
Oblivious Query Processing

Arvind Arasu
Microsoft Research

arvinda@microsoft.com

Raghav Kaushik
Microsoft Research

skaushi@microsoft.com

ABSTRACT
Motivated by cloud security concerns, there is an increasing in-
terest in database systems that can store and support queries over
encrypted data. A common architecture for such systems is to use a
trusted component such as a cryptographic co-processor for query
processing that is used to securely decrypt data and perform com-
putations in plaintext. The trusted component has limited memory,
so most of the (input and intermediate) data is kept encrypted in
an untrusted storage and moved to the trusted component on “de-
mand.”

In this setting, even with strong encryption, the data access pat-
tern from untrusted storage has the potential to reveal sensitive in-
formation; indeed, all existing systems that use a trusted component
for query processing over encrypted data have this vulnerability. In
this paper, we undertake the first formal study of secure query pro-
cessing, where an adversary having full knowledge of the query
(text) and observing the query execution learns nothing about the
underlying database other than the result size of the query on the
database. We introduce a simpler notion, oblivious query process-
ing, and show formally that a query admits secure query process-
ing iff it admits oblivious query processing. We present oblivious
query processing algorithms for a rich class of database queries in-
volving selections, joins, grouping and aggregation. For queries
not handled by our algorithms, we provide some initial evidence
that designing oblivious (and therefore secure) algorithms would
be hard via reductions from two simple, well-studied problems that
are generally believed to be hard. Our study of oblivious query pro-
cessing also reveals interesting connections to database join theory.

1. INTRODUCTION
There is a trend towards moving database functionality to the

cloud and many cloud providers have a database-as-a-service
(DbaaS) offering [2, 21]. A DbaaS allows an application to store
its database in the cloud and run queries over it. Moving a database
to the cloud, while providing well-documented advantages [8], in-
troduces data security concerns [28]. Any data stored on a cloud
machine is potentially accessible to snooping administrators and to
attackers who gain illegal access to cloud systems. There have been

(c) 2014, Copyright is with the authors. Published in Proc. 17th Interna-
tional Conference on Database Theory (ICDT), March 24-28, 2014, Athens,
Greece: ISBN 978-3-89318066-1, on OpenProceedings.org. Distribution
of this paper is permitted under the terms of the Creative Commons license
CC-by-nc-nd 4.0.

well-known instances of data security breaches arising from such
adversaries [30].

A simple mechanism to address these security concerns is en-
cryption. By keeping data stored in the cloud encrypted we can
thwart the kinds of attacks mentioned above. However encryp-
tion makes computation and in particular query processing over
data difficult. Standard encryption schemes are designed to “hide”
data while we need to “see” data to perform computations over it.
Addressing these challenges and designing database systems that
support query processing over encrypted data is an active area of
research [4, 6, 14, 27, 32] and industry effort [22, 23].

A common architecture [4, 6] for query processing over
encrypted data involves using trusted hardware such as a crypto-
graphic co-processor [16], designed to be inaccessible to an ad-
versary. The trusted hardware has access to the encryption key,
some computational capabilities, and limited storage. During query
processing, encrypted data is moved to the trusted hardware, de-
crypted, and computed on. The trusted hardware has limited stor-
age so it is infeasible to store within it the entire input database or
intermediate results generated during query processing; these are
typically stored encrypted in an untrusted storage and moved to the
trusted hardware only when necessary. Other approaches to query
processing over encrypted data rely on (partial) homomorphic en-
cryption [14, 27, 32] or using the client as the trusted module1 [14,
32]. These approaches have limitations in terms of the class of
queries they can handle or data shipping costs they incur (see Sec-
tion 7), and they are not the main focus of this paper.

The systems that use trusted hardware currently provide an oper-
ational security guarantee that any data outside of trusted hardware
is encrypted [4, 6]. However, this operational guarantee does not
translate to end-to-end data security since, even with strong en-
cryption, the data movement patterns to and from trusted hardware
can potentially reveal information about the underlying data. We
call such information leakage dynamic information leakage and we
illustrate it using a simple join example.

EXAMPLE 1. Consider a database with tables Patient

(PatId,Name,City) and Visit(PatId,Date,Doctor) storing
patient details and their doctor visits. These tables are encrypted
by encrypting each record using a standard encryption scheme and
stored in untrusted memory. Using suitably strong encryption2, we
can ensure that the adversary does not learn anything from the en-
crypted tables other than their sizes. (Such an encryption scheme
is non-deterministic so two encryptions of the same record would
look seemingly unrelated.)

Consider a query that joins these two tables on PatId column

1All of our results hold for this setting, but they are less interesting.
2And padding to mask record sizes.

26 10.5441/002/icdt.2014.07

using a nested loop join algorithm. The algorithm moves each pa-
tient record to the trusted hardware where it is decrypted. For each
patient record, all records of Visit table are moved one after the
other to the trusted hardware and decrypted. Whenever the current
patient record p and visit record v have the same PatId value, the
join record 〈p, v〉 is encrypted and produced as output. An adver-
sary observing the sequence of records being moved in and out of
trusted hardware learns the join-graph. For example, if 5 output
records are produced in the time interval between the first and sec-
ond Patient record moving to the trusted hardware, the adversary
learns that some patient had 5 doctor visits. We can show that sim-
ilar information leakage occurs for other standard join algorithms
such as hash join and sort-merge join.

The above discussion raises the natural question whether we can
design query processing algorithms that avoid such dynamic infor-
mation leakage and provide end-to-end data security. The focus of
this paper is to seek an answer to this question; in particular, as a
contribution of this paper, we formalize a strong notion of (end-to-
end) secure query processing, develop efficient and secure query
processing algorithms for a large class of queries, and discuss why
queries outside of this class are unlikely to have efficient secure
algorithms.

There exists an extensive body of work on Oblivious RAM
(ORAM) Simulation [10, 12, 29, 33], a general technique that makes
memory accesses of an arbitrary program appear random by con-
tinuously shuffling memory and adding spurious accesses. In Ex-
ample 1, with ORAM simulation the data accesses would appear
random to an adversary and we can show that the adversary learns
no information other than the total number of data accesses.

Given general ORAM simulation, why design specialized secure
query processing algorithms? We defer a full discussion of this
issue to Section 1.2, but for a brief motivation consider sorting an
encrypted array of size n. Just as in Example 1, the data access pat-
terns of a standard sorting algorithm such as quicksort reveals infor-
mation about the underlying data. An ORAM simulation of quick-
sort would hide the access patterns; indeed, the adversary does not
even learn that a sort operation is being performed. However, with
current state-of-the-art ORAM algorithms, it would incur an over-
head of Θ(log2 n) per access3 of the original algorithm making the
overall complexity of sorting Θ(n log3 n). Instead, we could ex-
ploit the semantics of sorting and design a secure sorting algorithm
that has the (optimal) time complexity of Θ(n logn) [11]. Here
the adversary does learn that the operation being performed is sort-
ing (but does not learn anything about the input being sorted) but
we get significant performance benefits. As we show in the rest
of the paper, designing specialized secure query processing algo-
rithms helps us gain similar performance advantages over generic
ORAM simulations.

The exploration in this paper is part of the Cipherbase project [7],
a larger effort to design and prototype a comprehensive database
system, relying on specialized hardware for storing and processing
encrypted data in the cloud.

1.1 Overview of Contributions
Secure Query Processing: Informally, we define a query pro-
cessing algorithm for a queryQ to be secure if an adversary having
full knowledge of the text of Q and observing the execution of Q
does not learn anything about the underlying databaseD other than
the result size of Q over D. The query execution happens within
a trusted module (TM) not accessible to the adversary. The input
database and possibly intermediate results generated during query
3Assuming “small” polylog(n) trusted memory.

execution are stored (encrypted) in an untrusted memory (UM). The
adversary has access to the untrusted memory and in particular can
observe the sequence of memory locations accessed and data values
read and written during query execution. Throughout, we assume a
passive adversary, who does not actively interfere with query pro-
cessing.

When defining security, we grant the adversary knowledge of
query Q which ensures that data security does not depend on the
query being kept secret. Databases are typically accessed through
applications and it is often easy to guess the query from a knowl-
edge of the application. Our formal definition of secure query pro-
cessing (Section 2.2) generalizes the informal definition above and
incorporates query security in addition to data security. Our formal
definition relies on machinery from standard cryptography such
as indistinguishability experiments, but there are some subtleties
specific to database systems and applications that we capture; Ap-
pendix A discusses these issues in greater detail.

We note that simply communicating the (encrypted) query re-
sult over an untrusted network reveals the result size, so a stronger
notion of security seems impractical in a cloud setting. Also, our
definition of secure query processing implies that an adversary with
an access to the cloud server gets no advantage over an adversary
who can observe only the communications between the client and
the database server, assuming both of them have knowledge of the
query.

