

b) the key is a variable, and the query does not want to

retrieve outbound topological edges from the vertices,

then the use of a Filter clause to impose that exclusion is

needed (see Q3).

Table 3. SPARQL graph patterns for property graph queries

PG-

as-

RDF

model

SPARQL query graph pattern for

property graph queries

Q1. Get triangles (three edge cycles) of “follows” edges

All {?x rel:follows ?y .

 ?y rel:follows ?z .

 ?z rel:follows ?x}

Q2. Get vertex pairs and all KVs of edges with “follows” label

RF {?e rdf:subject ?x; rdf:predicate rel:follows; rdf:object ?y .

 ?e ?k ?V}

NG {GRAPH ?e {?x rel:follows ?y . ?e ?k ?V}}

SP {?x ?e ?y . ?e rdfs:subPropertyOf rel:follows . ?e ?k ?V}

Q3. Get all KVs of vertices matching a given KV: name = “Amy”

All {?x key:name “Amy” .

 ?x ?k ?V FILTER isLiteral(?V)}

Q4. Get source and destination vertices of all edges

All {?x ?p ?y FILTER isIRI(?y)}

As can be seen in Q2, if an edge is to be accessed along with edge-

KVs, then the number of joins is maximum in RF. Specifically, for

each such edge, RF requires a 3-way join. Also, the storage cost is

the highest for the RF model. For these reasons, in the rest of the

paper we omit RF and focus on the NG and the SP models only.

3. SUPPORTING PROPERTY GRAPHS AS

RDF IN ORACLE
This section presents the relevant capabilities in Oracle RDF

Semantic Graph and their use in supporting the PG-as-RDF models

outlined in the last section. Note that although we show evaluation of

our proposal with RDF capabilities of Oracle, the proposed scheme is

general enough to be supported on other RDF stores as well.

3.1 Oracle RDF capabilities
Currently, Oracle has, among many others, the following RDF

capabilities:

 Allows creating one or more semantic models each of which

can hold an RDF dataset (containing triples in a default

(unnamed) graph and, optionally, quads in named graphs).

Individual models or merges of multiple models can be

independently queried.

 Supports fast bulk load of RDF data supplied in N-Quads

format into a semantic model.

 Supports querying using SPARQL 1.1 directly from Java or

from SQL using the SEM_MATCH table function.

 Supports semantic network indexes (among the typical six

combinations on triple s-p-o or 24 combinations in quad

g-s-p-o) to improve the performance of SPARQL query

processing.

 Supports creation and querying of virtual semantic models

defined as a UNION (or UNION ALL) of existing semantic

models.

3.2 What we will use
We assume property graph data is available in relational format as

described in Section 2.2. The property graph data available in a

relational table is converted into RDF with IRIs generated as

discussed in Section 2.2 and triples and/or quads formed as discussed

in Section 2.3. The resulting RDF data is loaded into a semantic

model. This semantic model is then queried using SPARQL to

perform property graph queries.

Partitioned Storage for generated RDF: Often SPARQL queries

may access only some of the various forms of RDF triples or quads

(see Table 1) generated for a PG-as-RDF model. Thus, separating the

storage of the triples or quads into different partitions based on the

specific form, may lead to better query performance. In Oracle

Database, one can create separate semantic models (as partitions in a

partitioned table with local indexes) to store these different forms of

triples.

For example, one possible configuration could be to create three

separate partitions: 1) edge quads or triples partition, 2) node-KV

triples partition, and 3) the edge-KV triples (for SP, this would

include the –s-e-o and –e-sPO-p triples as well).

Node attributes can be converted naturally from property graph into

RDF for both NG and SP models. However, for edges with edge

attributes, NG models do not incur any additional storage overhead

(except for their use of the fourth component). SP models need an

anchor triple –e-sPO-p to associate the edge attributes with the

edge. Therefore, it would increase the number of triples proportional

to the total number of edges. The storage overhead caused by these

additional triples can be mitigated by the use of compression and

partitioning schemes.

Topology information, edge properties, and node properties can be

kept in separate partitions to maximize compression on prefixes (:e

:sPO) and (:e :k) for edge attributes and prefix (:s :k) for

vertex attributes. Each partition in the current Oracle RDF store is

implemented as a separate model. Therefore, if more than one

partition is accessed, a virtual model containing all those partitions is

used.

