
Basic Model Theory of XPath on Data Trees∗

Diego Figueira
University of Edinburgh

UK

Santiago Figueira
Universidad de Buenos Aires

and CONICET
Argentina

Carlos Areces
Universidad Nacional de Córdoba

and CONICET
Argentina

ABSTRACT
We investigate model theoretic properties of XPath with
data (in)equality tests over the class of data trees, i.e., the
class of trees where each node contains a label from a finite
alphabet and a data value from an infinite domain.

We provide notions of (bi)simulations for XPath logics
containing the child, descendant, parent and ancestor

axes to navigate the tree. We show that these notions pre-
cisely characterize the equivalence relation associated with
each logic. We study formula complexity measures consist-
ing of the number of nested axes and nested subformulas in
a formula; these notions are akin to the notion of quantifier
rank in first-order logic. We show characterization results
for fine grained notions of equivalence and (bi)simulation
that take into account these complexity measures. We also
prove that positive fragments of these logics correspond to
the formulas preserved under (non-symmetric) simulations.
We show that the logic including the child axis is equivalent
to the fragment of first-order logic invariant under the cor-
responding notion of bisimulation. If upward navigation is
allowed the characterization fails but a weaker result can still
be established. These results hold over the class of possibly
infinite data trees and over the class of finite data trees.

Besides their intrinsic theoretical value, we argue that bi-
simulations are useful tools to prove (non)expressivity re-
sults for the logics studied here, and we substantiate this
claim with examples.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic]: Model theory; H.2.3 [Lan-
guages]: Query Languages; I.7.2 [Document Prepara-
tion]: Markup Languages

∗This work was partially supported by grant ANPCyT-
PICT-2010-688, ANPCyT-PICT-2011-0365, UBACyT
20020110100025 and the FP7-PEOPLE-2011-IRSES
Project “Mobility between Europe and Argentina apply-
ing Logics to Systems” (MEALS) and the Laboratoire
International Associé “INFINIS”.

(c) 2014, Copyright is with the authors. Published in Proc. 17th Interna-
tional Conference on Database Theory (ICDT), March 24-28, 2014, Athens,
Greece: ISBN 978-3-89318066-1, on OpenProceedings.org. Distribution
of this paper is permitted under the terms of the Creative Commons license
CC-by-nc-nd 4.0.

General Terms
Theory, Languages

1. INTRODUCTION
We study the expressive power and model theory of XPath—

arguably the most widely used XML query language. In-
deed, XPath is implemented in XSLT and XQuery and it is
used as a constituent part of many specification and update
languages. XPath is, fundamentally, a general purpose lan-
guage for addressing, searching, and matching pieces of an
XML document. It is an open standard and constitutes a
World Wide Web Consortium (W3C) Recommendation [6].

Core-XPath (term coined in [13]) is the fragment of XPath
1.0 containing the navigational behavior of XPath. It can
express properties of the underlying tree structure of the
XML document, such as the label (tag name) of a node, but
it cannot express conditions on the actual data contained
in the attributes. In other words, it only allows to reason
about trees over a finite alphabet. Core-XPath has been
well studied and its satisfiability problem is known to be
decidable even in the presence of DTDs [17, 1]. Moreover,
it is known that it is equivalent to FO2 (first-order logic
with two variables over an appropriate signature on trees)
in terms of expressive power [18], and that it is strictly less
expressive than PDL with converse over trees [2]. From a
database perspective, however, Core-XPath fails to include
the single most important construct in a query language:
the join. Without the ability to relate nodes based on the
actual data values of the attributes, the logic’s expressive
power is inappropriate for many applications.

The extension of Core-XPath with (in)equality tests be-
tween attributes of elements in an XML document is named
Core-Data-XPath in [4]. Here, we will call this logic XPath=.
Models of XPath= are data trees which can be seen as XML
documents. A data tree is a tree whose nodes contains a la-
bel from a finite alphabet and a data value from an infinite
domain (see Figure 1 for an example). We will relax the
condition on finiteness and consider also infinite data trees,
although all our results hold also on finite structures.

The main characteristic of XPath= is to allow formulas
of the form 〈α = β〉, where α, β are path expressions, that
navigate the tree using axes: descendant, child, ances-

tor, next-sibling, etc. and can make tests in intermediate
nodes. The formula is true at a node x of a data tree if there
are nodes y, z that can be reached by the relations denoted
by α, β, respectively, and such that the data value of y is
equal to the data value of z.

Recent articles investigate several algorithmic problems

50 10.5441/002/icdt.2014.09

of logics evaluated over data trees. For example, satisfiabil-
ity and evaluation are discussed in [8, 5]. In particular, all
the logics studied in this article have a decidable satisfiabil-
ity problem [10, 9]; but tools to investigate their expressive
power are still lacking. There are good reasons for this: in
the presence of joins and data values, classical notions such
as Ehrenfeucht-Fräıssé games or structural bisimulations are
difficult to handle. In this article we take the first steps to-
wards understanding the expressive power and model theory
of XPath= on data trees.

Contribution: XPath= can navigate the data tree by means
of its axes: child (that we will note ↓), descendant (↓∗),
parent (↑), ancestor (↑∗), etc. XPath= can also navigate
the data tree horizontally, by going to a next or previous
sibling of the current node. However, we focus on the ver-
tical axes that allow downward and upward exploration. In
particular, we will discuss the following languages: XPath↓=
(XPath= with ↓); XPathl= (XPath= with ↓ and ↑); XPath↓↓∗=

(XPath= with ↓ and ↓∗); XPathll
∗

= (XPath= with ↓, ↑, ↓∗
and ↑∗); and its positive fragments. Our main contributions
can be summarized as follows:

• In §3 and §5 we introduce bisimulation notions for XPath↓=,
XPath↓↓∗= , XPathl=, and XPathll

∗
= and show that they pre-

cisely characterize the logical equivalence relation of the re-
spective logic. We also consider fine grained versions of
these bisimulations that take into account the number of
nested axes and subformulas. The notion of bisimulation
for XPathl= relies on a strong normal form which we also
introduce.

• In §4 we show that the simulations associated to the de-
fined bisimulations characterize the positive fragments of the
logics: a formula is equivalent to a positive formula if and
only if it is invariant under simulations.

• In §6 we characterize XPath↓= as the fragment of first-
order logic over data trees (over a signature that includes
the child relation and an equivalence relation) that is in-

variant under bisimulations. If we consider XPathl= instead
the characterization fails, but a weaker result can still be
established.

•Using bisimulations we show (non)expressivity results about
XPath= in §7. We characterize, for example, in which cases
increasing the nesting depth increases the expressive power
of XPath↓=.

• All results are proved both over the class of arbitrary (pos-
sibly infinite) data trees, and over the class of finite data
trees.