Oblivious Query Processing Algorithms: Central to the idea of
secure query processing is the notion of oblivious query process-
ing. Informally, a query processing algorithm is oblivious if its
(untrusted) memory access pattern is independent of the database
contents once we fix the query and its input and output sizes. We
can easily argue that any secure algorithm is oblivious: otherwise,
the algorithm has different memory access patterns for different
database instances, so the adversary learns something about the
database instance by observing the memory access pattern of the
algorithm. Interestingly, obliviousness is also a sufficient condition
in the sense that any oblivious algorithm can be made secure using
standard cryptography (Theorem 3). The idea of reducing security
to memory access obliviousness was originally proposed in [10] for
general programs in the context of software protection. Note that
obliviousness is defined with respect to memory accesses to the un-
trusted store; any memory accesses internal to TM are invisible to
the adversary and do not affect security.

Our challenge therefore is to design oblivious algorithms for
database queries. We seek oblivious algorithms that have small TM
memory footprint since all practical realizations of the trusted mod-
ule such as cryptographic co-processors have limited storage (few
MBs) [16]. Without this restriction a simple oblivious algorithm is
to read the entire database into TM and perform query processing
completely within TM.

To illustrate challenges in designing oblivious query processing
algorithms consider the simple join query R(A, . . .) ./ S(A, . . .)
which seeks all pairs of tuples from R and S that agree on attribute
A. Figure 1 shows two instances for this join, represented as a bi-
nary “join-graph”. Each R and S tuple is shown as a vertex and its
attributeA value is shown adjacent to it (lower case letters a, b, . . .).
An edge exists between an R tuple and an S tuple having the same
value in attribute A, and each edge represents a join output. We
note that both instances have the same input output characteristics,
|R| = |S| = |R ./ S| = 16, so an oblivious algorithm is required
to have the same memory access pattern for both instances. How-
ever, the internal structure of the join graph is greatly different. All
“natural” join algorithms that use sorting or hashing to bring to-
gether joinable tuples are sensitive to the join graph structure and

27

a

a

a

a

a

a

a

a

b

b

b

b

c

c

c

c

R (A) S (A)

(16 tuples)

(a) Instance 1

a

b

c

d

a

b

c

d

e

f

o

p

e

f

o

p

R (A) S (A)

(16 tuples)

(b) Instance 2

Figure 1: Two join instances with same input/output sizes

therefore not oblivious.
Traditional database query processing is non-oblivious for two

reasons: First, traditional query processing proceeds by identifying
a query plan, which is a tree of operators with input tables at the
leaves. The operators are (conceptually) evaluated in a bottom-up
fashion and the output of each operator forms an input of its par-
ent. In some cases, this bottom-up evaluation can be pipelined. In
others, the output of an operator needs to be generated fully be-
fore the parent can consume it, and such intermediate output needs
to be temporarily stored in untrusted memory. This renders the
overall query processing non-oblivious since the size of the inter-
mediate output can vary depending on the database instance, even
if we fix input and output sizes. Second, standard implementations
of database operators such as filters, joins, and grouping are not
oblivious, so even if the query plan consisted of a single operator,
the resulting query processing algorithm would not be oblivious.
In summary, traditional query processing is non-oblivious at both
inter- and intra-operator levels, and we need to fundamentally re-
think query processing to make it oblivious.

Our first main algorithmic contribution is that a surprisingly rich
class of database queries admit efficient oblivious algorithms (Sec-
tions 3, 4 and 5).

THEOREM 1. (Informal) There exists an oblivious (secure) query
processing algorithm that requires O(logn) storage in TM for any
database query involving joins, grouping aggregation (as the out-
ermost operation), and filters, if (1) the non-foreign key join graph
is acyclic and (2) all grouping attributes are connected through for-
eign key joins, where n denotes the sum of query input and output
sizes. Further, assuming no auxiliary structures, the running time
of the algorithm is within O(logn) (multiplicative factor) of the
running time of the best insecure algorithm.

Theorem 1 suggests an interesting connection between secure query
processing and database join theory since acyclic joins are a class
of join queries known to be tractable [24]. We note that the class
of queries is fairly broad and representative of real-world analyti-
cal queries. For example, most queries in the well-known TPC-H
benchmark [31] belong to this class, i.e., admit efficient secure al-
gorithms.

Assuming no auxiliary structures such as indexes, our algorithms

are efficient and withinO(logn) of the running time of the best in-
secure algorithm. While the no-index condition makes our results
less relevant for transactional workloads, where indexes play an im-
portant role, they are quite relevant for analytical workloads where
indexes play a less critical role. In fact, query processing in emerg-
ing database architectures such as column stores [1] has limited or
no dependence on indexes.

Further, with minor modifications to our algorithms using the
oblivious external memory sort algorithm of [13], we get oblivious
and secure algorithms with excellent external (untrusted) memory
characteristics.

THEOREM 2. (Informal) For the class of queries in Theorem 1
there exists an oblivious (secure) algorithm with I/O complexity
within multiplicative factor logM/B(n/B) of that of the optimal
insecure algorithm, where B is the block size and M is the TM
memory.

In particular, if we have Ω(
√
n) memory in TM our external mem-

ory algorithms perform a constant number of scans to evaluate the
queries they handle.

Interestingly, for the special case of joins, secure algorithms have
been studied in the context of privacy preserving data integration
[19]. The algorithm proposed in [19] proceeds by computing a
cross product of the input relations followed by a (secure) filter.
Our algorithms are significantly more efficient and handle grouping
and aggregation.

Negative Results: We have reason to believe that queries outside
of the class specified in Theorem 1 do not admit secure efficient
algorithms. We show that the existence of secure algorithms would
imply more efficient algorithms for variants of classic hard prob-
lems such as 3SUM (Section 6). These hardness arguments sug-
gest that we must accept a weaker notion of security if we wish to
support a larger class of queries.

1.2 Oblivious RAM Simulations
ORAM simulations first proposed by Goldreich and Ostrovsky

[10] is a general technique for making memory accesses oblivious
that works for arbitrary programs. Specifically, ORAM simulation
is the online transformation of an arbitrary program P to an equiv-
alent program P ′ whose memory accesses appear random (more
precisely, drawn from some distribution that depends only on the
number of memory accesses of P). By running P ′ within a secure
CPU (TM) and using suitable encryption, an adversary observing
the sequence of memory accesses to an untrusted memory learns
nothing about P and its data other than its number of memory ac-
cesses. Current ORAM simulation techniques work by adding a
virtualization layer that continuously shuffles (untrusted) memory
contents and adds spurious memory accesses, so that the resulting
access pattern looks random.

A natural idea for oblivious query processing, implemented in
a recent system [20], would be to run a standard query processing
algorithm under ORAM simulation. However, the resulting query
processing is not secure for our definition of security since it re-
veals more than just the output size. ORAM simulation, since it
is designed for general programs, does not hide the total number
of memory accesses; in the context of standard query processing,
this reveals the size of intermediate results in a query plan. Under-
standing the utility of this weaker notion of security in the context
of database systems is an interesting direction of future work.

For database queries that admit polynomial time algorithms
(which includes queries covered by Theorem 1) we can design
oblivious algorithms based on ORAM simulation: the number of
memory accesses of such an algorithm is bounded by some poly-

28

nomial4 p(n,m), where n is the input size, and m, the output size.
We modify the algorithm with dummy memory accesses so that the
number of memory accesses for any instance with input size n and
output size m is exactly p(n,m). An ORAM simulation of the
modified algorithm is oblivious. We note that we need to precisely
specify p(n,m) upto constants (not asymptotically), otherwise the
number of memory accesses would be slightly different for differ-
ent (n,m) instances making the overall algorithm non-oblivious.
In practice, working out a precise upper-bound p(n,m) for arbi-
trarily complex queries is a non-trivial undertaking.

Our algorithms which are designed to exploit the structure and
semantics of queries have significant performance benefits over the
ORAM-based technique sketched above given the current state-of-
the-art in ORAM simulation. For simplicity, assume for this discus-
sion that the query output size m = O(n). For small TM memory
(polylog(n)), the current best ORAM simulation techniques [29,
18] incur an overhead of Θ(log2 n) memory accesses per memory
access of the original algorithm. This implies that the time com-
plexity of any ORAM-based query processing algorithm is lower-
bounded by Ω(n log2 n). In contrast, our algorithms have a time
complexity of O(n logn) and use O(logn) TM memory.

Also, by construction ORAM simulation randomly sprays mem-
ory accesses and destroys locality of reference, reducing effective-
ness of caching and prefetching in a memory hierarchy. In a disk
setting, a majority of memory accesses of ORAM simulation re-
sult in a random disk seek and we can show that any ORAM-based
query processing algorithm incurs Ω(n

B logM
log2 n

B
) disk seeks,

where M denotes the size of TM memory. In contrast, all of our
algorithms are scan-based except for the oblivious sorting, which
incurs O(logM/B(n/B)) · o(n/B) seeks.