Table 4 shows the query type and forms of triples accessed. By using

Oracle’s capability of querying individual semantic models

(partitions) or a union of one or more semantic models, a user can

choose the appropriate RDF dataset for each query.

Table 4. Property graph query types

Query Type Forms of quads/triples to be queried

NG SP

edge traversal,

no edge-KV

e-s-p-o

 -s-p-o

edge + edge-KV e-s-p-o

e-e-K-V

 -s-e-o

 -e-sPO-p

 -e-K-V

Node-KV -n-K-V -n-K-V

For example, query Q1 in Table 3 (edge traversal only) may be posed

against a single semantic model that holds the e-s-p-o (for NG) or

the -s-p-o triples (for SP). Similarly, for NG, query Q2 (edge +

edge-KV) may be posed against the union of semantic models

767

holding the e-s-p-o triples and the e-e-K-V triples. For SP, the

target dataset resides in a single partition.

Indexing: SPARQL query processing in Oracle Database typically

involves accessing only the indexes built on the semantic models; the

tables are rarely accessed. Users may create any permutation of the

following letters to specify the key for an index that he/she wants to

build on a semantic model: S (subject), P (predicate), C (canonical

object), G (named graph), and M (semantic model). All of these

columns hold numeric identifiers, not lexical values, because they are

ID-based. M is included in any indexes that are built to allow

identification of the partition of a table that holds the target semantic

model.

Although Oracle allows users to create indexes with any of the

various permutations (with S, P, C, and G - ignoring M) as key, in

practice only a few permutations are necessary. Two indexes are

created by default on all the semantic models: (unique) PCSGM and

PSCGM. If the RDF data uses named graphs (i.e., contains quads),

then to allow access using named graphs one or both of the following

two indexes are often necessary: GPCSM and GSPCM. Also, to

allow subject-based access, the SPCGM or SCPGM index may be

useful as well.

Typically we have three categories of queries as shown in Table 4

(and index use as shown in Table 5):

 Edge traversal without filter on edge attributes: The index

PCSGM may be used depending upon the triple pattern and only

the topology partition will be accessed (see Q1).

 Edge traversal with filter on edge attributes: The anchor triple

<:e :sPO :p> needs to be used to get the edge attributes.

The index PCSGM may be used, and only the edge KV partition

is accessed (see Q2).

 Vertex with attributes filter: No changes are required for

filtering vertex attributes. The index PCSGM may be used, and

the topology and vertex property partitions are accessed (see

Q3)

As seen from Table 5, most of the queries can be satisfied by using

one of the five indexes. Note that for a selective pattern, an index

range scan is used, and for and unselective filter, a full index scan is

used in Oracle Database.

For datasets that could fit in memory, the index blocks get cached in

database buffers, and disk access can therefore be completely

avoided after the initial load. Also, because indexes are local to a

partition, partitioning data into multiple semantic models based on

the forms of triples helps achieve better clustering and compression

of index data and leads to optimal utilization of the database buffer

cache.

Table 5. Property graph query execution using indexes

PG-as-RDF

model

SPARQL query graph pattern for property

graph queries and corr. index-based access plans

Q1. Get triangles (three edge cycles) of “follows” edges

NG, SP ?x rel:follows ?y.

1: [P=rel:follows] PCSGM

?y rel:follows ?z.

2: [P=rel:follows and S=c1] PSCGM

?z rel:follows ?x

3: [P=rel:follows and C=s1 and S=c2] PCSGM

Q2. Get vertex pairs and all KVs of edges with “follows” label

NG GRAPH ?e {?x rel:follows ?y}

1: [P=rel:follows] PCSGM

GRAPH ?e {?e ?k ?V}

2: [G=g1 and S=g1] GSPCM

SP ?e rdfs:subPropertyOf rel:follows

1: [P=rdfs:subPropertyOf and C=rel:follows] PCSGM

?x ?e ?y

2: [P=s1] PCSGM

?e ?k ?V Filter isLiteral(?V)

3: [S=s1] SCPGM (+filter)

Q3. Get all KVs of vertices matching a given KV: name = “Amy”

NG,SP ?x key:name “Amy”

1: [P=key:name and C="Amy"] PCSGM

 ?x ?k ?V Filter isLiteral(?V)

2: [S=s1] SCPGM (+filter)

4. Experimental Evaluation
This section describes the experiments conducted to evaluate the

performance of various schemes. A Twitter social network dataset,

which uses the property graph model, has been converted to RDF

using both the SP and NG schemes, and a series of queries against

both schemes illustrates the relative performance of each approach.