Related work: The notion of bisimulation was introduced
independently by Van Benthem [26] in the context of modal
correspondence theory, Milner [19] and Park [23] in concur-
rency theory, and Forti and Honsell [11] in non-wellfounded
set theory (see [25] for a historical outlook). This classical
work defines a standard notion of bisimulation but this no-
tion has to be suitably adapted for a particular, given logic.
The notion of bisimulation for a given logic L defines when
two models are indistinguishable for L, that is, when there
is no formula of L that is true in one model but false in the
other. Bisimulations can also be used to obtain model the-
oretic characterizations that identifies the expressive power
of a logic L1 in terms of the bisimulation invariant fragment
of a logic L2 which, hopefully, is better understood. The
challenge, here, is to pinpoint both the appropriate notion

x

y

z

a, 2

a, 2 b, 2

b, 9 b, 5 b, 3

a, 2 b, 1 b, 2

Figure 1: A data tree of Trees(A×D) with A = {a, b}
and D = N.

of bisimulation required and the adequate ‘framework’ logic
L2. The classical example of a result of this kind is Van
Benthem’s characterization for the basic modal logic as the
bisimulation (with the standard notion of bisimulation) in-
variant fragment of first-order logic [26]. Van Benthem’s
original result over arbitrary structures was proved to hold
for finite structures by Rosen [24]. The proof was then sim-
plified and unified by Otto [20, 22], and later expanded by
Dawar and Otto [7] to other classes of structures.

Logics for semi-structured databases can often be seen as
modal logics. In fact, structural characterizations for XPath
without equality test were studied in [14], and XPath is
known to be captured by PDL [15], whose bisimulation is
well-understood [3]. It is then natural to look for an intu-
itive bisimulation definition for XPath=.

2. PRELIMINARIES

2.1 Notation
Let N = {1, 2, 3, . . . } and let [n] := {1, . . . , n} for n ∈ N.

We use the symbol A to denote a finite alphabet, and D
to denote an infinite domain (e.g., N) of data values. In
our examples we will consider D = N. We write X∼Y to
say that X is the result of replacing every data value d ∈ D
from Y by f(d) where f : D→ D is some arbitrary bijection,
for any objects X, Y . We write λ for the empty string.

2.2 Data trees
Let Trees(A) be the set of ordered and unranked trees over

an arbitrary alphabet A. We say that T is a data tree if it
is a tree from Trees(A×D) where A is a finite set of labels
and D is an infinite set of data values. Figure 1 shows
an example of a (finite) data tree. A data tree is finitely
branching if every node has finitely many children. For
any given data tree T , we denote by T its set of nodes. We
use letters x, y, z, v, w as variables for nodes. Given a node
x ∈ T of T , we write label(x) ∈ A to denote the node’s label,
and data(x) ∈ D to denote the node’s data value.

Given two nodes x, y ∈ T we write x→y if y is a child of
x, and x

n→y if y is a descendant of x at distance n. In par-

ticular,
1→ is the same as →, and

0→ is the identity relation.
(x

n→) denotes the set of all descendants of x at distance n,

and (
n→y) denotes the sole ancestor of y at distance n (as-

suming it has one).
For any binary relation R over elements of data trees, we

say that a property P is R-invariant whenever the following
condition holds: for every data tree T and u ∈ T , if (T , u)
satisfies P and (T , u) is R-related to (T ′, u′) then (T ′, u′)
satisfies P .

2.3 XPath

51

[[↓]]T = {(x, y) | x→y}

[[↑]]T = {(x, y) | y→x}

[[ε]]T = {(x, x) | x ∈ T}

[[[ϕ]]]T = {(x, x) | x ∈ [[ϕ]]T }

[[¬ϕ]]T = T \ [[ϕ]]T

[[α ∪ β]]T = [[α]]T ∪ [[β]]T

[[ϕ ∧ ψ]]T = [[ϕ]]T ∩ [[ψ]]T

[[↓∗]]T = reflexive transitive closure of [[↓]]T

[[↑∗]]T = reflexive transitive closure of [[↑]]T

[[a]]T = {x ∈ T | label(x) = a}

[[αβ]]T = {(x, z) | (∃y ∈ T) (x, y) ∈ [[α]]T , (y, z) ∈ [[β]]T }

[[〈α〉]]T = {x ∈ T | (∃y ∈ T) (x, y) ∈ [[α]]T }

[[〈α = β〉]]T = {x ∈ T | (∃y,z ∈ T)(x, y) ∈ [[α]]T , (x, z) ∈ [[β]]T , data(y) = data(z)}

[[〈α 6= β〉]]T = {x ∈ T | (∃y,z ∈ T)(x, y) ∈ [[α]]T , (x, z) ∈ [[β]]T , data(y) 6= data(z)}

Table 1: Semantics of XPath= for a data tree T .

We introduce the query language XPath adapted to data
trees as abstractions of XML documents. We work with
a simplification of XPath, stripped of its syntactic sugar.
We consider fragments of XPath that correspond to the
navigational part of XPath 1.0 with data equality and in-
equality. XPath= is a two-sorted language, with path ex-
pressions (that we write α, β, γ) and node expressions
(that we write ϕ,ψ, η). The fragment XPath=(O), with
O ⊆ {↓, ↓∗, ↑, ↑∗}, is defined by mutual recursion as follows:

α, β ::= o | [ϕ] | αβ | α ∪ β o ∈ O ∪ {ε}
ϕ,ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 |

〈α = β〉 | 〈α 6= β〉 a ∈ A

A formula of XPath=(O) is either a node expression or a
path expression. To save space, we use XPath↓= for XPath=(↓);
XPathl= for XPath=(↓, ↑); XPath↓↓∗= for XPath=(↓, ↓∗); and

XPathll
∗

= for XPath=(↓, ↑, ↓∗, ↑∗).
We formally define the semantics of XPath= in Table 1.

As an example, if T is the data tree shown in Figure 1,
then [[〈↓∗[b ∧ 〈↓[b] 6= ↓[b]〉]〉]]T = {x, y, z}, where the for-
mula reads: “there is a descendant node labeled b, with two
children labeled b with different data values.” For a data
tree T and u ∈ T , we write T , u |= ϕ to denote u ∈ [[ϕ]]T ,
and we say that T , u satisfies ϕ. We say that the formu-
las ϕ,ψ of XPath= are equivalent (notation: ϕ ≡ ψ) iff
[[ϕ]]T = [[ψ]]T for all data trees T . Similarly, path expres-
sions α, β of XPath= are equivalent (notation: α ≡ β) iff
[[α]]T = [[β]]T for all data trees T .

We call downward XPath to XPath↓= and vertical XPath
to XPathl=.

In terms of expressive power, it is easy to see that ∪ is
unessential: every XPath= node expression ϕ has an equiv-
alent ϕ′ with no ∪ in its path expressions. ϕ′ can be com-
puted in exponential time without incrementing the number
of nested axes or the number of nested subformulas. It is
enough to use the following equivalences to eliminate occur-
rences of ∪

〈α� β〉 ≡ 〈β � α〉
〈β(α ∪ α′)β′〉 ≡ 〈βαβ′〉 ∨ 〈βα′β′〉

〈γ � β(α ∪ α′)β′〉 ≡ 〈γ � βαβ′〉 ∨ 〈γ � βα′β′〉

where � ∈ {=, 6=}. We will henceforth assume that formulas
do not contain union of path expressions.