2. PROBLEM FORMULATION

2.1 Database Preliminaries
A relation schema, R(Ā), consists of a relation symbol R and

associated attributes Ā = (A1, . . . , Ak); we use Attr(R) to de-
note the set of attributes {A1, . . . , Ak} of R. An attribute Ai has
an associated set of values called its domain, denoted D(Ai). We
use D(R) to denote D(Ā) = D(A1)× . . .×D(Ak). A database
schema is a set of relation schemas R1, . . . , Rm. A (relation) in-
stance corresponding to schema R(A1, . . . , Ak) is a bag (multiset)
of tuples of the form 〈a1, . . . , ak〉 where each ai ∈ D(Ai). A
database instance is a set of relation instances. In the following we
abuse notation and use the term relation (resp. database) to denote
both relation schema and instance (resp. database schema and in-
stance). We sometimes refer to relations as tables and attributes as
columns.

Given a tuple t ∈ R and an attribute A ∈ Attr(R), t[A] denotes
the value of the tuple on attribute A; as a generalization of this
notation, if A ⊆ Attr(R) is a set of attributes, t[A] denotes the
tuple t restricted to attributes in A.

We consider two classes of database queries. A select-project-
join (SPJ) query is of the form πA(σP (R1 ./ · · · ./ Rq)), where
the projection π is duplicate preserving (we use multiset semantics
for all queries) and ./ refers to the natural join. For R1 ./ R2,
each tuple t1 ∈ R1 joins with each tuple t2 ∈ R2 such that
t1[Attr(R1) ∩ Attr(R2)] = t2[Attr(R1) ∩ Attr(R2)] to pro-
duce an output tuple t over attributes Attr(R1) ∪ Attr(R2) that
agrees with t1 on attributes Attr(R1) and with t2 on attributes
Attr(R2). The second class of queries involves grouping and ag-

4This argument does not depend on p being a polynomial, any func-
tion works.

gregation and is of the formGF (A)
G (σP (R1 ./ · · · ./ Rq)) and we

call such queries GSPJ queries. Given relation R, G ⊆ Attr(R),
A ∈ Attr(R), GF (A)

G (R), represents grouping by attributes in G
and computing aggregation function F over attribute A.

2.2 Secure Query Processing
A relation encryption scheme is used to encrypt relations. It is a

triple of polynomial algorithms (Enc,Dec,Gen) where Gen takes
a security parameter k and returns a key K; Enc takes a key K, a
plaintext relation instance R and returns a ciphertext relation CR;
Dec takes a ciphertext relation CR and key K and returns plaintext
relation R if K was the key under which CR was produced. A
relation encryption scheme is also a database encryption scheme:
to encrypt a database instance we simply encrypt each relation in
the database.

Informally, a relation encryption scheme is IND-CPA secure if a
polynomial time adversary with access to encryption oracle cannot
distinguish between the encryption of two instances R(1) and R(2)

of relation schema R such that |R(1)| = |R(2)| (|R(1)| denotes the
number of tuples in R(1)). Assuming all tuples of a given schema
have the same representational length (or can be made so using
padding), we can construct IND-CPA secure relation encryption
by encrypting each tuple using a standard encryption scheme such
as AES in CBC mode (which is believed to be IND-CPA secure
for message encryption). The detail that encryption is at a tuple-
granularity is relevant for our algorithms which assume that we can
read and decrypt one tuple at a time.

Our formal definition of secure query processing captures: (1)
Database security: An adversary with knowledge of a query does
not learn anything other than the result size of the query by ob-
serving query execution; (2) Query security: An adversary without
knowledge of the query does not learn the constants in the query
from query execution. Appendix A contains a discussion of query
security.

A query template Q is a set of queries that differ only in con-
stants. An example template is the set {σA=1(R), σA=2(R), · · · }
which we denote σA=∗(R).

A query processing algorithm AQ for a query template Q takes
as input an encrypted database instance EncK(D), a query Q ∈ Q
and produces as output EncK(Q(D)); Algorithm AQ has access
to encryption key K and the encryption scheme is IND-CPA se-
cure. Our goal is to make algorithm AQ secure against a passive
adversary who observes its execution. Algorithm AQ runs within
the trusted module TM. The TM also has a small amount of inter-
nal storage invisible to the adversary. Algorithm AQ has access
to a large amount of untrusted storage which is sufficient to store
EncK(D) and any intermediate state required by AQ. The trace of
an execution of algorithm AQ is the sequence of untrusted memory
accesses read(i) and write(i, value), where i denotes the memory
location.

We define security of algorithm AQ using the following indistin-
guishability experiment:
1. Pick K ← Gen(1k)

2. The adversary A picks two queries Q1 ∈ Q, Q2 ∈ Q with the
same template and two database instances D(1) = {R(1)

1 , . . . ,

R
(1)
n } and D(2) = {R(2)

1 , . . . , R
(2)
n } having the same schema

such that (1) |R(1)
i | = |R(2)

i | for all i ∈ [1, n]; and (2)
|Q1(D(1))| = |Q2(D(2))|.

3. Pick a random bit b ← {0, 1} and let τb denote the trace of
AQ(EncK(D(b)), Qb).

4. The adversary A outputs prediction b′ given τb, EncK(D(b)),

29

and EncK(Qb(D
(b))).

We say adversary A succeeds if b′ = b. Algorithm AQ is secure
if for any polynomial time adversary A, the probability of success
is at most 1/2 + negl(k) for some negligible function5 negl . We
note that our definition of security captures both database security,
since an adversary can pick Q1 = Q2, and query security, since an
adversary can pick D(1) = D(2).

2.3 Oblivious Query Processing
As discussed in Section 1, oblivious query processing is a sim-

pler notion that is equivalent to secure query processing. Fix an
algorithm AQ. For an input I = EncK(D) and query Q ∈ Q,
the memory access sequenceMAQ(I,Q) is the sequence of UM
memory reads r(i) and writes w(i), where i denotes the memory
location; the value being read/written is not part ofMAQ(I,Q). In
general, AQ is randomized andMAQ(I,Q) is a random variable
defined over all possible memory access sequences. Algorithm AQ
is oblivious if the distribution of its memory access sequences is
independent of database contents once we fix the query output and
database size. Formally, Algorithm AQ is oblivious if for any mem-
ory access sequence M , any two queries Q1, Q2 ∈ Q, any two
database encryptions I1 = EncK1(D(1)), I2 = EncK2(D(2)):

Pr[MAQ(I1, Q1) = M] = Pr[MAQ(I2, Q2) = M]

where D(1) = {R(1)
1 , . . . , R

(1)
n } and D(2) = {R(2)

1 , . . . , R
(2)
n }

have the same schema and: (1) |R(1)
i | = |R(2)

i | for all i ∈ [1, n];
and (2) |Q1(D(1))| = |Q2(D(2))|.

Our definition of obliviousness is more stringent than the one
used in ORAM simulation. In ORAM simulation, the memory ac-
cess distribution can depend on the total number of memory ac-
cesses, while our definition precludes dependence on the total num-
ber of memory accesses once the query input and output sizes are
fixed. The following theorem establishes the connection between
oblivious and secure query processing.

THEOREM 3. Assuming one-way functions exist, the existence
of an oblivious algorithm for a query template Q implies the exis-
tence of a secure algorithm forQ with the same asymptotic perfor-
mance characteristics (TM memory required, running time).

The idea of using obliviousness to derive security from access pat-
tern leakage was originally proposed in [10] and the proof of The-
orem 3 is similar to the proof of analogous Theorem 3.1.1 in [10].
Informally, we get secure query processing by ensuring both data
security of values stored in untrusted memory and access pattern
obliviousness. Data security can be achieved by using encryption,
and secure encryption schemes exist assuming the existence of one-
way functions. It follows that the existence of oblivious query
processing algorithms implies the existence of secure algorithms.
Based on Theorem 3, the rest of the paper focuses on oblivious
query processing and does not directly deal with encryption and
data security.

3. INTUITION
This section presents a high level intuition behind our algorithms.

Consider the binary join R(A, . . .) ./ S(A, . . .) and the join graph
instance shown in Figure 2(a). Lower case letters a, b, represent
values of the joining column A; ignore the subscripts on a and b
for now. We add identifiers r1-r3 and s1-s4 to tuples so that we
can refer to them in text.
5A negligible function negl(k) is a function that grows slower than

1
p(k)

for any polynomial p(k); e.g., 1
2k .

a

b

a

a

a

a

b
r1

r2

r3

s2

s1

s3

s4

(3)

(1)

(3)

(2)

(2)

(1)

(2)1

1

2

3

r1, a

r3, a

r1, a

r3, a

r1, a

r3, a

r2, b

s1, a

s1, a

s3, a

s3, a

s4, a

s4, a

s2, b

1

1

2

2

3

3

1 1

3

3

2

2

1

1

(a) (b)

SexpRexp

Figure 2: Illustration of Oblivious Binary Join

Our oblivious binary join algorithm works in two stages: In the
first stage, we compute the contribution of each tuple to the final
output. This is simply the degree of the tuple in the join graph;
this value is shown within parenthesis in Figure 2(a). For example,
the degree of r1 is 3, and degree of r2, 1. In the second stage,
we expand R to Rexp by duplicating each tuple as many times as
its degree; r1 occurs 3 times in Rexp, r2 once, and so on. We
similarly, expand S to Sexp. The expansions Rexp and Sexp are
shown within boxed rectangles in Figure 2(b). The final join output
is produced by “stitching” together Rexp and Sexp as illustrated in
Figure 2(b). The expansions Rexp and Sexp are sequences whose
ordering is picked carefully to ensure that stitching the ith tuple in
Rexp with the ith tuple in Sexp indeed produces the correct join
output.