4.1 Experimental Setup
All experiments were conducted on a Lenovo ThinkPad T430

equipped with a dual-core Intel i5-3320M CPU, 8 GB of RAM and a

120 GB OCZ Vertex2 SSD, and all experiments used Oracle

Database 12c configured with the Oracle Spatial and Graph – RDF

Semantic Graph option running on 64-bit Oracle Enterprise Linux 6.

The goal of our experimental evaluation is to characterize the

performance differences of the SP and NG schemes with respect to

query execution time. Note that query execution time is critical for

DML operations as well because triples/quads to be updated must be

retrieved first. We also want to demonstrate that query execution

times with these schemes are fast enough for interactive applications.

An evaluation of the general scalability of Oracle RDF Semantic

Graph is outside the scope of this paper (see [18] for general Oracle

RDF Semantic Graph Performance).

4.2 Property Graph Dataset Characteristics
A Twitter social network dataset [23] (used in the discovery of social

circles [24]) was chosen for experiments. It consists of 973 ego

networks, where each ego network with ego a contains edges of type

b follows c, which implicitly means a knows b and a

knows c. These form the topological edges. Each node had zero or

more features of the form @keyword or #tag. From these features,

the node KVs n refs @keyword or n hasTag #tag were

generated. The edge KVs were generated by taking the intersection

of start node KVs with end node KVs, both for edges with follows

and knows labels. For example, for edge e: a follows b, the

{KVs of e}={KVs of a}∩{KVs of b}. The generated data

characteristics are shown in Table 6. Among 76,245 nodes, 70,097

nodes occur as subjects in the property graph. Also, the edge count is

much smaller than the KV count.

768

Table 6. Twitter dataset characteristics

 Nodes Edges Node KVs Edge KVs

Count 76,245 1,796,085 1,218,763 3,345,982

Figure 4 shows the out-degree and in-degree distribution by count.

As expected, the in-degrees are generally higher than out-degrees as

the same literal values are often shared between many KVs.

The data characteristics show that it is a highly connected graph,

which is a common characteristic of property graphs, and thus serves

as a representative dataset for experimentation.

Figure 4. Out-degree and in-degree distribution

4.3 RDF Dataset Characteristics
Table 7 shows the data characteristics for PG-as-RDF model triples.

The first row of the table shows the core triples, which are present in

both NG and SP models. The SP model has 3,592,170 more triples

than NG model due to the addition of -e-sPO-p (1,796,085) and

 -s-e-o (1,796,085) triples.

Table 7. Transformed RDF dataset characteristics: triples

 Edges KVs

follows knows refs hasTag

Triples 1,667,885 128,200 3,771,755 792,990

NG 6,360,830

SP 9,953,000

Table 8 shows the number of distinct resources of each type. For

both models, the number of subject IRI resources increases from

70,097 to 1,019,549 and 1,866,182 respectively due to occurrence of

either named graphs (for NG: e-e-K-V) or edge IRIs as subjects

(for SP: -e-sPO-p). The increase is less for NG because it occurs

only for edges with at least one or more edge KVs.

Table 8. Transformed RDF dataset characteristics: resources

 NG SP

Subjects 1,019,549

(70,097 + 949,452)

1,866,182

(70,097 +

1,796,085)

Predicates 4 1,796,090

(4 + 1 + 1,796,085)

Objects 288,392 288,392 + 2

Named Graphs 1,796,085 0

Also, there is an increase in predicates in the SP model as each edge

occurs as a predicate IRI (plus one for rdf:subPropertyOf).

The objects IRI counts are similar. The additional two for SP model

corresponds to two properties rel:knows and rel:follows that

occur in the object position for -e-sPO-p triples.

4.4 Experiments
This section presents a series of experiments that test the

performance of 1) node-centric queries, 2) edge-centric queries, 3)

aggregate queries and 4) graph traversal queries. These queries are

similar to those in [17, 20] with the addition of edge key/value

queries. Table 10 shows the queries used in our experiments.

