
AGGREGO SEARCH: Interactive Keyword Query
Construction

Grégory Smits1, Olivier Pivert1, Hélène Jaudoin1 and François Paulus2

1ENSSAT-IRISA, University of Rennes 1
Lannion, France

{gregory.smits, olivier.pivert, helene.jaudoin}@irisa.fr
2SEMSOFT

Rennes, France
francois.paulus@semsoft-corp.com

ABSTRACT
AGGREGO SEARCH offers a novel keyword-based query solu-
tion for end users in order to retrieve precise answers from se-
mantic data sources. Contrary to existing approaches, AGGREGO
SEARCH suggests grammatical connectors from natural languages
during the query formulation step in order to specify the meaning
of each keyword, thus leading to a complete and explicit definition
of the intent of the search. An example of such a query is name of
person at the head of company and author of article about “busi-
ness intelligence". In order to help users formulate such connected
keywords queries, a specific autocompletion strategy has been de-
veloped. A translation of the user keyword query into SPARQL is
performed on-the-fly during the interactive query construction pro-
cess. For this demonstration, we show how AGGREGO SEARCH
has been integrated on top of a mediation system to let users intu-
itively define explicit and precise keyword queries in order to ex-
tract knowledge distributed in heterogeneous large semantic data
sources.

1. INTRODUCTION
Social networks have boosted the need for efficient and intu-

itive query interfaces to access large scale knowledge graphs whose
semantics is defined by means of ontologies. The buzz around
the launches of Google Knowledge Graph1 and Facebook Graph
Search2 clearly illustrates how crucial that issue is. Before get-
ting a great deal of media attention, this issue has been largely ad-
dressed by the scientific community where interesting approaches
have been developed to propose keyword-based access to struc-
tured data stored in XML documents [1], relational databases [7]
or ontologies [10, 3]. In opposition to previously cited approaches
where queries are just flat enumerations of keywords, some works
have been dedicated to the enrichment of the expressivity of query
interfaces especially using natural language processing techniques

1http://www.google.com/insidesearch/
features/search/knowledge.html
2https://www.facebook.com/about/graphsearch

(c) 2014, Copyright is with the authors. Published in Proceeding of the 17th
International Conference on Extending Database Technology (EDBT 2014)
on OpenProceedings.org. Distribution of this paper is permitted under the
terms of the Creative Commons license CC-by-nc-nd 4.0
EDBT ’14 Athens, Greece

[2]. In the spirit of the approaches proposed in [6, 4], AGGREGO
SEARCH is half-way between natural language queries and classi-
cal keyword queries. An AGGREGO SEARCH query is composed
of keywords referencing classes and instances of an ontology but
also includes connectors referencing properties that clearly express
how these concepts have to be linked. Connectors are very useful
to express and determine the meaning of a keyword query and thus
the way it has to be translated into a SPARQL query. An example
of such a connected keyword query is: name of person at the head
of company and author of article about “business intelligence"
where the grammatical connectors in bold clearly disambiguate the
keywords they link. Contributions of this demonstration prototype
that implements the approach introduced in [8] on top of an integra-
tion architecture are twofold: i) the definition of a template-based
formalism to connected keyword queries and ii) the development of
an efficient and suitable autocompletion system to help users make
the most of this novel keyword query system and makes it possible
to translate a keyword query into a SPARQL query. The rest of the
article is organized as follows. Section 2 briefly presents how con-
nected keyword queries are internally formalized, whereas Section
3 points out the crucial role of the autocompletion strategy in this
work. Finally, Section 4 describes the context of the scenario pro-
posed for the demonstration, which is characterized by the fact that
the translated SPARQL query is submitted to a mediation system
connected to distributed heterogeneous data sources.