A central component of the above algorithm are oblivious imple-
mentations of two simple primitives that we call semi-join aggrega-
tion and expansion. Semi-join aggregation computes the degree of
each tuple in a join and expansion expands a relation by duplicating
each tuple a certain number of times such as its degree.

The same approach generalizes to multiway joins if the overall
query is acyclic [24]. Informally, to compute R ./ S ./ T , we
would compute the contribution of each tuple to the final join out-
put and use these values to expand input relations to Rexp, Sexp,
and Texp, which are then stitched together to produce the final join
output.

4. PRIMITIVES
This section introduces a few core primitives and presents oblivi-

ous algorithms—algorithms that have the same UM memory access
patterns once we fix input and output sizes—for these primitives.
These primitives serve two purposes: First, as discussed in Sec-
tion 3, they are building blocks for our oblivious query processing
algorithms; Second, they introduce notation to help us concisely
specify our algorithms, and reason about their obliviousness and
performance.

There exist oblivious algorithms for all the primitives of this sec-
tion having time complexity O(n logn) and requiring O(logn)
TM memory, where n denotes the sum of input and output sizes.
Some of these algorithms rely on an oblivious sort; an optimal
O(n logn) oblivious sort algorithm that uses O(1) TM memory
is presented in [11]. Due to space constraints we defer presenting
oblivious algorithms for the simpler primitives to the full version
of the paper [5].

30

A

r1 1

r2 2

r3 1

A B

s1 1 1

s2 2 1

s3 2 1

A B C D E

1 2 1 2 1

2 4 1 6 2

1 2 2 8 1

R S R̃

Figure 3: Illustration of primitives: R̃ ← R.(B ← 2A).(C ←
IDA).(D ← RSum(B)).(E

n← Sum(S.B)). r1-r3 and s1-s3

are names we use to refer to the tuples.

Relation Augmentation: This primitive adds a derived column
to a relation. In the simplest form the derived column is obtained
by applying a function to existing columns; many primitives we
introduce subsequently are more complex instantiations of relation
augmentation. We use the notation R.(A ← Func) to represent
relation augmentation which adds a new derived column A using
some function Func and produces an output relation with schema
Attr(R) ∪ {A}. For example, R.(B ← 2A) adds a new column
B whose value is twice that of A (see Figure 3). Our notation
allows composition to be expressed more concisely; e.g., R.(B ←
2A).(F ← A+B).

Grouping Identity: This relation augmentation primitive adds
a new identity column within a group; identity column values are
of the form 1, 2, In particular, we use the notation R.(A ←
IDOG) where G ⊆ Attr(R) is a set of grouping columns and O ⊆
Attr(R) is a set of ordering columns. To get the output, we parti-
tion the tuples by the grouping columns G, order the tuples within
each partition by O, and assign ids based on this ordering. (We
break ties arbitrarily, so the output can be non-deterministic.) G and
O can be empty and omitted. For example, R.(Id ← ID) assigns
an unique id to each record in R. In Figure 3, for R.(C ← IDA),
we partition by A, so r1 and r3 go to the same partition; tuple r1

gets a C value of 1, and r3, a C value of 2.

Grouping Running Sum: This primitive is a generalization of
grouping identity and adds a running sum column to a relation.
It is represented R.(A ← RSumOG (B)); it groups a relation by
G and orders tuples in a group by O and stores the running sum
of B column values in a new column A. In particular, grouping
identity R.(Id ← IDOG) can be expressed as R.(X ← 1).(Id ←
RSumOG (X)). See Figure 3 for an example.

Generalized Union: A generalized union of R and S, denoted
R∪̄S, produces a relation with schema Attr(R) ∪ Attr(S) that
contains tuples from both R and S. Tuples of R have a null value
for attributes in Attr(S) − Attr(R), and those of S, a null value
for attributes in Attr(R)−Attr(S).

Sequences: Sorting and Stitching: Although the inputs and out-
puts of our algorithms are relations represented as sequences, the
ordering is often unimportant and we mostly do not emphasize the
sequentiality. We use the notation 〈R〉 to represent some sequence
corresponding to R. When a particular ordering is desired, we rep-
resent the ordering as 〈R〉O whereO ⊆ Attr(R) denote the order-
ing attributes.

One operation on sequences that cannot be represented over bags
is “stitching” two sequences of the same length (see Figure 2(b) for
an example): Given two sequences 〈R〉 and 〈S〉 of the same length
n, the operation 〈R〉 · 〈S〉 produces a sequence of length n with
schema Attr(R) ∪ Attr(S) and the ith tuple of the sequence is
obtained by concatenating the ith tuple of 〈R〉 and the ith tuple of
〈S〉; we ensure when invoking this operation that the ith tuples of
both sequences agree on Attr(R) ∩ Attr(S) if the intersection is

Algorithm 1 Semi-Join Aggregation: R.(X n← Sum(S.Y))

1: procedure SEMIJOINAGG(R,S,X, Y)
2: R̃← R.(Src ← 1).(Y ← 0)

3: S̃ ← S.(Src ← 0)

4: U ← R̃ ∪̄ S̃
5: U ← U.(X ← RSumSrc

Attr(R)∩Attr(S)(Y))

6: Output πAttr(R),X(σSrc=1(U))

7: end procedure

nonempty.

Filters: Consider the filter σP (R). The simple algorithm that scans
each tuple t ∈ R, checks if it satisfies P , and outputs it if does, is
not oblivious. (E.g., simply reordering tuples in R changes the
memory write pattern.)

The oblivious sorting algorithm can be used to design a simple
oblivious algorithm for selection (filter). To evaluate σP (R), we
sort R such that tuples that satisfy predicate P occur before tuples
that do not. We scan the sorted table and output the tuples that
satisfy P and stop when we encounter the first tuple that does not
satisfy P . The overall data access pattern depends only on input
and output sizes and is therefore oblivious.

4.1 Semi-Join Aggregation
Semi-join aggregation, denoted R.(A n← Sum(S.B)), is equiv-

alent6 to the relational algebra expressionGA←SUM(S.B)

Attr(R) (R ./ S).
This operation adds a new derived column A; for each tuple tR ∈
R, we obtain value of A by identifying all tS ∈ S that join with
tR (agree on all common attributes Attr(R) ∩ Attr(S)) and sum-
ming over tS [B] values. As discussed in Section 3, we introduce
this primitive to compute the degree of a tuple in a join graph. In
particular, the degree of each R tuple in R ./ S is obtained by
S̃ ← S.(X ← 1), R.(Degree

n← Sum(S̃.X)). In Figure 3, r2

joins with two tuples s2 and s3, so r2[E] is s2[B] + s3[B] = 2.

Oblivious Algorithm: Algorithm 1 presents an oblivious algo-
rithm for semi-join aggregation R.(X n← Sum(S.Y)). (In all our
algorithms, each step involves one of our primitives and is imple-
mented using the oblivious algorithm for the primitive.) It adds
a “lineage” column Src in Steps 2 and 3; the value of Src is set
to 1 for all R tuples and 0 for all S tuples. A Y column initial-
ized to 0 is added to all R tuples. Step 4 computes a general-
ized union U of R̃ and S̃. Adding the running sum within each
Attr(R)∩Attr(S) group adds the required aggregation value into
each R tuple (Step 5); the running sum computation is ordered by
Src to ensure that all S tuples within an Attr(R)∩Attr(S) group
occur before the R tuples. Finally, the oblivious filter σSrc=1 in
Step 6 extracts the R tuples from U . Figure 4 shows the interme-
diate tables generated by Algorithm 1 for sample tables R(Id,A)
and S(A, Y).

THEOREM 4. Algorithm 1 obliviously computes semi-join ag-
gregation R.(X

n← Sum(S.Y)) of two tables in
O((nR + nS) log(nR + nS)) time and using O(1) TM memory,
where nR = |R| and nS = |S| denote the input table sizes.

PROOF. (Sketch) For each step of Algorithm 1 the input and
output sizes are one of nR, nS , and nR+nS and each step is locally
oblivious in its input and output sizes. The overall algorithm is
therefore oblivious. Further, the oblivious algorithms for each step
require O(1) TM memory.

6This equality holds only when R has not duplicates.

31

Id A Y Src

1 a 0 1
2 b 0 1

A Y Src

a 2 0
b 3 0
a 4 0

Id A Y Src X

- a 2 0 2
- a 4 0 6
1 a 0 1 6
- b 3 0 3
2 b 0 1 3

(a): R̃ (b): S̃ (c): U

Figure 4: Sample computation of R.(X n← Sum(S.Y))

4.2 Expansion
This primitive duplicates each tuple of a relation a number of

times as specified in one of the columns. In particular, the output
of ExpW (R),W ∈ Attr(R) andD(W) ⊆ N is a relation instance
with same schema, Attr(R), that has t[W] copies of each tuple t ∈
R. For example, given an instance of R(A,W) : {〈a, 1〉, 〈b, 2〉},
ExpW (R) is given by {〈a, 1〉, 〈b, 2〉, 〈b, 2〉}. As discussed in Sec-
tion 3, expansion plays a central role in our join algorithms.