Table 9. Physical storage characteristics

DB Object Size (MB)

NG SP

Triples Table 248 329

Values Table 56 57

PCSGM Index 259 398

PSCGM Index 338 504

GPSCM Index 366 NA

SPCGM Index 358 506

Total 1,625 1,794

Database Configuration: The database was configured with a

pga_aggregate_target of 2 GB and an sga_target of 4

GB. Four semantic network indexes were created: PCSGM, PSCGM,

SPCGM, GPSCM. In addition, an

optimizer_dynamic_sampling level of 6 was used for

EQ11a-e, while a level of 2 was used for all other queries. Loading

the quads and triples for the NG and SP models took 5min 16 sec and

6 min 01 sec respectively.

Physical Storage Characteristics: The physical characteristics of

the stored data using the NG and SP schemes are shown in Table 9.

The increased number of rows (triples/quads) required to store the

graph in the SP scheme is reflected in the larger size for each

database object, but the total size needed is very similar for each

scheme because the GPSCM index is not required in the SP scheme.

Figure 5. Execution time for node-centric queries.

Methodology: The reported query execution times were obtained by

running the queries with SQL*Plus using the set timing on

option. For each experiment, the queries were run once sequentially

to warm up the database buffers, then the queries were run

sequentially a second time to obtain the reported times.

Experiment 1 – Node-centric Queries: This experiment tests the

performance of EQ1 (find all nodes/edges that have tag

“#webseries”), EQ2 (find all nodes that follow nodes with tag

“#webseries”), EQ3 (find all 3-hop paths where each node has tag

“#webseries”), and EQ4 (find all key/value pairs for nodes/edges

with tag “#webseries”). The results of this experiment are shown in

in Figure 5. All queries finish within 300 milliseconds, and there

769

Table 10. Queries for experimentation

Query Query Text Number of

Results

EQ1 SELECT ?n

WHERE { ?n k:hasTag "#webseries" }

251

EQ2 SELECT ?nf

WHERE { ?n k:hasTag "#webseries" . ?nf r:follows ?n }

1,249

EQ3 SELECT ?n4

WHERE { ?n k:hasTag ?t . ?n r:follows ?n2 . ?n2 k:hasTag ?t .

 ?n2 r:follows ?n3 . ?n3 k:hasTag ?t . ?n3 r:follows ?n4 .

 ?n4 k:hasTag ?t FILTER (?t = "#webseries") }

11,440

EQ4 SELECT ?n ?k ?v

WHERE { ?n k:hasTag "#webseries" . ?n ?k ?v FILTER (isLiteral(?v)) }

3,011

EQ5a SELECT ?n2

WHERE { GRAPH ?g1 { ?n r:follows ?n2 . ?g1 k:hasTag "#webseries" } }

206

EQ5b SELECT ?n2

WHERE { ?s ?p ?n2 . ?p rdfs:subPropertyOf r:follows . ?p k:hasTag

"#webseries" }

206

EQ6a SELECT ?n3

WHERE { GRAPH ?g1 { ?n r:follows ?n2 . ?g1 k:hasTag "#webseries" }

 ?n2 r:follows ?n3 }

13,012

EQ6b SELECT ?n3

WHERE { ?s ?p ?n2 . ?p rdfs:subPropertyOf r:follows .

 ?p k:hasTag "#webseries" . ?n2 r:follows ?n3 }

13,012

EQ7a SELECT ?n4

WHERE { GRAPH ?g1 { ?n r:follows ?n2 . ?g1 k:hasTag "#webseries" }

 GRAPH ?g2 { ?n2 r:follows ?n3 . ?g2 k:hasTag "#webseries" }

 GRAPH ?g3 { ?n3 r:follows ?n4 . ?g3 k:hasTag "#webseries" } }

11,440

EQ7b SELECT ?n4

WHERE { ?s ?p ?n2 . ?p rdfs:subPropertyOf r:follows . ?p k:hasTag

"#webseries" .

 ?n2 ?p2 ?n3 . ?p2 rdfs:subPropertyOf r:follows . ?p2 k:hasTag

"#webseries" .