3. BISIMULATION

3.1 Downward XPath

We write dd(ϕ) to denote the downward depth of ϕ,
defined in Table 2. Let `-XPath↓= be the fragment of XPath↓=
consisting of all formulas ϕ with dd(ϕ) ≤ `.

Let T and T ′ be data trees, and let u ∈ T , u′ ∈ T ′.
We say that T , u and T ′, u′ are equivalent for XPath↓=
(notation: T , u ≡↓ T ′, u′) iff for all formulas ϕ ∈ XPath↓=,
we have T , u |= ϕ iff T ′, u′ |= ϕ. We say that T , u and T ′, u′

are `-equivalent for XPath↓= (notation: T , u ≡↓` T
′, u′)

iff for all ϕ ∈ `-XPath↓=, we have T , u |= ϕ iff T ′, u′ |= ϕ.
For every `, there are finitely many different formulas ϕ

of dd(ϕ) ≤ ` up to logical equivalence.

Proposition 3.1. ≡↓` has finite index.

Corollary 3.2. {T ′, u′ | T , u ≡↓` T
′, u′} is definable by

an `-XPath↓=-formula χ`,T ,u.

3.1.1 Bisimulation and `-bisimulation
Let T and T ′ be two data-trees. We say that u ∈ T

and u′ ∈ T ′ are bisimilar for XPath↓= (notation: T , u↔↓
T ′, u′) iff there is a relation Z ⊆ T ×T ′ such that uZu′ and
for all x ∈ T and x′ ∈ T ′ we have

• Harmony: If xZx′ then label(x) = label(x′).

• Zig (Figure 2): If xZx′, x
n→v and x

m→w then there

are v′, w′ ∈ T ′ such that x′
n→v′, x′m→w′ and

1. data(v) = data(w)⇔ data(v′) = data(w′),

2. (
i→v)Z (

i→v′) for all 0 ≤ i < n, and

3. (
i→w)Z (

i→w′) for all 0 ≤ i < m.

• Zag: If xZx′, x′
n→v′ and x′

m→w′ then there are v, w ∈
T such that x

n→v, x
m→w and items 1, 2 and 3 above

are verified.

For a data tree T and u ∈ T , let T |u denote the subtree

of T induced by {v ∈ T | (∃n) u
n→v}. Observe that the

root of T |u is u. The following results are straightforward
consequences of the definition of bisimulation:

Proposition 3.3. T , u↔↓ (T |u), u.

Proposition 3.4. If T is a subtree of T ′ and u ∈ T then
T , u↔↓ T ′, u.

We say that u ∈ T and u′ ∈ T ′ are `-bisimilar for
XPath↓= (notation: T , u↔↓` T

′, u′) if there is a family of
relations (Zj)j≤` in T ×T ′ such that uZ`u

′ and for all j ≤ `,
x ∈ T and x′ ∈ T ′ we have

52

dd(a) = 0

dd(ϕ ∧ ψ) = max{dd(ϕ), dd(ψ)}
dd(¬ϕ) = dd(ϕ)

dd(〈α〉) = dd(α)

dd(〈α� β〉) = max{dd(α),dd(β)}
dd(λ) = 0

dd(εα) = dd(α)

dd([ϕ]α) = max{dd(ϕ), dd(α)}
dd(↓α) = 1 + dd(α)

Downward depth

vd(a) = (0, 0)

vd(ϕ ∧ ψ) = max{vd(ϕ), vd(ψ)}
vd(¬ϕ) = vd(ϕ)

vd(〈α〉) = vd(α)

vd(〈α� β〉) = max{vd(α), vd(β)}
vd(λ) = (0, 0)

vd(εα) = vd(α)

vd([ϕ]α) = max{vd(ϕ), vd(α)}
vd(↓α) = max{(0, 0), vd(α) + (1,−1)}
vd(↑α) = max{(0, 0), vd(α) + (−1, 1)}

Vertical depth

nd(a) = 0

nd(ϕ ∧ ψ) = max{nd(ϕ), nd(ψ)}
nd(¬ϕ) = nd(ϕ)

nd(〈α〉) = nd(α)

nd(〈α� β〉) = max{nd(α),nd(β)}
nd(αβ) = max{nd(α),nd(β)}

nd(ε) = 0

nd([ϕ]) = 1 + nd(ϕ)

nd(↓) = 0

nd(↑) = 0

Nesting depth

Table 2: Definitions of downward depth, vertical depth and nesting depth. (a ∈ A, � ∈ {=, 6=}, ‘+’ and ‘max’ are
performed component-wise, α is any path expression or the empty string λ.)

=
(6=

)

8v 9v0

8w 9w0

T T 0

n

m

x x0

Z

=
(6=

)

Figure 2: Zig clause of bisimulation for XPath↓=.

• Harmony: If xZjx
′ then label(x) = label(x′).

• Zig: If xZjx
′, x

n→v and x
m→w with n,m ≤ j then

there are v′, w′ ∈ T ′ such that x′
n→v′, x′m→w′ and

1. data(v) = data(w)⇔ data(v′) = data(w′),

2. (
i→v)Zj−n+i (

i→v′) for all 0 ≤ i < n, and

3. (
i→w)Zj−m+i (

i→w′) for all 0 ≤ i < m.

• Zag: If xZjx
′, x′

n→v′ and x′
m→w′ with n,m ≤ j then

there are v, w ∈ T such that x
n→v, x

m→w and items 1,
2 and 3 above are verified.

Clearly if T , u↔↓ T ′, u′ then T , u↔↓` T
′, u′ for all `. For

a data tree T and u ∈ T , let T |`u denote the subtree of T
induced by {v ∈ T | (∃n ≤ `) u n→v}.

3.1.2 Equivalence and bisimulation
We now show that↔↓ coincides with≡↓ on finitely branch-

ing data trees, and that↔↓` coincides with ≡↓` .

Theorem 3.5.

1. T , u↔↓ T ′, u′ implies T , u ≡↓ T ′, u′. The converse also
holds when T and T ′ are finitely branching.

2. T , u↔↓` T
′, u′ iff T , u ≡↓` T

′, u′.

The Theorem above is a consequence of the next two propo-
sitions:

Proposition 3.6. T , u↔↓` T
′, u′ implies T , u ≡↓` T

′, u′.

Proof. We actually show that if T , u↔↓` T
′, u′ via (Zi)i≤`

then for all 0 ≤ n ≤ j ≤ `, for all ϕ with dd(ϕ) ≤ j, and for
all α with dd(α) ≤ j:

1. If xZjx
′ then T , x |= ϕ iff T ′, x′ |= ϕ;

2. If x
n→v, x′

n→v′ and (
i→v)Z(j−n)+i (

i→v′) for all 0 ≤
i ≤ n, then (x, v) ∈ [[α]]T iff (x′, v′) ∈ [[α]]T

′
.

We show 1 and 2 by induction on |ϕ|+ |α|.
Let us see item 1. The base case is ϕ = a for some a ∈ A.