4.2.1 Oblivious Algorithm
We now present an oblivious algorithm to compute ExpW (R).

For presentational simplicity, we slightly modify the representation
of the input. The modified input to the expansion is a sequence of
pairs (〈r1, w1〉, . . . , 〈rn, wn〉), where ris are values (tuples) drawn
from some domain and wi ∈ N are non-negative weights. The
desired output is some sequence containing (in any order)wi copies
of each ri. We call such a sequence a weighted sequence.

The input size of expansion is n and the output size is m def
=∑n

i=1 wi, so memory access pattern of an oblivious algorithm de-
pends on only these two quantities. The naive algorithm that reads
each 〈ri, wi〉 into TM and writes out wi copies of ri is not oblivi-
ous, since the output pattern depends on individual weights wi.

We first present an oblivious algorithm when the input sequence
has a particular property we call prefix-heavy; we use this algorithm
as a subroutine in the algorithm for the general case.

DEFINITION 5. A weighted sequence (〈r1, w1〉, . . . , 〈rn, wn〉)
is prefix-heavy if for each ` ∈ [1, n], 1

`

∑`
i=1 wi ≥

1
n

∑n
i=1 wi.

The average weight of any prefix of a prefix-heavy sequence is
greater-than-or-equal to the overall average weight. Any weighted
sequence can be reordered to get a prefix-heavy sequence, e.g.,
by sorting by non-decreasing weight. The sequence (〈a, 4〉, 〈b, 1〉,
〈c, 2〉) is prefix-heavy, while (〈b, 1〉, 〈a, 4〉, 〈c, 2〉) is not.

Algorithm 2 presents an oblivious algorithm for expanding prefix
heavy weighted sequences. To expand the sequence I = (〈r1, w1〉,
. . . , 〈rn, wn〉), the algorithm proceeds in n (input-output) steps.
Let wavg = (

∑n
i=1 wi)/n denote the average weight of the se-

quence. In each step, it reads one weighted record (Step 5) and pro-
duces wavg (unweighted) records in the output; the actual number
wcurr is either bwavgc or dwavge, when wavg is fractional (Step 6).

Call a record 〈ri, wi〉 light if wi ≤ wavg and heavy, otherwise.
If the current record 〈ri, wi〉 is light, wi copies of ri are produced
in the output; if it is heavy, a counter C[ri] is initialized with count
wi denoting the number of copies of ri available for (future) out-
puts. Previously seen heavy records are used to make up the “bal-
ance” and ensure wavg records are produced in each step. The
counters C are internal to TM and are not part of the data access
pattern. Figure 5 shows the steps of Algorithm 2 for the sequence
(〈a, 4〉, 〈b, 1〉, 〈c, 2〉).

Algorithm 2 is oblivious since its input-output pattern is fixed
once the input size n and output size m =

∑n
i=1 wi is fixed. Note

Algorithm 2 Oblivious Expansion of prefix heavy sequences
1: procedure EXPANDPREFIXHEAVY(I)

Assume: I = (〈r1, w1〉, . . . , 〈rn, wn〉)
Require: I is prefix heavy

2: wavg ← (
∑n
i=1 wi)/n

3: CTM ← φ . counters within TM
4: for i = 1 to n do
5: Read 〈ri, wi〉 to TM.
6: wcurr ← bi · wavgc − b(i− 1) · wavgc
7: if wi ≤ wcurr then
8: Append wi copies of ri to output
9: wcurr ← wcurr − wi

10: else
11: CTM [ri]← wi
12: end if
13: while wcurr > 0 do
14: rj ← argmink rk has a counter in CTM
15: if CTM [rj] > wcurr then
16: Append wcurr copies of rj to output
17: CTM [rj]← CTM [rj]− wcurr

18: wcurr ← 0
19: else
20: Append CTM [rj] copies of rj to output
21: wcurr ← wcurr − CTM [rj]
22: // CTM [rj]← 0
23: Remove rj from CTM
24: end if
25: end while
26: endfor
27: end procedure

Step Input Output Counters
1 〈a, 4〉 a, a C[a] = 2

2 〈b, 1〉 b, a, a C = φ

3 〈c, 2〉 c, c C = φ

Figure 5: Algorithm 2 over sequence (〈a, 4〉, 〈b, 1〉, 〈c, 2〉)

that wavg = m/n is fixed once input and output sizes are fixed.
In the worst case, the number of counters maintained by Algo-

rithm 2 can be Ω(n).

EXAMPLE 2. Consider the sequence w1 = · · · = wn/4 = 4
and wn/2+1 = · · · = wn = 0. After reading n/4 records, we can
show that Algorithm 2 requires ≈ 3n/16 counters.

However, any weighted sequence can be re-ordered so that it is
prefix heavy and the number of counters used by Algorithm 2 is
O(1) as stated in Lemma 6 and illustrated in the following example.

EXAMPLE 3. We can reorder the weight sequence in Example 2
as 〈4, 0, 0, 0, 4, 0, 0, 0, . . . , 〉 interleaving 3 light records inbetween
two heavy records. We can show that Algorithm 2 requires just one
counter for this sequence.

More generally, the basic idea is to interleave sufficient number of
light records between two heavy records so that average weight of
any prefix is barely above the overall average, which translates to
fewer number of counters. In Example 3, we can suppress just one
heavy record to make the average weight of any prefix≤ wavg . We
call such sequences barely prefix heavy.

LEMMA 6. Any weighted sequence I can be re-ordered as a
prefix heavy sequence I ′ such that Algorithm 2 requiresO(1) coun-
ters to process I ′.

Lemma 6 suggests that we can design a general algorithm for
expansion by first reordering the input sequence to be barely prefix

32

Algorithm 3 Oblivious Expansion ExpW (R)

1: procedure EXPAND(R,W)
2: m← GSUM(W) . output size
3: R̃← R.(W̃ ← 2dlog2We) . weight rounding
4: m̃← GSUM(W̃) . assert: m̃ < 2m
5: R̃← R̃ ∪̄ {〈dummy〉}.(W ← 0).(W̃ ← 2m− m̃)

6: DTM ← G
COUNT(∗)
W̃

(R̃) . rounded weight distr

7: R̃← R̃.(Id ← ID) . Attach ids
8: 〈R̃bph〉 ←REORDERBARELYPREFIXHEAVY(R̃, D̃TM)

9: R̃exp ←EXPANDPREFIXHEAVY(〈R̃bph〉)
10: R̃exp ← R̃exp .(Rank ← IDId)

11: Output πAttr(R)(σRank<=W (R̃exp))

12: end procedure

heavy and using Algorithm 2. The main difficulty lies in oblivi-
ously reordering the sequence to make it barely prefix heavy. We
do not know how to do this directly; instead, we transform the input
sequence to a modified sequence by rounding weights (upwards)
to be a power of 2. We can concisely represent the full rounded
weight distribution using logarithmic space. We store this rounded
distribution within TM and use it to generate a barely prefix heavy
sequence. Details of the algorithm to reorder a sequence to make it
barely prefix heavy is presented in the full-version of the paper [5].

Algorithm 3 presents our oblivious expansion algorithm. Step 3
performs weight rounding. Directly expanding with these rounded
weights produces a sequence of length m̃; the resulting algorithm
would not be oblivious since m̃ does not depend on n and m (out-
put size) alone. We therefore add (Step 5) a dummy tuple with
rounded weight 2m−m̃ (and actual weight 0). Expanding this table
produces 2m tuples. Step 6 computes the distribution of rounded
weights. We note that this step consumes R̃ and produces no out-
put since DTM remains within TM. Step 8 reorders the table (se-
quence) to make it barely prefix heavy which is expanded using
Algorithm 2 in Step 9. Steps 10 and 11 filter out dummy tuples
produced due to rounding using an oblivious selection algorithm.

THEOREM 7. Algorithm 3 obliviously expands an input table in
time O((n+m) log(n+m)) using O(log(n+m)) TM memory,
where n and m denote the input and output sizes, respectively.

PROOF. (Sketch) The input size of each step is one of n, n+ 1
orm. The output size of each step is one of 1, n, n+1, orm. Each
step is locally oblivious, so all data access patterns are fixed once
we fix n and m.

5. QUERY PROCESSING ALGORITHMS
We now present oblivious query processing algorithms for SPJ

and GSPJ queries. Recall from Section 2.1 that these are of the
form πA(σP (R1 ./ · · · ./ Rq)) and GF (X)

G (σP (R1 ./ · · · ./
Rq)). Instead of presenting a single algorithm, we present algo-
rithms for various special cases that together formalize (and prove)
the informal characterization in Theorem 1. We begin by present-
ing in Section 5.1 an oblivious algorithm for binary join. In Sec-
tion 5.2 we discuss extensions to multiway joins. Section 5.3 dis-
cusses grouping and aggregation, Section 5.4 discusses selection
predicates, and Section 5.5 discusses how key-foreign key con-
straints can be exploited.