 ?n3 ?p3 ?n4 . ?p3 rdfs:subPropertyOf r:follows . ?p3 k:hasTag

"#webseries" }

11,440

EQ8a SELECT ?n2 ?k ?v

WHERE { GRAPH ?g1 { ?n r:follows ?n2 . ?g1 k:hasTag "#webseries" .

 ?g1 ?k ?v FILTER (isLiteral(?v)) } }

1,269

EQ8b SELECT ?n2 ?k ?v

WHERE { ?s ?p ?n2 . ?p rdfs:subPropertyOf r:follows .

 ?p k:hasTag "#webseries" . ?p ?k ?v FILTER (isLiteral(?v)) }

1,269

EQ9 SELECT ?inDeg (COUNT(*) as ?cnt)

WHERE { SELECT ?n2 (COUNT(*) as ?inDeg)

 WHERE { ?n1 (r:knows|r:follows) ?n2 }

 GROUP BY ?n2 } GROUP BY ?inDeg ORDER BY DESC(?inDeg)

580

EQ10 SELECT ?outDeg (COUNT(*) as ?cnt)

WHERE { SELECT ?n1 (COUNT(*) as ?outDeg)

 WHERE { ?n1 (r:knows|r:follows) ?n2 }

 GROUP BY ?n1 } GROUP BY ?outDeg ORDER BY DESC(?outDeg)

412

EQ11a SELECT (COUNT(?y) as ?cnt)

WHERE {<http://pg/n6160742> r:follows ?y }

21

EQ11b SELECT (COUNT(?y) as ?cnt)

WHERE {<http://pg/n6160742> r:follows/r:follows ?y }

900

EQ11c SELECT (COUNT(?y) as ?cnt)

WHERE {<http://pg/n6160742> r:follows/r:follows/r:follows ?y }

52,540

EQ11d SELECT (COUNT(?y) as ?cnt)

WHERE {<http://pg/n6160742> r:follows/r:follows/r:follows/r:follows ?y }

3,573,916

EQ11e SELECT (COUNT(?y) as ?cnt)

WHERE {http://pg/n6160742

r:follows/r:follows/r:follows/r:follows/r:follows ?y}

257,861,728

EQ12 SELECT (COUNT(*) AS ?cnt)

WHERE { ?x r:follows ?y . ?y r:follows ?z . ?z r:follows ?x }

20,211,887

770

is no significant difference between the NG and SP approaches.

These results are not surprising because each approach uses the

same triples store node key/value pairs. In addition, these queries

are evaluated with index-based nested loop join (NLJ), which

tends to scale with result set size, so the additional triples stored in

the SP approach have little effect on the query execution time.

Experiment 2 – Edge-centric Queries: This experiment tests the

performance of EQ5a/b (find all edges with tag “#webseries”),

EQ6a/b (find all nodes that are endpoints of an edge with tag

“#webseries” and find nodes that are followed by these nodes),

EQ7a/b (find all 3-hop paths where each edge has tag

“#webseries”), and EQ8a/b (find all edge key value pairs for

edges with tag “#webseries”). The results of this experiment are

shown in Figure 6. The results show that the NG approach

performs better for queries involving multiple edge key/value pair

accesses. The improved performance can be attributed to avoiding

extra joins required to retrieve edge key/value pairs in the SP

approach (i.e. three triples vs. two quads). The performance

improvement is most obvious in query EQ7a/b due to a significant

difference in number of joins.

Figure 6. Execution time for edge-centric queries.

Experiment 3 – Aggregate Queries: This experiment tests the

performance of aggregate queries over the topological portion of

the graph. The specific queries were EQ9 (find the distribution of

node in-degree) and EQ10 (find the distribution of node out-

degree). The results are shown in Figure 7. Each query finishes in

about 9 seconds for both approaches and there is no significant

performance difference (< 100ms) between the two approaches,

which is not surprising because the same quad (for NG: e-s-p-o)

or triple (for SP: -s-p-o) structures are used to store the

topological portion of the graph in both approaches.

Experiment 4 – Graph Traversal Queries: This experiment

investigated queries EQ11a – EQ11e (count all paths from a

specific node ranging in length from 1 to 5). Figure 8 shows the

results of this experiment plotted with a log scale. As expected,

query execution time rises steeply as path length increases. This

steep rise is a consequence of the exponential complexity of the

path counting problem, as illustrated by the increase in number of

paths found for each query. Nevertheless, over 250 million paths

of length 5 were found in less than 4 minutes in both schemes.