By Harmony, label(x) = label(x′) and then T , x |= ϕ iff
T ′, x′ |= ϕ. The Boolean cases for ϕ are straightforward.

Suppose ϕ = 〈α = β〉. We show T , x |= ϕ ⇒ T ′, x′ |=
ϕ, so assume T , x |= ϕ. Suppose there are v, w ∈ T and

n,m ≤ j such that x
n→v, x

m→w, (x, v) ∈ [[α]]T , (x,w) ∈ [[β]]T

and data(v) = data(w). By Zig, there are v′, w′ ∈ T ′ such

that x′
n→v′, x′m→w′, (

i→v)Zj−n+i (
i→v′) for all 0 ≤ i ≤ n,

(
i→w)Zj−m+i (

i→w′) for all 0 ≤ i ≤ m, and data(v′) =

data(w′). By inductive hypothesis 2 (twice), (x′, v′) ∈ [[α]]T
′

and (x′, w′) ∈ [[β]]T
′
. Hence T ′, x′ |= ϕ. The implication

T ′, x′ |= ϕ⇒ T , x |= ϕ is analogous. The case ϕ = 〈α 6= β〉
is shown similarly. The case ϕ = 〈α〉 is similar (and simpler)
to the previous case.

Let us now analyze item 2. We only show the ‘only if’
direction. The base case is when α ∈ {ε, ↓}. If α = ε
then v = x and so n = 0. Since v′ = x′, we conclude

(x′, v′) ∈ [[α]]T
′
. If α =↓ then x→v in T , and so n = 1.

Since x′→v′, we have (x′, v′) ∈ [[α]]T
′
.

For the inductive step, let

x0, . . . , xn ∈ T and x′0, . . . , x
′
n ∈ T ′

be such that

x = x0→x1→x2→· · ·→xn = v in T ,
x′ = x′0→x′1→x′2→· · ·→x′n = v′ in T ′,

and xiZj−ix
′
i for all 0 ≤ i ≤ n. Assume, for contradiction,

that (x′, v′) /∈ [[α]]T
′
. Then, there is a subformula ϕ of α and

k ∈ {0, . . . , n} such that T , xk |= ϕ and T ′, x′k 6|= ϕ. This
contradicts the inductive hypothesis 1.

53

Proposition 3.7. T , u ≡↓` T
′, u′ implies T , u↔↓` T

′, u′.

Proof. Fix u ∈ T and u′ ∈ T ′ such that T , u ≡↓` T
′, u′.

Define (Zi)i≤` by

xZix
′ iff T , x ≡↓i T

′, x′.

We show that Z is an `-bisimulation between T , u and T ′, u′.
By hypothesis, uZ`u

′. Fix h ≤ `, by construction, Zh satis-
fies Harmony. Let us see that Zh satisfies Zig (the case for
Zag is analogous). Suppose xZhx

′,

x = v0→v1→· · ·→vn = v in T ,
x = w0→w1→· · ·→wm = w in T ,

and data(v) = data(w) (the case data(v) 6= data(w) is shown
in a similar way), where m,n ≤ h. Let P ⊆ T ′2 be defined
by

P = {(v′, w′) | x′ n→v′ ∧ x′m→w′ ∧ data(v′) = data(w′)}.

Since T , x ≡↓h T
′, x′, dd(〈↓n=↓m〉) ≤ h and T , x |= 〈↓n=↓m

〉, we conclude that P 6= ∅. We next show that there exists
(v′, w′) ∈ P such that

i. x′ = v′0→v′1→· · ·→v′n = v′ in T ′,

ii. x′ = w′0→w′1→· · ·→w′m = w′ in T ′,

iii. (∀i ∈ {0, . . . , n}) T , vi ≡↓h−i T
′, v′i, and

iv. (∀j ∈ {0, . . . ,m}) T , wj ≡↓h−j T
′, w′j ,

and hence Zig is satisfied by Zh. By way of contradiction,
assume that for all (v′, w′) ∈ P satisfying i and ii we have
either

(a) (∃i ∈ {0, . . . , n}) T , vi 6≡↓h−i T
′, v′i, or

(b) (∃j ∈ {0, . . . ,m}) T , wj 6≡↓h−j T
′, w′j .

Fix > as any tautology such that dd(>) = 0. For each
(v′, w′) ∈ P we define two families of formulas,

ϕ0
v′,w′ , . . . , ϕ

n
v′,w′ and ψ0

v′,w′ , . . . , ψ
m
v′,w′ ,

satisfying that dd(ϕi
v′,w′) ≤ h − i for all i ∈ {0, . . . , n} and

dd(ψj
v′,w′) ≤ h− j for all j ∈ {0, . . . ,m} as follows:

• Suppose that (a) holds and that i is the smallest num-

ber such that T , vi 6≡↓h−i T
′, v′i. Let ϕi

v′,w′ be such

that dd(ϕi
v′,w′) ≤ h−i and T , vi |= ϕi

v′,w′ but T ′, v′i 6|=
ϕi

v′,w′ . For k ∈ {0, . . . , n}\{i}, let ϕk
v′,w′ = >, and for

k ∈ {0, . . . ,m}, let ψk
v′,w′ = >.

• Suppose that (a) does not hold. Then (b) holds. Let j

be the smallest number such that T , wj 6≡↓h−j T
′, w′j .

Let ψj
v′,w′ be such that dd(ψj

v′,w′) ≤ h−j and T , wj |=
ψj

v′,w′ but T ′, w′j 6|= ψj
v′,w′ . For k ∈ {0, . . . ,m} \ {j},

let ψk
v′,w′ = >, and for k ∈ {0, . . . , n}, let ϕk

v′,w′ = >.

For each i ∈ {0, . . . , n} and j ∈ {0, . . . ,m}, let

Φi =
∧

(v′,w′)∈P

ϕi
v′,w′ and Ψj =

∧
(v′,w′)∈P

ψj
v′,w′ . (1)

Since dd(ϕi
v′,w′) ≤ h − i, by Proposition 3.1, there are

finitely many non-equivalent formulas ϕi
v′,w′ ; the same ap-

plies to ψj
v′,w′ . Hence, both infinite conjunctions in (1) are

equivalent to finite ones, and we may assume that Φi and
Ψj are well-formed formulas. Finally, let

α = [Φ0]↓[Φ1]↓ · · · ↓[Φn] and β = [Ψ0]↓[Ψ1]↓ · · · ↓[Ψm].

By construction, dd(α),dd(β) ≤ h and so dd(〈α = β〉) ≤ h.
Furthermore, T , x |= 〈α = β〉 and T ′, x′ 6|= 〈α = β〉. This

contradicts T , x ≡↓h T
′, x′.

3.2 Vertical XPath
We now study bisimulation for XPathl=. Interestingly, the

notion we give is simpler than the one for XPath↓= due to a
normal form enjoyed by the logic.