5.1 Binary Join
Recall the discussion from Section 3 (Figure 2) which presents

the high level intuition behind our binary join algorithm: Infor-
mally, to compute R(A, . . .) ./ S(A, . . .) we begin by computing

Algorithm 4 Binary Natural Join: R ./ S

1: procedure BINARYJOIN(R,S)
2: J ← Attr(R) ∩Attr(S) . join attrs
3: R̃← R.(N ← 1) . tuple multiplicity
4: R̃← R̃.(Id ← ID) . Add an id column
5: S̃ ← S.(N ← 1) . tuple multiplicity
6: S̃ ← S̃.(Id ← ID) . Add an id column

7: R̃← R̃.(NS
n← Sum(S.N)) . Compute degree

8: S̃ ← S̃.(NR
n← Sum(R.N)) . Compute degree

9: S̃ ← S̃.(JId ← IDJ)

10: Rexp ← ExpNS
(R̃)

11: Rexp ← Rexp.(JId ← IDId)

12: Sexp ← ExpNR
(S̃)

13: Output πAttr(R)∪Attr(S)(〈Rexp〉J ,JId .〈Sexp〉J ,JId)

14: end procedure

the degree of each tuple of R and S in the join graph; we use semi-
join aggregation to compute the degree. We then expandR and S to
Rexp and Sexp by duplicating each tuple ofR and S as many times
as its degree. By construction, Rexp contains the R-half of join tu-
ples and Sexp contains the S-half, and we stitch them together to
produce the final join output (see Figure 2(b)).

One remaining detail is to order Rexp and Sexp so that they can
be stitched to get the join result. Simply ordering by the join col-
umn values does not necessarily produce the correct result. We
attach a subscript to join values on the S side so that different oc-
currences of the same value get a different subscript; the three a
values now become a1, a2, a3. We expand S as before remember-
ing the subscripts, so there are two copies each of a1, a2, and a3.
We expand R slightly differently: each a tuple on R is expanded 3
times and we produce one copy of each subscript. For example, tu-
ple r1 is expanded to (r1, a1), (r1, a2) and (r1, a3). Sorting by the
subscripted values and stitching produces the correct join result.

Formal Algorithm: Algorithm 4 presents our join algorithm. Steps
7 and 8 compute the join degrees (NS andNR, resp) for eachR and
S tuple using a semi-join aggregation. Step 9 is a grouping iden-
tity operation. All S tuples agreeing on join columns J belong to
the same group, and each gets a different identifier. This step plays
the role of assigning subscripts to S tuples in Figure 2(a). Steps
10 and 12 expand R̃ and S̃ based on the join degrees. Step 11 is
another grouping identity operation. All tuples in Rexp that orig-
inated from the same R tuple belong to the same group, and each
gets a different identifier. This has the effect of expanding R tuples
with a different subscript. Step 13 stitches expansions of R and S
to get the final join output. Figure 6 illustrates Algorithm 4 for the
example shown in Figure 2. Note the correspondence between Jid
column values and subscripts in Figure 2.

THEOREM 8. Algorithm 4 obliviously computes the binary nat-
ural join of two tablesR and S in time Θ(nR lognR+nS lognS+
m logm), where nR = |R|, nS = |S|, and m = |R ./ S| using
O(log(nR + nS)) TM memory.

5.2 Multiway Join
We now consider multiway joins, i.e., natural joins between q

relations R1 ./ · · · ./ Rq . When the multiway join has a prop-
erty called acyclicity there exists an efficient oblivious algorithm
for evaluating the join.

The algorithm for evaluating a multiway join is a generalization
of the algorithm for binary join. Informally, we compute the con-
tribution of each tuple in R1, . . . , Rq towards the final join. The

33

Id A N NS

1 a 1 3

2 b 1 1

3 a 1 3

Id A N NR JId

1 a 1 2 1

2 b 1 1 1

3 a 1 2 2

4 a 1 2 3

(a): R̃ (b): S̃
Id A Jid

1 a 1

3 a 1

1 a 2

3 a 2

1 a 3

3 a 3

2 b 1

Id A Jid

1 a 1

1 a 1

3 a 2

3 a 2

4 a 3

4 a 3

2 b 1

(c): 〈Re〉A,Jid (d): 〈Se〉A,Jid

Figure 6: Intermediate tables used by Algorithm 4 for Example
of Figure 2. Only relevant columns ofRexp and Sexp are shown.

contribution generalizes the notion of a join-graph degree in the bi-
nary join case, and this quantity can be computed by performing
a sequence of semi-join aggregations between the input relations.
We expand the input relations R1, . . . , Rq to R1,exp, . . . , Rq,exp
respectively by duplicating each tuple as many times as its con-
tribution, and stitch the expanded tables to produce the final join
output. The details of ordering the expansions R1,exp, . . . , Rq,exp
are now more involved. A formal description of the overall algo-
rithm is deferred to the full-version [5]. Here we present a formal
characterization of the class of multiway join queries our algorithm
is able to handle.

DEFINITION 9. The multiway join query R1 ./ · · · ./ Rq is
called acyclic, if we can arrange the relationsR1, . . . , Rq as nodes
in a tree T such that for all i, j, k ∈ [1, q] such thatRk is along the
path from Ri to Rj in T , Attr(Ri) ∩Attr(Rj) ⊆ Attr(Rk).

THEOREM 10. There exists an oblivious algorithm to compute
the natural join query (R1 ./ · · · ./ Rq) provided the query is
acyclic. Further, the time complexity of the algorithm is Θ(n logn+
m logm) where n =

∑
i |Ri| is the input size and m = |R1 ./

· · · ./ Rq| denotes the output size, and the TM memory requirement
is O(log(n+m)).

The concept of acyclicity is well-known in database theory [34];
in fact, it represents the class of multiway join queries for which
algorithms polynomial in input and output size are known. We use
the acyclicity property to compute the contribution of each tuple
towards to the final output using a series of semi-join aggregations.
Without the acyclicity property we do not know of a way of com-
puting this quantity short of evaluating the full join.

5.3 Grouping and Aggregation
This section presents an oblivious algorithm for grouping ag-

gregation over acyclic joins. We present our algorithm for the
case of SUM; it can be easily adapted for the other standard ag-
gregation functions: MIN, MAX, AVG, and COUNT. The al-
gorithm handles only a limited form of grouping where all the
grouping attributes belong to a single relation. The query is there-
fore of the form GSUM(Ra.X)

G (R1 ./ · · · ./ Rq), where (wlog)
G ∈ Attr(R1). We believe the case where the grouping attributes
come from multiple relations is hard as we discuss in Section 6.

Algorithm 5 Grouping and Aggregation: GSUM(Ra.X)
G (R1 ./

· · · ./ Rq)
1: procedure GROUPINGAGGR((R1, . . . , Rq),G, Ra.X)
2: for i = q to 1 do
3: R̃i ← Ri
4: if #c(i) = 0 then R̃i ← R̃i.(N ← 1) . leaf table
5: else
6: for j = 1 to #c(i) do
7: R̃i ← R̃i.(Nc(i,j)

n← Sum(R̃c(i,j).N))

8: endfor
9: R̃i ← R̃i.(N ← Π

#c(i)
j=1 Nc(i,j))

10: end if
11: if Ri = Ra then
12: R̃a ← R̃a.(SX ← X ×N)
13: else if Ra ∈ Desc(Ri) then
14: `← unique ` such that Ra ∈ Desc(Rc(i,`))

15: R̃i ← R̃i.(SX
n← Sum(Rc(i,`).SX))

16: end if
17: endfor
18: R̃1 ← R̃1.(IdG ← IDG)

19: R̃1 ← R̃1.(RSX ← RSum
−IdG
G)

20: Output πG,RSX
(σIdG=1(R̃1))

21: end procedure

Notation: Since the join R1 ./ · · · ./ Rq is acyclic we can ar-
range the relations as nodes in a tree T as per Definition 9. An
algorithm for constructing such a tree is presented in [35]. For
the remainder of this section fix some tree T . Wlog, we assume
that relations R1, . . . , Rq are numbered by a pre-order traversal of
tree T so that if Ri is an ancestor of Rj then i < j. For any
relation Ri, we use #c(i) to denote the number of children and
Rc(i,1), . . . , Rc(i,#c(i)) to denote the children of Ri in T ; we de-
note the parent of Ri using Rp(i). We use Desc(Ri) and Anc(Ri)
to denote the descendants and ancestors of Ri in T ; both Anc(Ri)
and Desc(Ri) contain Ri. For any setR of relations ./ R denotes
the natural join of elements of R; e.g., ./ Desc(Ri) denotes the
join of Ri and it descendants.

Algorithm 5 presents our grouping aggregation algorithm. The
algorithm operates in 2 stages: (1) a bottom-up counting stage and
(2) a grouping stage which works over just R1.