Figure 7. Execution time for aggregate queries.

Figure 8. Execution time for graph traversal queries.

In general, the NG approach performs slightly better than the SP

approach for these path traversal queries. For the 3, 4 and 5 hop

queries, the query optimizer chooses a hash join with a full table

scan to access the probe table. In the NG approach, the triples

table is smaller, which leads to faster full table scans.

Experiment 5 – Triangle Counting Queries: This experiment

investigated query EQ12 (count all follows triangles in the graph).

The results of this experiment are shown in Figure 9. In both

schemes, over 20 million triangles were found in just over 1

minute: 61 seconds for NG and 65 seconds for SP. Once again,

the query optimizer chooses a series of hash joins with full table

scans, and the NG approach performs slightly better because of its

smaller table size.

Figure 9. Execution time for triangle counting queries.

771

4.5 Summary
In general, the SP and NG schemes offer similar performance on a

variety of graph queries. Our experiments show that the only

significant performance difference occurs when accessing edge

key/value pairs. In such cases, the NG approach performs better

because fewer joins are required. In addition, the NG approach

performs slightly better for large-scale path and triangle counting

queries due to a smaller triples table size.

5. Discussion
This section discusses two aspects related to supporting property

graphs as RDF.

5.1 Path Queries in SPARQL 1.1
The SPARQL query language is intended primarily for pattern

(subgraph) matching rather than path traversal. SPARQL 1.1

introduced property paths, which allow more concise expressions

for some SPARQL basic graph patterns and provide the key

capability of matching arbitrary length paths [16]. SPARQL 1.1,

however, still lacks the ability to reference a path directly in a

query (e.g., the ability to store the result of a property path query

in a path variable). Without this ability, it is not possible to match

an arbitrary length path and return the path itself or perform

operations based on characteristics of the path, such as path

length. Several researchers have proposed extensions of SPARQL

that use special variables to reference matched paths to address

this shortcoming, for example SPARQLeR [29], SPARQ2L [30],

G-SPARQL [19]. Such extensions would effectively allow

SPARQL to function as both a pattern matching and graph

traversal language.

5.2 Benefits of Modeling Property Graphs

using RDF
Using either of the models, once the data becomes available as

RDF, there are a few interesting possibilities, which go beyond

what one would normally do with property graphs.

The predicate IRIs corresponding to edge label and keys in

key/values could be mapped through

owl:equivalentProperty assertions to properties from

existing domain ontologies. Similarly, owl:sameAs , which

already has a heavy usage in linked data integration [26], can be

used to map generated IRIs of resulting RDF data with existing

linked data. Once such mapping is established, we can make use

of existing OWL Inference Engines (such as the native inference

engine of Oracle [27]) to pre-compute entailment that can

semantically enrich the transformed RDF data thereby allowing us

to do more interesting queries. This step would also make it easier

and more useful to publish transformed property graph data as

linked data. Note that one could argue that the native property

graph data itself could be augmented in a similar fashion.

However, this step is easier once the data is transformed to RDF

due to readily available domain ontologies and numerous RDF

datasets on the web [28].

Example - Linking Twitter Data with WordNet: Consider the

Twitter social network dataset used for experiments in Section 4.

We loaded the basic version of Wordnet RDF dataset that groups

nouns, verbs, adjectives and adverbs into sets of cognitive

synonyms (synsets), each expressing a distinct concept that is

characterized by a word sense label [31].

Figure 10. Linking Twitter data with community RDF

datasets

Among 33,422 distinct tags used in the sample Twitter data, we

found occurrences of 5,993 proper words. Thus, a user can take

advantage of the Wordnet ontology to do query term expansion,

when searching on the :hasTag attribute as shown in query

pattern below:

 SELECT ?n
 WHERE{?w rdfs:label ?label .

 ?w wn:senseLabel "train"@en-us .

 ?n k:hasTag ?y

 FILTER(STR(?y)=CONCAT("#",STR(?label)))}

For the input word ‘train’, the query returns 6 results with

‘#train’ , plus 13 extra results (2 with ‘#educate’, and 11

with ‘#prepare’) due to the query term expansion made

possible by Wordnet.