2. CONNECTED KEYWORDS QUERIES

2.1 Data Structure and Query Vocabulary
AGGREGO SEARCH offers a query interface to a triplestore

whose semantics is defined by means of an RDFS ontology. The
structure of the searchable data is defined by an RDFS ontology that
is composed of rdf:classes used to divide resources, rdfs:properties
that link a subject resource to an object resource, and instances of
classes. Figure 1 gives an example of an ontology about business
organizations, employees and news articles.

Searchable classes and instances of the ontology are linked by
an rdfs:label property to at least one instance of rdfs:Literal that
gives a human readable description of the concerned resource, pos-
sibly with synonyms. Each property linked to a searchable class
of the ontology is associated with three rdfs:label properties, one
attached to the property itself to describe its meaning, and two oth-
ers attached respectively to its domain and range, so as to be able
to explain this property from both sides. Textual literals linked by
rdfs:label properties to searchable elements of the ontology form
the query vocabulary that can be used inside AGGREGO SEAR-

636 10.5441/002/edbt.2014.62

org:FormalOrganization
org:hasSite

rdfs:range

rdfs:domain

org:Site

org:siteAddress

rdfs:domain

org:Address

rdfs:range

v:street

v:postal_code

v:localityString

rdfs:range

rdfs:range

rdfs:range
rdfs:domain

rdfs:domain

rdfs:domain

foaf:Person

org:memberOf

rdfs:domain rdfs:range
org:headerOf

rdfs:range

rdfs:subPropertyOf

foaf:firstName

rdfs:domain

foaf:lastName

rdfs:domain

rdfs:rangerdfs:range

sch:author

rdfs:domain

sch:NewsArticle

rdfs:range

sch:title

rdfs:range

rdfs:domain

sch:datePublished

time:temporality

rdfs:range

rdfs:domain

sch:headline

rdfs:domain

rdfs:range

ns:ClassName

ns:propertyName rdfs:property

rdfs:class
legend

Figure 1: Extract of an ontology

CH keyword queries. Whereas classical approaches interpret key-
words corresponding to classes and instances only, AGGREGO
SEARCH also handles keywords associated with properties as an
expression of the way classes and instances have to linked in the
target SPARQL query. A valid connected keyword query corre-
sponds to a connected subgraph of the ontology. Considering the
query introduced in Section 1, Figure 2 illustrates the matching per-
formed between the keywords (corresponding to rdfs:label proper-
ties) appearing in the query and searchable elements of the ontol-
ogy. For the sake of clarity, only rdfs:label properties concerned by
the query are informally specified into rectangles.

org:FormalOrganization

foaf:Person

org:memberOf

rdfs:domain
org:headerOf

rdfs:range

rdfs:subPropertyOf

foaf:lastName

rdfs:domain
sch:author

rdfs:domain

sch:NewsArticle

rdfs:range

sch:headline

rdfs:domain

rdfs:range

rdfs:label
``at the head of''

rdfs:label
``company''

rdfs:label
``person''

rdfs:label
``article''

rdfs:label
``author of''

rdfs:label
``about''

rdfs:label
``name''

rdfs:Literal
``business

intelligence"

Figure 2: Graph view of the query name of person at the head of
company and author of article about “business intelligence"

The vocabulary that can be used inside an AGGREGO SEARCH
query is thus composed of:

• labels of classes hereafter called CLASSNAME,

• labels of properties hereafter called PROPNAME,

• labels of property ranges hereafter called RANCON,

• labels of property domains hereafter called DOMCON,

• rdfs:Literal instances hereafter called VALUES,

• and additional logical connectors like and and some tool words
like of that make the query more natural and explicit (see
Section 2.2).