Bottom-up Counting: In this stage, we add an attribute N to each
tuple. For a tuple t ∈ Ri, t[N] denotes the number of join tuples
t is part of in ./ Desc(Ri). For leaf relations Ri, t[N] = 1 for
all tuples t ∈ Ri. For non-leaf relations, a simple recursion can
be used to compute the value of attribute N . Consider t ∈ Ri
for some non-leaf Ri and let t[Nc(i,j)] denote the number of join
tuples t is part of in the join ./ ({Ri} ∪ Desc(Rc(i,j)) (join of
all descendants rooted in child Rc(i,j)). Then we can show using
the acyclic property of the join, t[N] = Πjt[Nc(i,j)] (Step 9). In
addition, for all relations in Anc(Ra) (Ra is the relation containing
aggregated column X), we add a partial aggregation attribute SX .
For a tuple t ∈ Ri ∈ Anc(Ra), t[SX] represents the sum of Ra.X
values in ./ Desc(Ri) considering only tuples that t is part of.

Grouping: This stage essentially performs the grouping
G

SUM(SX)
G (R1). We attach a unique id IdG to each tuple within a

group defined by G (Step 18). We then compute the running sum
of SX within each group defined by G; we compute the running
sum in descending order of IdG so that the total sum for a group
is stored with the record with IdG = 1. We get the final output by
(obliviously) selecting the records with IdG and performing suit-
able projections (Step 20).

34

THEOREM 11. Algorithm 5 obliviously computes the grouping
aggregation GSUM(Ra.X)

G (R1 ./ · · · ./ Rq), G ∈ Attr(R1),
where (R1 ./ · · · ./ Rq) is acyclic, in time Θ(n logn) and us-
ing O(logn) TM memory, where n =

∑
i |Ri| denotes the total

size of the input relations.

5.4 Selections
This section discusses how selections in SPJ and GSPJ queries

can be handled. We assume a selection predicate P is a conjunc-
tion of table-level predicates, i.e., of the form (PRi1 ∧PRi2 ∧ · · ·)
where each PRij : D(Rij) → {true, false} is a binary pred-
icate over tuples of Rij . To handle selections in a GSPJ query
G
F (A)
G (σP (R1 ./ · · · ./ Rq)), we modify the bottom-up counting

stage of Algorithm 5 as follows: when processing any relation Ri
with a table-level predicate PRi that is part of P , we set the value of
attribute N to 0 for all tuples ti ∈ Ri for which PRi(ti) = false;
for all other tuples the value of attribute N is calculated as before.
We can show that the resulting algorithm correctly and obliviously
evaluates the query GF (A)

G (σP (R1 ./ · · · ./ Rq)). A similar
modification works for the SPJ query σP (R1 ./ · · · ./ Rq) and is
described in the full version of the paper [5].

5.5 Exploiting Foreign Key Constraints
We informally discuss how we can exploit key-foreign key con-

straints; We note that keys and foreign keys are part of database
schema (metadata), and we view them as public knowledge (see
discussion in Appendix A). Consider a query Q involving a mul-
tiway join R1 ./ · · · ./ Rq (with or without grouping) and let Ri
(key side) and Rj (foreign key side) denote two relations involved
in a key-foreign key join. We explicitly evaluate Rij ← Ri ./ Rj
using the oblivious binary join algorithm and replace references to
Ri andRj inQwithRij . From key-foreign key property, it follows
that |Rij | = |Rj |, so this step by itself does not render the query
processing non-oblivious. We treat any foreign key references to
Rj as references to Rij . We continue to this process of identifying
key-foreign key joins and evaluating them separately until no more
such joins exist. At this point, we revert to the general algorithms
presented in Sections 5.2-5.4 to process the remainder of the query.

THEOREM 12. There exists an oblivious (secure) query pro-
cessing algorithm that requiresO(logn) storage in TM for any SPJ
or GSPJ query involving joins, grouping aggregation (as the outer-
most operation), and filters, if (1) the non-foreign key join graph is
acyclic and (2) all grouping attributes are connected through for-
eign key joins, where n denotes the sum of query input and output
sizes. Further, assuming no auxiliary structures, the running time
of the algorithm is within O(logn) (multiplicative factor) of the
running time of the best insecure algorithm.

PROOF. (Sketch) From Theorems 8-11 and the informal descrip-
tions in Section 5.4 and 5.5, it follows that there exist oblivious
query processing algorithms for above class of queries that run in
O(n logn) time and require O(logn) TM memory. Further, any
algorithm requires Ω(n) time without auxiliary structures.

THEOREM 13. For the class of queries in Theorem 12 there
exists an oblivious (secure) algorithm with I/O complexity within
multiplicative factor logM/B(n/B) of that of the optimal insecure
algorithm, where B is the block size and M is the TM memory.

PROOF. (Sketch) All of our algorithms are simple scans except
for the steps that perform oblivious sorting. The I/O complexity of
oblivious sorting is O(n

B
logM/B(n

B
)) [13] from which the theo-

rem follows.

6. HARDNESS ARGUMENTS
Section 5 presented efficient oblivious algorithms for evaluat-

ing (G)SPJ queries when the underlying join was acyclic and all
grouping columns belonged to a single relation. All of our algo-
rithms have time complexityO((n+m) log(n+m)) where n and
m and input and output sizes, respectively. Any algorithm requires
Ω(n+m) time without pre-processing, so our algorithms are within
a log(n + m) factor away from an instance optimal algorithm. In
the following, we call such oblivious algorithms instance efficient.
While we do not have formal proofs, we present some evidence
that suggests that instance efficient oblivious algorithms for cyclic
joins and for the case where grouping columns come from different
tables seem unlikely to exist.

At a high level, our arguments rely on the following intuition: if
a query Q does not have a near-linear algorithm (with time com-
plexity (n + m)polylog(n + m)) in the worst case it is unlikely
to have an oblivious algorithm since its behavior on an easy in-
stance would be different from that on a worst case instance. There
are some difficulties directly formalizing this intuition since some
of the computation occurs within TM potentially without an exter-
nally visible data access.

Recent work has identified the following 3SUM problem as a
simple and useful problem for polynomial time lower-bound re-
ductions [26]: Given an input set of n numbers identify x, y, z ∈ S
such that x + y = z. There exists a simple O(n2) algorithm for
3SUM: Store the n numbers in S in a hashtable H. Consider all
pairs of numbers x, y ∈ S and check if x + y ∈ H. It is widely
believed that this algorithm is the best possible and [26] uses this
3SUM-hardness conjecture to establish lower bounds for a variety
of combinatorial problems.

We introduce the following simple variant of 3SUM-hardness
that captures the additional complexity of TM computations. In
this variant, an algorithm has access to a cache of size nδ (δ < 1)
words. Access to the cache is free while accesses to non-cache
memory have a unit (time) cost. We conjecture that having access
to a free cache does not bring down the asymptotic complexity of
3SUM. For example, in the hashtable based solution above, only a
small part of the input (at most nδ) can be stored in the cache and
most of the hashtable lookups (n − nδ) incur a non-cache access
cost.

CONJECTURE 14. (3SUM-Cache(δ)-hardness) Any algorithm
for 3SUM with input size n having access to a free cache of size
nδ requires Ω(n2−o(1)) time in expectation.

Assuming this conjecture is true, the algorithms of Section 5 al-
most represent a characterization of the class of single-block queries
that have an instance efficient oblivious algorithm.

THEOREM 15. There does not exist an instance efficient obliv-
ious algorithm with a TM with memory nδ for cyclic joins un-
less there exists a subquadratic O(n2−Ω(1)) algorithm for 3SUM-
Cache(δ), where n denotes the sum of input and output sizes of the
join.

PROOF. Enumerating m triangles in a graph with m edges in
time O(m4/3−ε) is 3SUM-hard [26] (Theorem 5). Enumerating
triangles can be expressed as a cyclic join query over the edge re-
lation. It follows that evaluating a cyclic join query in O(n4/3−ε)
is 3SUM-hard. The free cache does not affect this reduction from
3SUM to cyclic join evaluation, so evaluating a cyclic join query
using a TM with cache nδ with O(n4/3−ε) UM memory accesses
is 3SUM-Cache(δ)-hard. We can construct easy instances for all
sufficiently large n that only require O(n) processing time. It fol-
lows that there does not exist an instance efficient oblivious algo-
rithm for cyclic joins.

35

The set intersection enumeration problem is the following: given
k sets S1, . . . , Sk, Si ⊆ U drawn from some universe U , identify
all pairs (i, j) such that Si∩Sj 6= φ. A simple algorithm is to build
an inverted index that stores for each element e ∈ S1 ∪ . . . ∪ Sk
the list of integers j such that e ∈ Sj . We consider all pairs of
integers within each list and output the pair if we have not already
done so. This simple algorithm is quadratic in the input and output
sizes in the worst case. The set intersection enumeration problem is
fairly well-studied and is at the core of most high-dimensional [15]
and approximate string matching [3] but no asymptotically better
algorithm is known. There is a simple reduction from set intersec-
tion enumeration to evaluating grouping queries where grouping
attributes come from multiple relations.