In the downward fragment of XPath= we used dd(ϕ) to
measure the maximum depth from the current point of eval-
uation that the formula can access. For the vertical fragment
of XPath=, we need to define both the maximum distance r
going downward and the maximum distance s going upward
that the formula can reach. We call the pair (r, s) the verti-
cal depth of a formula. Formally, the vertical depth of a
formula ϕ (notation: vd(ϕ)) is the pair vd(ϕ) ∈ Z2

≥0 defined
in Table 2.

The nesting depth of a formula ϕ (notation: nd(ϕ))
is the maximum number of nested [] appearing in ϕ. See
Table 2 for the formal definition.

Let (r, s, k)-XPathl= be the set of all formulas ϕ in XPathl=
with vd(ϕ) ≤ (r, s) and nd(ϕ) ≤ k.

Let T and T ′ be data trees, let u ∈ T and u′ ∈ T ′. We
say that T , u and T ′, u′ are equivalent for XPathl= (nota-

tion: T , u ≡l T ′, u′) iff for all ϕ ∈ XPathl=, we have T , u |=
ϕ iff T ′, u′ |= ϕ. T , x and T ′, x′ are (r, s)-equivalent

[resp. (r, s, k)-equivalent] for XPathl=, and we note it

T , x ≡lr,s T ′, x′ [resp. T , x ≡lr,s,k T
′, x′] if they satisfy the

same XPathl= formulas ϕ so that vd(ϕ) ≤ (r, s) [resp. vd(ϕ) ≤
(r, s) and nd(ϕ) ≤ k].

3.2.1 Normal form
We define a useful normal form for XPathl= that will be

implicitly used in the definition of bisimulation in the sec-
tion. For n ≥ 0, let ↓n denote the concatenation of n sym-
bols ↓. I.e., ↓0 is the empty string λ, ↓1 = ↓, and ↓n+1 = ↓↓n
(similarly for ↑n).

A path expression α of XPathl= is downward [resp. up-
ward] if it is of the form ↓n[ϕ] [resp. [ϕ]↑n] for some n ≥ 0

with ϕ ∈ XPathl=. For example, ↓[〈↑〉] is a downward expres-
sion whereas ↓[〈↓〉]↓ is not. An up-down expression is any
expression of the form ε, α↑, α↓ or α↑α↓ where α↑ is upward
and α↓ is downward. Henceforth we will use α↑, β↑, γ↑ to de-
note upward expressions and α↓, β↓, γ↓ to denote downward
expressions and α↑↓, β↑↓, γ↑↓ to denote up-down expressions.
Note that in particular any downward or upward expression
is an up-down expression. An XPathl= formula or expres-
sion is in up-down normal form if every path expression
contained in it is up-down and every data test is of the form
〈ε� α↑↓〉 with � ∈ {=, 6=}.

Proposition 3.8. Let ϕ ∈ (r, s, k)-XPathl=. There is

ϕ↑↓ ∈ XPathl= in up-down normal form such that

1. ϕ↑↓ ≡ ϕ;

2. vd(ϕ↑↓) = (r, s); and

3. nd(ϕ↑↓) ≤ k · (r + s+ 2).

54

x x0

8y

8z 9z0

9y0

T T 0

n

m

Z

=
(6=

)=
(6=

)

Figure 3: Zig clause of bisimulation for XPathl=

3.2.2 Finite index
Contrary to the case of XPath↓= (cf., Proposition 3.1), the

logical equivalence relation restricted to XPathl=-formulas
of bounded vertical depth has infinitely many equivalence
classes.

Proposition 3.9. If r + s ≥ 2 then ≡lr,s has infinite in-
dex.

In the proof of the above proposition we need to use formu-
las with unbounded nesting depth. In fact, when restricted
to bounded nesting depth there are only finitely many for-
mulas up to logical equivalence, as stated next.

Proposition 3.10. ≡lr,s,k has finite index.

Corollary 3.11. {T ′, u′ | T , u ≡lr,s,k T
′, u′} is definable

by an (r, s, k)-XPathl=-formula.

3.2.3 Bisimulation and (r, s, k)-bisimulation
The advantage of the normal form presented in Section 3.2.1,

is that it makes it possible to use a very simple notion of
bisimulation. The disadvantage is that, since it does not pre-

serve nesting depth,↔lr,s,k does not correspond precisely to

≡lr,s,k, although↔l corresponds precisely to ≡l. Nonethe-
less, we obtain, for all r, s, k,

↔r,s,k ⊆ ≡
l
r,s,k ⊆ ↔

l
r,s,k·(r+s+2).

Let T and T ′ be two data-trees. We say that u ∈ T
and u′ ∈ T ′ are bisimilar for XPathl= (notation: T , u↔l
T ′, u′) iff there is a relation Z ⊆ T ×T ′ such that uZu′ and
for all x ∈ T and x′ ∈ T ′ we have

• Harmony: If xZx′ then label(x) = label(x′),

• Zig (Figure 3): If xZx′, y
n→x and y

m→z then there

are y′, z′ ∈ T ′ such that y′
n→x′, y′m→z′, data(z) =

data(x)⇔ data(z′) = data(x′), and zZz′.

• Zag: If xZx′, y′
n→x′ and y′

m→z′ then there are y, z ∈ T
such that y

n→x, y
m→z, data(z) = data(x)⇔ data(z′) =

data(x′), and zZz′.

Observe that contrary to the definition of↔↓, the condi-
tions above do not require intermediate nodes to be related
by Z. This is a direct consequence of the up-down normal
form (Proposition 3.8).

We say that u ∈ T and u′ ∈ T ′ are (r, s, k)-bisimilar for

XPathl= (notation: T , u↔lr,s,k T
′, u′) if there is a family of

relations (Z k̂
r̂,ŝ)r̂+ŝ≤r+s,k̂≤k in T × T ′ such that uZk

r,su
′ and

for all r̂ + ŝ ≤ r + s, k̂ ≤ k, x ∈ T and x′ ∈ T ′ we have that
the following conditions hold.

• Harmony: If xZ k̂
r̂,ŝx

′ then label(x) = label(x′).

• Zig: If xZ k̂
r̂,ŝx

′, y
n→x and y

m→z with n ≤ ŝ and m ≤
r̂+n then there are y′, z′ ∈ T ′ such that y′

n→x′, y′m→z′,
and the following hold

(1) data(z) = data(x)⇔ data(z′) = data(x′),

(2) if k̂ > 0, zZ k̂−1
r̂′,ŝ′z

′ for r̂′ = r̂+n−m, ŝ′ = ŝ−n+m.

• Zag: If xZ k̂
r̂,ŝx

′, y′
n→x′ and y′

m→z′ with n ≤ ŝ and

m ≤ r̂ + n then there are y, z ∈ T such that y
n→x,

y
m→z, and items (1) and (2) above are verified.

Observation 3.12. If xZ k̂
r̂,ŝx

′, y
n→x and y′

n→x′ then it

follows that yZ k̂−1
r̂′,ŝ′y

′, for r̂′ = r̂ + n, ŝ′ = ŝ− n. The same

occurs with Z instead of Z k̂
r̂,ŝ for the case of bisimilarity.