Example – Linking Twitter Data with World Fact Book and

Use of Inference: We also loaded the World Fact Book RDF

dataset [32], which contains information on the history, people,

government, economy, geography, communications,

transportation, military, and transnational issues for all countries

of the world. Among 33,422 distinct tags used in the sample

Twitter data, we found occurrences of 199 proper locations. Thus,

a user can use Fact Book properties about countries to perform

node selection.

Furthermore, the query processing can be accelerated by pre-

computing entailment of CIA Fact Book with Oracle’s native

RDF/OWL Inference Engine. For example, using OWL2 RL

entailment on the Fact Book ontology, we can infer that Mexico

and Canada are neighbors to port ’Tampa’ using property

chains. Furthermore, using Oracle user-defined rules capability,

we can also infer a new :hasTagR property that directly links

the node with ‘#Tampa’ tag to its neighboring countries (see

Figure 10). The inferred edges can thus allow refining the filtering

on node attributes.

6. Conclusion and Future Directions
The paper examined the problem of supporting property graphs as

RDF using the capabilities in Oracle Database. Three models,

namely, reification, named graph, and subproperty based, for

representing property graphs in RDF were presented. All these

models can be supported using RDF. Furthermore, standard

SPARQL queries can be used to perform traversal in addition to

accessing node and edge key/values.

We demonstrated the feasibility of our approach by implementing

the proposals in Oracle Database. An experimental study

conducted using a Twitter social network dataset showed that the

performance of various types of queries was reasonable. As

node

#train

#Tampa

:hasTag

WordNet

Fact Book

Twitter Data

USA

CA
Mexico

Tampa

:bndry

:ports
:nbr

:hasTagR

772

expected, the edge traversal queries accessing edge key/values

took the longest time. The study also identified the current

limitation of SPARQL, especially in property path queries, where

length limits cannot be specified, and that could be a problem for

large highly connected property graphs. An alternative for such

cases is to perform traversal procedurally similar to the approach

of Gremlin [22].

Lastly, we identified the possibility of creating hybrid applications

that go beyond just representing and querying property graphs by

taking advantage of named graphs, OWL inference engines, and

the use of global identifiers to publish as linked data.

7. REFERENCES
[1] Resource Description Framework (RDF). 2004, Retrieved

Jan. 17, 2014, from http://www.w3.org/RDF/.

[2] Defining a Property Graph. 2012, Retrieved Jan. 17, 2014,

from https://github.com/tinkerpop/gremlin/wiki/Defining-a-

Property-Graph.

[3] Blueprints Java API. 2013, Retrieved Jan. 17, 2014, from

https://github.com/tinkerpop/blueprints/wiki.

[4] RDF Vocabulary Description Language 1.0: RDF Schema.

2004, Retrieved Jan. 17, 2014, from

http://www.w3.org/TR/rdf-schema/.

[5] OWL 2 Web Ontology Language Document Overview

(Second Edition). 2012, Retrieved Jan. 17, 2014, from

http://www.w3.org/TR/owl2-overview/.

[6] Neo4j the graph database. 2014, Retrieved Jan. 17, 2014,

from http://www.neo4j.org.

[7] Sparsity Technologies. 2013, Retrieved Jan. 17, 2014, from

http://sparsity-technologies.com/dex.

[8] Objectivity: InfiniteGraph. 2013, Retrieved Jan. 17, 2014,

from http://www.objectivity.com/infinitegraph.

[9] SPARQL Query Language for RDF. 2008, Retrieved Jan. 17,

2014, from http://www.w3.org/TR/rdf-sparql-query/.

[10] Oracle Database Spatial and Graph Option. 2014, Retrieved

Jan. 17, 2014, from

http://www.oracle.com/technetwork/database-

options/spatialandgraph/overview/index.html.

[11] Openlink Virtuoso Universal Server. 2014, Retrieved Jan.

17, 2014, from http://virtuoso.openlinksw.com/.

[12] Franz Inc. AllegroGraph. 2013, Retrieved Jan. 17, 2014,

from http://www.franz.com/agraph/allegrograph/.