THEOREM 16. If there exists a O((n + m)polylog(n + m))
time algorithm for evaluatingGA,B(R(A, Id) ./ S(B, Id)) where
n and m are input and output sizes of the query, then there exists
anO((n+m)polylog(n+m)) time algorithm for set intersection
enumeration.

PROOF. We encode the input to set intersection enumeration as
two relationsR(A, Id) and S(B, Id). The domain ofA andB is U
the universe of elements. For each e ∈ Si we include a tuple (e, i)
in both R and S. (R and S are therefore identical.) The theorem
follows from the observation that the desired output of set intersec-
tion enumeration is preciselyGA,B(R(A, Id) ./ S(B, Id)).

Theorem 16 along with the fact that we can construct an input
instance for the query GA,B(R(A, Id) ./ S(B, Id)) which can
be evaluated in O((n + m)polylog(n + m)) time suggests that
an oblivious algorithm for this query is likely to imply a (signifi-
cantly) better algorithm for set intersection enumeration than cur-
rently known.

7. RELATED WORK
While we focused mostly on systems that use trusted hardware

for querying encrypted data, there exist other approaches. One such
approach relies on homomorphic encryption that allows computa-
tion directly over encrypted data; e.g., the Paillier cryptosystem
[25] allows us to compute the encryption of (v1 + v2) given the
encryptions of v1 and v2 without requiring the (private) encryp-
tion key, and can be used to process SUM aggregation queries [9].
However, despite recent advances, practical homomorphic encryp-
tion schemes are currently known only for limited classes of com-
putation. There exist simple queries that the state-of-the-art sys-
tems [27] that rely solely on homomorphic encryption cannot pro-
cess. A second approach is to use the client as the trusted location
inaccessible to the adversary [14, 32]. One drawback of using the
client is that some queries might necessitate moving large amounts
of data to the client for query processing and defeat the very pur-
pose of using a cloud service. We can reduce some of the above
drawbacks by combining homomorphic encryption with the client
processing approach [32], but, given the current state-of-the-art of
homomorphic encryption, a comprehensive and robust solution to
querying encrypted data seems to require the trusted hardware ar-
chitecture we have assumed in this paper.

8. ACKNOWLEDGMENTS
Discussions with the Cipherbase team greatly helped us at all

stages of this work. We thank Chris Re, Atri Rudra, and Hung Ngo
for pointing us to hardness of enumerating triangles result from
[26], and Bryan Parno and Paraschos Koutris for valuable feedback
on initial drafts. We also thank Dan Suciu and anonymous review-
ers for helping better position our work against ORAM simulation.

9. REFERENCES
[1] Daniel J. Abadi, Peter A. Boncz, and Stavros Harizopoulos.

Column oriented database systems. PVLDB,
2(2):1664–1665, 2009.

[2] Amazon Corporation. Amazon Relational Database Service.
http://aws.amazon.com/rds/.

[3] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In VLDB, pages 918–929, 2006.

[4] Arvind Arasu, Spyros Blanas, Ken Eguro, et al. Orthogonal
security with cipherbase. In CIDR, 2013.

[5] Arvind Arasu and Raghav Kaushik. Oblivious query
processing. CoRR, abs/1312.4012, 2013.

[6] S. Bajaj and R. Sion. TrustedDB: a trusted hardware based
database with privacy and data confidentiality. In SIGMOD
Conference, pages 205–216, 2011.

[7] Cipherbase project. http://research.microsoft.
com/en-us/projects/dbencryption/.

[8] Carlo Curino, Evan P. C. Jones, Raluca A. Popa, et al.
Relational cloud: a database service for the cloud. In CIDR,
pages 235–240, 2011.

[9] Tingjian Ge and Stanley B. Zdonik. Answering aggregation
queries in a secure system model. In VLDB, pages 519–530,
2007.

[10] Oded Goldreich and Rafail Ostrovsky. Software protection
and simulation on oblivious rams. J. ACM, 43(3):431–473,
1996.

[11] M. T. Goodrich. Randomized shellsort: A simple
data-oblivious sorting algorithm. J. ACM, 58(6):27, 2011.

[12] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, et al.
Practical oblivious storage. In CODASPY, pages 13–24,
2012.

[13] Michael T. Goodrich. Data-oblivious external-memory
algorithms for the compaction, selection, and sorting of
outsourced data. In SPAA, pages 379–388, 2011.

[14] H. Hacigümüs, B. R. Iyer, C. Li, et al. Executing sql over
encrypted data in the database-service-provider model. In
SIGMOD Conference, 2002.

[15] Taher H. Haveliwala, Aristides Gionis, and Piotr Indyk.
Scalable techniques for clustering the web. In WebDB
(Informal Proceedings), pages 129–134, 2000.

[16] IBM Corporation. IBM Systems cryptographic hardware
products. http:
//www-03.ibm.com/security/cryptocards/.

[17] Eddie Kohler. Hot crap! In WOWCS, 2008.
[18] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the

(in)security of hash-based oblivious RAM and a new
balancing scheme. In SODA, pages 143–156, 2012.

[19] Yaping Li and Minghua Chen. Privacy preserving joins. In
ICDE, pages 1352–1354, 2008.

[20] Martin Maas, Eric Love, Emil Stefanov, et al. PHANTOM:
Practical oblivious computation in a secure processor. In
CCS, 2013.

[21] Microsoft Corporation. SQL Azure.
http://www.windowsazure.com/en-us/home/features/sql-
azure/.

[22] Microsoft Corporation. SQL Server Encryption.
http://technet.microsoft.com/en-us/
library/bb510663.aspx.

[23] Oracle Corporation. Transparent Data Encryption.
http://www.oracle.com/technetwork/database/

options/advanced-security/index-099011.html.

36

[24] Anna Pagh and Rasmus Pagh. Scalable computation of
acyclic joins. In PODS, pages 225–232, 2006.

[25] Pascal Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In EUROCRYPT, pages 223–238,
1999.

[26] Mihai Patrascu. Towards polynomial lower bounds for
dynamic problems. In STOC, pages 603–610, 2010.

[27] R. A. Popa, C. M. S. Redfield, N. Zeldovich, et al. Cryptdb:
protecting confidentiality with encrypted query processing.
In SOSP, pages 85–100, 2011.

[28] An SME perspective on cloud computing (survey). European
Network and Information Security Agency (ENISA), 2009.

[29] Emil Stefanov, Marten Van Dijk, Elaine Shi, et al. Path
ORAM: An extremely simple oblivous RAM protocol. In
CCS, 2013.

[30] Germany tackles tax evasion. Wall Street Journal, Feb 7
2010.

[31] The TPC-H Benchmark. http://www.tpc.org.
[32] Stephen Tu, M. Frans Kaashoek, Samuel Madden, et al.

Processing analytical queries over encrypted data. In VLDB,
2013.

[33] P. Williams and R. Sion. Usable pir. In NDSS, 2008.
[34] Mihalis Yannakakis. Algorithms for acyclic database

schemes. In VLDB, pages 82–94, 1981.
[35] C. T. Yu and M. Z. Ozsoyoglu. An algorithm for tree-query

membership of a distributed query. In Comp. Soft. and
Appln. Conf, pages 306–312, 1979.

APPENDIX
A. QUERY AND METADATA SECURITY

Ideally a secure query processing system hides both database
contents and queries being evaluated against the database. Given
how databases are typically used, we believe it is important to
study the security of database contents even if the adversary has full
knowledge of the query. Databases are typically accessed using a
front end application, and the entropy of the queries run over the
database is typically small given knowledge of the application. As
a concrete example, consider a paper review system like EasyChair,
which is a web application that presumably stores and queries pa-
pers and review information using a backend database. The web
application might itself be well known (or open source [17]), so the
kinds of queries issued to the database is public knowledge.

That said, the following question remains: To what extent should
a secure query processing system hide queries? What should an ad-
versary without knowledge of the query be able to learn? We argue
that perfect query security—being able to mask whether a query
is a single table filter or a 50-table join—is impractical given the
richness of database query languages. Going the extra mile to hide
queries is also wasteful if we assume knowledge of the application
is easy to acquire as in the discussion of the paper review system
above.

What an application (source code) does not usually specify is
actual query constants which might be generated, e.g., by users
filling in forms or from values in the database and it might be valu-
able (and as it turns out, easy) to secure these. Accordingly, in this
paper we equate query security with query constants security: an
adversary might learn by observing a query execution, that e.g., the
query is a 2-way join with a filter on the first table, but she does not
learn the filter predicate constants. We note that this is either ex-
plicitly [14, 27, 32] or implicitly [4, 6] the notion of query security
used in prior work.

A related issue is metadata security. Metadata refers to informa-
tion such as number of tables and the schema (column names and
types) of each table. While column and table names can be easily
anonymized, for the same reasons mentioned in query security, for-
mally securing metadata is both difficult and not very useful if the
adversary has knowledge of the application.

37