For a data tree T and u ∈ T , let T |sru denote the subtree
of T induced by

{v ∈ T | (∃m ≤ s) (∃n ≤ r +m) (∃w ∈ T) w
m→u ∧ w

n→v}.

3.2.4 Equivalence and bisimulation
The next result says that↔l coincides with ≡l on finitely

branching data trees, and states precisely in what way↔lr,s,k
is related to ≡lr,s,k.

Theorem 3.13.

1. T , u↔l T ′, u′ implies T , u ≡l T ′, u′. The converse also
holds when T and T ′ are finitely branching.

2. T , u↔lr,s,k·(r+s+2) T
′, u′ implies T , u ≡lr,s,k T

′, u′.

3. T , u ≡lr,s,k T
′, u′ implies T , u↔lr,s,k T

′, u′.

Corollary 3.14. ↔lr,s,k has finite index.

4. SIMULATION
In this section we define notions of directed (non-symmetric)

simulations for XPath↓= and XPathl=, as it is done, e.g.,
in [16] for some modal logics. We obtain results similar to
Theorems 3.5 and 3.13 but relating each simulation notion
with the corresponding logical implication.

We say that an XPath= formula is positive if it contains
no negation ¬ and no inequality data tests 〈α 6= β〉. For L
one of XPath↓=, XPathl=, XPath↓↓∗= , or XPathll

∗
= , we write

L+ for the positive fragment of L.
A simulation for XPath↓= [resp. for XPathl=] is simply

a bisimulation from which the Zag clause and half of the
first condition in the Zig clause have been omitted. Observe
that simulations need not be symmetric.

Formally, we say that u ∈ T is similar to u′ ∈ T ′ for
XPath↓= (notation: T , u →↓ T ′, u′) iff there is a relation
Z ⊆ T × T ′ such that uZu′ and for all x ∈ T and x′ ∈ T ′
we have

55

• Harmony: If xZx′ then label(x) = label(x′).

• Zig: If xZx′, x
n→v and x

m→w then there are v′, w′ ∈ T ′
such that x′

n→v′, x′m→w′ and

1. data(v) = data(w)⇒ data(v′) = data(w′),

2. (
i→v)Z (

i→v′) for all 0 ≤ i < n, and

3. (
i→w)Z (

i→w′) for all 0 ≤ i < m.

u ∈ T is similar to u′ ∈ T ′ for XPathl= (notation: T , u→l
T ′, u′) iff there is a relation Z ⊆ T ×T ′ such that uZu′ and
for all x ∈ T and x′ ∈ T ′ we have

• Harmony: If xZx′ then label(x) = label(x′).

• Zig: If xZx′, y
n→x and y

m→z then there are y′, z′ ∈
T ′ such that y′

n→x′, y′m→z′, zZz′, and if data(z) =
data(x) then data(z′) = data(x′).

Relations→↓` and→lr,s,k are defined accordingly. We de-
fine one-way (non-symmetric) logical implication between
models as follows. We write T , uV↓ T ′, u′ for

(∀ϕ ∈ XPath↓+=) [T , u |= ϕ⇒ T ′, u′ |= ϕ].

DefineV↓` ,Vl, andVlr,s,k in an analogous way for `-XPath↓+= ,

XPathl+= , (r, s, k)-XPathl+= , respectively. As for bisimula-
tion, we have that→ coincides with V.

Theorem 4.1.

1. Let † ∈ {↓, l}. T , u →† T ′, u′ implies T , u V† T ′, u′.
The converse holds when T ′ is finitely branching.

2. T , u→↓` T
′, u′ iff T , uV↓` T

′, u′.

3. T , u→lr,s,k·(r+s+2) T
′, u′ implies T , uVlr,s,k T

′, u′.

4. T , uVlr,s,k T
′, u′ implies T , u→lr,s,k T

′, u′.

We say that T ′ is a substructure of T if T ′ is a data tree
which results from removing some nodes of T , i.e., T ′ ⊆ T
and for all u, v ∈ T ′ we have: 1) u→v on T iff u→v on T ′;
2) label(u) on T ′ equals label(u) on T ; and 3) data(u) on
T ′ equals data(u) on T . Equivalently, seen as σ-structures,
T ′ is the σ-substructure of T induced by T ′ ⊆ T . One can
verify that the identity on T ′ is a simulation for XPathl=
from T ′ to T .

Lemma 4.2. If T ′ is a substructure of T and u′ ∈ T ′ then
T ′, u′→l T , u′.

We obtain that the formulas of XPath= invariant under
simulations are, precisely, the positive ones.

Theorem 4.3.

1. ϕ ∈ XPath↓= is→↓-invariant [resp.→↓`] iff it is equivalent

to a formula of XPath↓+= [resp. `-XPath↓+=].

2. ϕ ∈ XPathl= is →l-invariant iff it is equivalent to a for-
mula of XPathl+= .

3. If ϕ ∈ XPathl= is→lr,s,k-invariant then it is equivalent to

a formula of (r, s, k)-XPathl+= .

4. If ϕ ∈ XPathl= is equivalent to a formula of (r, s, k)-

XPathl+= then ϕ is→lr,s,k′ -invariant, for k′ = k·(r+s+2).

5. ADDING TRANSITIVITY
As it happens, for example, with the basic modal logic and

propositional dynamic logic, the same notion of bisimulation
[resp. simulation] of each logic captures the logical equiva-
lence [resp. logical implication] for the corresponding frag-
ments including the reflexive-transitive closure of the axes
which are present. Intuitively, this occurs because ↓∗ is an
infinite union of compositions of ↓, and similarly for ↑.

Let ≡↓↓∗ and ≡ll
∗

be the logical equivalence relation
for XPath↓↓∗= and XPathll

∗
= respectively, and let V↓↓

∗
and

Vll
∗

be the logical implication for XPath↓↓∗+= and XPathll
∗+

=

respectively.

Theorem 5.1. Let † ∈ {↓↓∗, ll∗}.

1. T , u↔† T ′, u′ implies T , u ≡† T ′, u′. The converse
also holds when T ′ is finitely branching.

2. T , u →† T ′, u′ implies T , u V† T ′, u′. The converse
also holds when T ′ is finitely branching.

6. CHARACTERIZATION
In §6.1 we show that there is a truth-preserving transla-

tion from XPathl= to first-order logic over an appropriate
signature. In §6.2 we characterize XPath↓= as the fragment
of first-order logic ↔↓-invariant over data trees. In §6.3
we show that this result fails for XPathl= in general, but
a weaker result can still be proved.

6.1 Translating to first-order logic
We say that an XPathl=-path expression α is in simple

normal form if it is of the form

[ϕ0]o1[ϕ1]o2 · · · on[ϕn],

for n ≥ 0, ϕi ∈ XPathl=, and oi ∈ {↓, ↑}. For any XPathl=-
[resp. XPath↓=-] path expression α there is an equivalent

XPathl=- [resp. XPath↓=-] path expression α′ in simple nor-
mal form. Further, α′ can be computed in polynomial time
from α.1 We say that an XPathl=-formula ϕ is in simple
normal form if each path expression α occurring in ϕ is in
simple normal form.