2.2 Structured Query
The goal of the AGGREGO SEARCH system is to translate a

user-defined keyword query into a SPARQL query. A SPARQL
query is composed of a projection part introduced by the keyword
SELECT and a selection part introduced by the keyword WHERE.
The projection clause is used to declare the variables on which
matching patterns defined in the selection clause are applied when
querying the graph. For example, the keyword query illustrated in
Figure 2 is translated into SPARQL as follows:

SELECT DISTINCT ?name
WHERE {

?name rdf:type foaf:lastName.
?person rdf:type foaf:Person. ?person foaf:name ?name.
?person org:headerOf ?comp. ?person sch:author ?art.
?art rdf:type sch:NewsArticle. ?art sch:headline ?head.
FILTER regex(?head, “business intelligence") }

In AGGREGO SEARCH, it is assumed that keyword queries are
composed of a first projection part where the expected information
is specified, and a second optional selection part where filtering cri-
teria are defined. A context free grammar has been defined to deter-
mine the patterns that may composed a valid AGGREGO SEARCH
query. This grammar G = (terminals, nonTerminals, startSymbol,
rules) is defined as follows:

• terminals uses the searchable vocabulary as the set of ter-
minal symbols,

• nonTerminals is composed of the symbols {query, select,
where, selectElmt, whereElmt},

• the startSymbol is query,

• the production rules are given hereinbelow in a Backus Naur
Form.

query :: = select where | select
select ::= selectElmt ‘and’ select | selectElmt select | selectElmt
where ::= whereElmt ‘and’ where | whereElmt where | whereElmt
selectElmt ::= propNameList ‘of’ CLASSNAME | CLASSNAME
propNameList ::= PROPNAME ‘and’ propNameList | PROPNAME
whereElmt ::= RANCON CLASSNAME | DOMCON CLASSNAME | DOMCON
VALUE | DOMCON RANCON VALUE

According to this grammar, the structure of the query introduced
in Figure 2 may be represented by the derivation tree illustrated in
Figure 3.

Notice that some labels of properties attached to a domain or a
range involving a datatype (string, integer, real, etc.) are tagged in
order to indicate that they have to be interpreted as a SPARQL filter.
Such filters may also be explicitly used inside a selection statement
of the type DOMCON RANCON VALUE as in: has title contains
“SPARQL”, where has title may be a label attached to the domain
of property sch:title and contains is attached to its range.
The current grammar covers a limited number of query patterns
only. As explained in Section 3, this is not a problem in practice
as this grammar is used to guide an autocompletion system only
and not to syntactically validate the structure of freely-typed user
queries.

637

``name"
PROPNAME

``of" ``person"
CLASSNAME

propNameList

selectElmt

``at the head of"
DOMCON

``company"
CLASSNAME

whereElmt ``and"

``author of"
DOMCON

``article"
CLASSNAME

whereElmt

``about"
DOMCON

``business intelligence"
VALUE

whereElmt

where

where

query

Figure 3: Derivation tree of the query from Fig. 2

3. AUTOCOMPLETION SYSTEM
As illustrated in Figure 5, the AGGREGO SEARCH query in-

terface is composed of a single field. Currently, this field is not
completely freely editable by the user, but may only be used with
an autocompletion mechanism that plays a crucial role as it:

• helps users define connected keyword queries whose struc-
ture is covered by the grammar,

• builds its SPARQL translation on-the-fly.

Autocompletion of Structured Queries
Suggestions made by the autocompletion system are guided by
the grammar detailed in Section 2.2. Compared with classical au-
tocompletion systems embedded in search engines, AGGREGO
SEARCH suggests completions that are relevant regarding not only
the first letters typed by the user but also regarding the structure of
the query whose construction is in progress. The algorithm of the
autocompletion system simply follows the graph representation of
the grammar (Figure 4). Starting with the initial node query, the
autocompletion system suggests all the vocabulary elements corre-
sponding to the category of the nodes directly connected to the cur-
rent node. Thus, if the query field is empty (which means that the
current node is query), then names of searchable properties (PROP-
NAME) and classes (CLASSNAME) are suggested, which are the
two categories of elements that introduce a projection statement
and thus may start a query. When a suggested element is selected
or discriminated by its first letters typed by the user, then one pro-
gresses in the graph to the neighbors of the current node.

query

PROPNAME

`and'

CLASSNAME

`of'

DOMCON

CLASSNAME

VALUE

`and'

RANCON

`and'

whereselect

RANCON

Figure 4: Graph representation of the grammar

As explained in Section 4, this keyword query approach is imple-
mented in a particular context of a mediated-access to distributed
and heterogeneous sources. This context implies that the data stored
in the different sources is not available for local indexing, this is
why the autocompletion system suggests elements of the vocab-
ulary that correspond to labels of the reference domain ontology.