[13] OntoText OWLIM. 2013, Retrieved Jan. 17, 2014, from

http://www.ontotext.com/owlim.

[14] Neo4j Cypher Query Language. 2014, Retrieved Jan. 17,

2014, from http://docs.neo4j.org/chunked/milestone/cypher-

query-lang.html.

[15] OWL 2 Web Ontology Language Profiles (Second Edition).

2012, Retrieved Jan. 17, 2014, from

http://www.w3.org/TR/owl2-profiles/.

[16] SPARQL 1.1 Query Language. 2013, Retrieved Jan. 17,

2014, from http://www.w3.org/TR/sparql11-query/.

[17] Social Network Intelligence BenchMark. 2013, Retrieved

Jan. 17, 2014, from

http://www.w3.org/wiki/Social_Network_Intelligence_Benc

hMark.

[18] Oracle Spatial and Graph RDF Semantic Graph -

Performance. 2014, Retrieved Jan. 17, 2014 from

http://www.oracle.com/technetwork/database/options/spatial

andgraph/learnmore/performance-086309.html.

[19] Sakr, S., Elnikety, S., and He, Y. 2012. G-SPARQL: A

Hybrid Engine for Querying Large Attributed Graphs. In

Proceedings of CIKM 2012, 335-344.

[20] Angles, R., Prat-Perez, A., and Dominguez-Sal, D. 2013.

Benchmarking database systems for social network

applications. In Proceedings of GRADES Workshop 2013.

[21] Vicknair, C. et al. 2010. A Comparison of a Graph Database

and a Relational Database. In Proceedings of ACM Southeast

Regional Conference 2010.

[22] Gremlin Graph Traversal Language,

https://github.com/tinkerpop/gremlin/wiki

[23] Snap: Network datasets: Social Circles: Twitter,

http://snap.stanford.edu/data/egonets-Twitter.html

[24] McAuley, J. and Leskovec, J. 2012. Learning to Discover

Social Circles in Ego Networks. In Proceedings of NIPS

2012, 548-556.

[25] Guo, Y., Pan, Z., and Heflin, J. 2005. LUBM: A benchmark

for OWL knowledge base systems. Web Semantics. 3, 2-3

(October 2005), 158-182.

[26] Ding, L., Shinavier, J., Shangguan, Z., and McGuinness, D.

2010. SameAs Networks and Beyond: Analyzing

Deployment Status and Implications of owl: sameAs in

Linked Data. In Proceedings of ISWC 2010, 145-160.

[27] Wu, Z., Eadon, G., Das, S., Chong. E. I., Kolovski, V.,

Annamalai, M., and Srinivasan, J. 2008. Implementing an

Inference Engine for RDFS/OWL Constructs and User-

Defined Rules in Oracle. In Proceedings of ICDE 2008,

1239-1248.

[28] Linked Data: Connect Distributed Data Across the Web.

2014, Retrieved Jan. 17, 2014, from http://linkeddata.org/.

[29] Kochut, K. and Janik, M. 2007. SPARQLeR: Extended

SPARQL for semantic association discovery. In Proceedings

of ESWC 2007, 145–159.

[30] Anyanwu, K., Maduko, A., and Sheth, A. P. 2007.

SPARQ2L: towards support for subgraph extraction queries

in RDF databases. In Proceedings of WWW 2007, 797–806.

[31] WordNet: A lexical database for English. 2013, Retrieved

Jan. 17, 2014 from http://wordnet.princeton.edu.

[32] CIA: The World Factbook. 2014, Retrieved Jan. 17, 2014,

from https://www.cia.gov/library/publications/the-world-

factbook.

[33] RDF 1.1 Concepts and Abstract Syntax. 2014, Retrieved Jan.

17, 2014, from http://www.w3.org/TR/rdf11-concepts.

[34] Franz’s AllegroGraph® Sets New Record - 1 Trillion RDF

Triples, 2013, Retrieved Jan. 17, 2014, from

http://www.franz.com/about/press_room/trillion-

triples.lhtml.

[35] RDF Primer. 2004, Retrieved Jan. 17, 2014, from

http://www.w3.org/TR/rdf-primer/.

[36] SPARQL 1.1 Update. 2013, Retrieved Jan. 17, 2014 from

http://www.w3.org/TR/sparql11-update/.

773