Fix the signature σ with binary relations and ≈, and
a unary predicate Pa for each a ∈ A. Any data tree T can
be seen as a first-order σ-structure such that

 T = {(x, y) ∈ T 2 | y is a child of x};
≈T = {(x, y) ∈ T 2 | data(x) = data(y)};
P Ta = {x ∈ T | label(x) = a}.

We define the following translation Tr mapping XPathl=
formulas in simple normal form to first-order σ-formulas:

Trx(a) = Pa(x) (a ∈ A)

Trx(ϕ † ψ) = Trx(ϕ) † Trx(ψ) († ∈ {∧,∨})
Trx(¬ϕ) = ¬Trx(ϕ)

Trx(〈α〉) = (∃ȳ)
(
x = y0 ∧ Trȳ(α)

)
Trx(〈α = β〉) = (∃ȳ)(∃z̄)

(
x = y0 ∧ x = z0 ∧ yn ≈ zm∧

Trȳ(α) ∧ Trz̄(β)
)

Trx(〈α 6= β〉) = (∃ȳ)(∃z̄)
(
x = y0 ∧ x = z0 ∧ yn 6≈ zm∧

1Note that this proposition holds only for paths expressions
without union.

56

Trȳ(α) ∧ Trz̄(β)
)

Trȳ(α) =

n−1∧
i=0

oi+1(yi, yi+1) ∧
n∧

i=0

Tryi(ϕi),

where ȳ = y0, . . . , yn and z̄ = z0, . . . , zm, and are fresh when
quantified in the fourth and fifth definition;

α = [ϕ0]o1[ϕ1]o2[ϕ2]o3 · · · on[ϕn];

β = [ψ0]o′1[ψ1]o′2[ψ2]o′3 · · · o′m[ψm];

oi, o
′
i ∈ {↓, ↑}; oj(u, v) represents u v if oj = ↓, and

v u otherwise. For ϕ ∈ XPathl= we have T , u |= ϕ iff
T |= Trx(ϕ)(u).

6.2 Downward XPath
Let FO(σ) be the set of first-order formulas over a given

signature σ, and let C be a class of σ-models. An FO(σ)-
formula ϕ(x) is `-local if for all data trees T and u ∈ T , we
have T |= ϕ(u) ⇔ T |`u |= ϕ(u). Finally, for ϕ ∈ FO(σ) let
qr(ϕ) be its quantifier rank, i.e., the depth of nesting of its
quantifiers.

Observe that the following result has two readings: one
classical, and one restricted to finite models.

Theorem 6.1 (Characterization). Let ϕ(x) ∈ FO(σ).
The following are equivalent:

(i) ϕ is↔↓-invariant over [finite] data-trees;

(ii) ϕ is logically equivalent over [finite] data-trees to an

`-XPath↓=-formula, where ` = 2qr(ϕ) − 1.

Proof. The implication (ii) ⇒ (i) follows straightfor-
wardly from Theorem 3.5. The proof of (i) ⇒ (ii) goes as
follows: First, we show that any↔↓-invariant ϕ(x) ∈ FO(σ)

is `-local for ` = 2qr(ϕ) − 1 (Proposition 6.2). Then, we
prove that any↔↓-invariant ϕ(x) ∈ FO(σ) that is `-local

is↔↓` -invariant. Finally, we show that any FO(σ)-definable

property which is↔↓` -invariant is definable in `-XPath↓=.

Proposition 6.2. Any↔↓-invariant ϕ(x) ∈ FO(σ) over

[finite] data-trees is `-local for ` = 2qr(ϕ) − 1.

Proof. We follow Otto’s proof [20]. Assume that ϕ(x) ∈
FO(σ) is↔↓-invariant, let q = qr(ϕ), and put ` = 2q − 1.
Given a data tree T and u ∈ T it suffices to show the exis-
tence of data trees T ′ and T ′′, with corresponding elements
u′ ∈ T ′ and u′′ ∈ T ′′ such that

(a) T ′, u′↔↓ T , u,

(b) T ′′, u′′↔↓ (T |`u), u, and

(c) T ′, u′ ≡q T ′′, u′′.

Indeed, from the above conditions it follows that

T |= ϕ(u) iff T ′ |= ϕ(u′) ((a) and↔↓-inv. of ϕ)

iff T ′′ |= ϕ(u′′) (c)

iff (T |`u) |= ϕ(u), ((b) and↔↓-inv. of ϕ)

and hence ϕ is `-local. By Proposition 3.3 one may assume
that u ∈ T is the root of T .

We define T ′ and T ′′, as structures that are disjoint copies
of sufficiently many isomorphic copies of T and T |`u, re-
spectively, all tied together by some common root. Both

| {z }
q copies

⌘q

u0 u00

| {z }
q copies

| {z }
q copies

| {z }
q copies

Figure 4: Definition of T ′, u′ and T ′′, u′′.

structures have q isomorphic copies of both T and T |`u,
and only distinguish themselves by the nature of the one ex-
tra subtree, in which u′ and u′′ live, respectively: u′ is the
root of one of the copies of T and u′′ is the root of one of
the copies of T |`u. We indicate the two structures in the
diagram of Figure 4, with distinguished elements u′ and u′′

marked by •; the open cones stand for copies of T , the closed
cones for copies of T |`u. The new isomorphic copies have
the same data values as the original one. The new root has
an arbitrary, fixed, data value and label.

By Proposition 3.4, it is straightforward that conditions
(a) and (b) are satisfied. Condition (c) is true because one
can exhibit a strategy for player II in the q-round Ehrenfeucht-
Fräıssé game on structures T ′ and T ′′. The strategy is ex-
actly the same used in [20].

6.3 Vertical XPath
The analog of Theorem 6.1 fails for XPathl=:

Lemma 6.3. The FO(σ)-formula

(∃x) Pa(x)

is↔l-invariant though not logically equivalent over [finite]

data-trees to any XPathl=-formula.

Hence XPathl= is not the fragment of FO(σ) which is

↔l-invariant over [finite] data-trees. However, the follow-

ing proposition still holds for the case of XPathl=:

Proposition 6.4. Let k′ = k·(r+s+2). If ϕ(x) ∈ FO(σ)

is↔lr,s,k′ -invariant over [finite] data-trees, then there is ψ ∈
(r, s, k)-XPathl= such that Trx(ψ) is logically equivalent to ϕ
over [finite] data-trees.

Notice that the counterexample in Lemma 6.3 is an un-
restricted, existential formula. One may wonder if it might
be possible to extend the expressive power of XPathl= to
accout for unrestricted quantification. The natural candi-
date would be the modal operator E (usually known as
the existential modality) which, intuitively, let us express
that there is some node in the model where a formula holds.
But even with the additional expressive power provided by
E the analog of Theorem 6.1 fails. Formally, consider the
logic XPathlE= , which results from adding the operator E
to XPathl= with the following semantics: [[Eϕ]]T = T if
[[ϕ]]T 6= ∅, and [[Eϕ]]T = ∅ otherwise.