Thus, if the structure being suggested by the autocompletion sys-
tem involves a value, the user is invited to type this value as a
quoted string. In the example illustrated in Figure 2, the label about
associated with the domain of the property sch:headline, which is
itself linked with the class sch:article, introduces a value. This is
why a quoted string is opened directly after the selection by the user
of the keyword about to let him type a description of the headline
he/she is interested in.

It is worth noticing that, in case of ambiguities between sug-
gested completions, addition information is displayed to explain
which element the ambiguous suggestion is related to. If one con-
siders two ambiguous labels, e.g. name, attached to two differ-
ent classes, e.g. foaf:Person and org:FormalOrganization, then in-
stead of suggesting the property label name twice, complete projec-
tion statements are displayed as name <of Person> and name <of
Company>. This last point of disambiguation is all the more im-
portant when it concerns selection statements starting with ambigu-
ous labels of domain properties whose range is linked to a string
element. In order to precisely transcribe the sense of the keyword
query into SPARQL, it is mandatory to attach each selection state-
ment to its right variable introduced in the projection clause or a
previous selection statement.

Finally, to obtain a reduced and relevant list of suggestions only,
the autocompletion system makes the most of the fact that a SPARQL
query is a connected subgraph of the ontology. Thus, when the sys-
tem suggests the construction of a new selection statement, only
labels attached to the domain or range of already activated classes
are proposed, where suggestions about the last activated class are
proposed first. For example, if one considers headline of article
written by person as the current state of the query, then only labels
of domains of properties linked to the classes sch:NewsArticle and
foaf:Person are suggested as illustrated in Figure 5.

Figure 5: Suggestion of relevant completions

On-the-Fly Translation to SPARQL
During query construction using the autocompletion system, a trans-
lation into SPARQL is performed on-the-fly. As soon as a projec-
tion statement is completed by the user, the SELECT clause of the
target SPARQL query is completed. A translation rule is indeed
associated with each of the two covered projection statements. For
the first one (propNameList PROJCON CLASSNAME), a variable is
created for each property enumerated in the propNameList as well
as a link with a variable representing the class explicitly defined
as the CLASSNAME element of the rule. Variables representing
classes (resp. properties) involved in the query are stored in an ar-
ray of activated classes (reps. properties). These arrays are used by
the autocompletion system to suggest the construction of selection
statements on these activated classes and properties only. For the
second type of covered projection statement that contains the name
of a class only, one completes this statement with all the proper-
ties linked to this class. For example, the projection statement de-
scribed only by article is completed with title and published date

638

and headline and author and mentioned persons of article that is
translated into:

SELECT DISTINCT ?title ?published_data ?headline ?author
WHERE {

?title rdf:type sch:title. ?headline rdf:type sch:headline.
?published rdf:type sch:datePublished. ?author rdf:type sch:author.
?article rdf:type sch:NewsArticle.
?article sch:title ?title. ?article sch:datePublished ?published.
?article sch:headline ?headline. ?article sch:author ?author.

As selection statements concern classes and properties already
mentioned in the query and referenced in the arrays of activated
classes and properties, their translation into SPARQL is straight-
forward. For example, if a class say Person is associated with the
variable ?person in the array of activated classes, then the selection
statement author of article corresponding to the pattern DOMCON
CLASSNAME is translated into:

?article ref:type sch:NewsArticle. ?person sch:author ?article.

Thus, using such an autocompletion strategy, one has the guar-
antee that all the submitted queries are semantically valid wrt. the
ontology and return the exact answers to the user.

4. DEMONSTRATION
The keyword query approach presented in this article has been

integrated on top of an integration system called AGGREGO server
developed by the company SEMSOFT3. As shown in Figure 6, AG-
GREGO server relies on a mediation layer associated with a do-
main ontology corresponding to the searchable ontology and adap-
tors to make the integration of distributed and heterogeneous data
sources easier [9]. SPARQL queries submitted to this mediation
layer are rewritten in terms of views [5] describing the schemas of
the searchable data sources.

Connected keyword queries

Views

WSDL2.0

Analyze Rewrite Optimize Schedule

MEDIATOR

Adaptor Adaptor Adaptor Adaptor Adaptor

RDB XML web
serviceFiles

Ontology

software

RDFS

Search

SPARQL

Figure 6: Architecture of AGGREGO toolbox

To illustrate the intuitiveness and relevance of this autocomple-
tion system, an instance of the AGGREGO server will be made
available for the demonstration to query data coming from differ-
ent sources like Twitter, Linkedin, BFM, Coface Services, Infole-
gale, etc. An example of query submitted in this context as well
as the returned results are illustrated in Figure 7. A video is avail-
able online to illustrate the use of AGGREGO Search in such a
mediation context: http://www.youtube.com/watch?v=
7LzFC_7tuf0&feature=youtu.be.

5. REFERENCES
3http://semsoft-corp.com

name of company managed by person has last name ``Jacquin de Margerie'' and has first name ``Christophe'' Search

1. CCM
2. CDM PATRIMONIAL
3. CENTRE CAPITAL DEVELOPPEMENT
4. CHOIX SOLIDAIRE
5. TOTAL E&P INDONESIE

Figure 7: AGGREGO SEARCH on top of AGGREGO
SERVER

[1] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
XRANK: ranked keyword search over xml documents. In
Proc. of the 2003 ACM SIGMOD international conference
on Management of data, pages 16–27, 2003.

[2] J. Heinecke and F. Toumani. A natural language mediation
system for e-commerce applications: an ontology-based
approach. In Proc. of 2nd International Semantic Web
Conference, 2003.

[3] Y. Lei, V. Uren, and E. Motta. Semsearch: A search engine
for the semantic web. In S. Staab and V. Svátek, editors,
Managing Knowledge in a World of Networks, volume 4248
of Lecture Notes in Computer Science, pages 238–245.
Springer Berlin / Heidelberg, 2006.

[4] R. Patil and Z. Chen. Struct: Incorporating contextual
information for english query search on relational databases.
In Proc. of the 3rd workshop KEYS, 2012.

[5] R. Pottinger and A. Halevy. Minicon: A scalable algorithm
for answering queries using views. The VLDB Journal,
10(2-3):182–198, Sept. 2001.

[6] J. Pound, I. F. Ilyas, and G. Weddell. Expressive and flexible
access to web-extracted data: a keyword-based structured
query language. In Proceedings of the 2010 ACM SIGMOD
international conference on Management of data, pages
423–434, 2010.

[7] A. Simitsis, G. Koutrika, and Y. Ioannidis. Précis: from
unstructured keywords as queries to structured databases as
answers. The VLDB Journal, 17:117–149, 2008.

[8] G. Smits, O. Pivert, H. Jaudoin, and F. Paulus. An
autocompletion mechanism for enriched keyword queries to
rdf data sources. In Proc. of the 10th international
conference on Flexible Query Answering Systems, pages
601–612. Springer, 2013.

[9] G. Wiederhold. Mediators in the architecture of future
information systems. Computer, 25(3):38–49, 1992.

[10] Q. Zhou, C. Wang, M. Xiong, H. Wang, and Y. Yu. SPARK:
Adapting keyword query to semantic search. In The
Semantic Web, volume 4825 of Lecture Notes in Computer
Science, pages 694–707. 2007.

639