The following lemma shows a counterexample to the ana-
log of Theorem 6.1, showing that XPathlE= is not the frag-
ment of FO(σ)↔l-invariant over [finite] data-trees.

57

Lemma 6.5. The FO(σ)-formula

(∃y, z) [y ≈ z ∧ Pa(y) ∧ Pb(z)]

is↔l-invariant though not logically equivalent over [finite]

data-trees to any XPathlE= -formula.

7. APPLICATIONS
We devote this section to exemplify how the model theo-

retic tools we developed can be used to show expressiveness
results for XPath=. We do not intend to be comprehensive;
rather we will exhibit a number of different results that show
possible uses of the notions of bisimulation we introduced.

7.1 Expressiveness hierarchies
Define ≡↓`,k as the equivalence ≡↓` restricted to formulas

of nesting depth at most k, that is, T , u ≡↓`,k T
′, u′ iff for

all ϕ ∈ XPath↓= such that dd(ϕ) ≤ ` and nd(ϕ) ≤ k we
have T , u |= ϕ iff T ′, u′ |= ϕ. Define a more fine-grained
notion of bisimulation in a similar way. We say that u ∈ T
and u′ ∈ T ′ are (`, k)-bisimilar for XPath↓= (notation:

T , u↔↓`,k T
′, u′) if there is a family of relations (Zj,t)j≤`,t≤k

in T × T ′ such that uZ`,ku
′ and for all j ≤ `, t ≤ k, x ∈ T

and x′ ∈ T ′ we have

• Harmony: If xZj,tx
′ then label(x) = label(x′).

• Zig: If xZj,tx
′, x

n→v and x
m→w with n,m ≤ j then

there are v′, w′ ∈ T ′ such that x′
n→v′, x′m→w′ and

1. data(v) = data(w)⇔ data(v′) = data(w′),

2. if t > 0, (
i→v)Zj−n+i,t−1 (

i→v′) for all 0 ≤ i < n,
and

3. if t > 0, (
i→w)Zj−m+i,t−1 (

i→w′) for all 0 ≤ i <
m.

• Zag: If xZj,tx
′, x′

n→v′ and x′
m→w′ with n,m ≤ j then

there are v, w ∈ T such that x
n→v, x

m→w and items 1,
2 and 3 above are verified.

Following the same ideas used in Propositions 3.6 and 3.7,
it is easy to show that (`, k)-bisimulations characterize (`, k)-
equivalence.

Proposition 7.1. T , u↔↓`,k T
′, u′ iff T , u ≡↓`,k T

′, u′.

The following theorem characterizes when an increase in
nesting depth results in an increase in expressive power (see
Figure 5). We conjecture that a similar hierarchy holds in
the absence of data values, but this is not a direct conse-
quence of our result.

Theorem 7.2. For all `, k ≥ 0, i ≥ 1,

≡↓`,0) ≡↓`,1) · · ·) ≡↓`,` = ≡↓`,`+i, and

≡↓`,k) ≡↓`+i,k.

7.2 Safe operations on models
Bisimulations can also be used to show that certain opera-

tions on models preserve truth. Such operations are usually
called safe for a given logic, as they can be applied to a
model without changing the truth values of any formula in

≡↓
0,0 ≡↓

0,1 ≡↓
0,2 ≡↓

0,3 ≡↓
0,4

≡↓
1,0 ≡↓

1,1 ≡↓
1,2 ≡↓

1,3 ≡↓
1,4

≡↓
2,1≡↓

2,0 ≡↓
2,2 ≡↓

2,3 ≡↓
2,4

≡↓
3,0 ≡↓

3,1 ≡↓
3,2 ≡↓

3,3 ≡↓
3,4

�

=

� �

� ��

==

= ==

== = =

...
...

...
...

...

. . .

�

�

� �

�

� � � �

���

� � �

· · ·

· · ·

· · ·

· · ·

Figure 5: Hierarchy of XPath↓=.

↔�

Figure 6: Closure under subtree replication.

the language. Proposition 3.3, for example, is already an ex-
ample of this kind of results showing that the class of models
of a formula is closed under sub-model generation. We will
now show a more elaborate example.

We say that T ′ is a subtree replication of T , if T ′ is
the result of inserting T |x into T as a sibling of x, where x
is any node of T different from the root. Figure 6 gives a
schematic representation of this operation.

Proposition 7.3. XPathll
∗

= is closed under subtree repli-
cation, i.e. if T ′ is a subtree replication of T , and u ∈ T then
T ′, u ≡ll

∗
T , u.

Proof. Suppose that x ∈ T is not the root of T , and
that T ′ is the result of inserting T |x into T as a sibling of
x. Let us call Tx to the new copy of T |x inserted into T ′,
and let X be the set of nodes of T |x. Furthermore, if v ∈ X
then vx is the corresponding node of Tx. Nodes v and vx
have the same label and data value, and the position of v in
T |x coincides with the position of vx in Tx.

By Theorem 5.1, it suffices to verify that T , u↔l T ′, u
via Z ⊆ T × T ′ defined by:

Z = {(y, y) | y ∈ T} ∪ {(v, vx) | v ∈ X}

(Z is depicted as dotted lines in Figure 6).

7.3 Non-expressivity results
Finally, we will use bisimulation to show the expressivity

limits of different fragments of XPath. Let key(a) be the
property stating that every node with label a has a different
data value. Let fk(a, b) (for foreign key) be the property
(∀x)[Pa(x)⇒ (∃y)[Pb(y) ∧ x ∼ y]].

Proposition 7.4.

58

a, 1

a, 2 a, 2a, 2

a, 1
x x0$l

Figure 7: key(a) not in

XPathll
∗

= .

↔↓

a, 1 a, 2b, 1 b, 2

x x�T T �

c, 0

a, 1a, 2 b, 1b, 2

c, 0

a, 3

Figure 8: fk(a, b) not in XPath↓↓∗= .

a, 1

a, 2 a, 3

a, 1

a, 1

a, 2 a, 2

T T 0

a, 1

a, 2

a, 1

a, 1

a, 2

x0x $#

Figure 9: dist3 not in XPath↓↓∗= .

1. key(a) is not expressible in XPathll
∗

= .

2. fk(a, b) is expressible in XPathll
∗

= but it is not expressible

in XPath↓↓∗= or XPathll
∗+

= .

Proof. The first item follows from Proposition 7.3. Since
the logic is closed under subtree replication, the trees of
Figure 7 are equivalent. As key(a) holds in one and not in
the other, the statement follows.

For the second item, it is easy to see that fk(a, b) is express-
ible with the formula ¬〈↑∗↓∗[a ∧ ¬〈ε = ↑∗↓∗[b]〉]〉. However,
this property cannot be expressed in XPath↓↓∗= because the
models T and T ′ in Figure 8 are bisimilar for XPath↓= via
Z, depicted as dotted lines. Since T , x satisfies fk(a, b) but
T ′, x′ does not, from Theorem 5.1 it follows that fk(a, b) is
not expressible in XPath↓↓∗= .

Finally, suppose there exists ψ ∈ XPathll
∗+

= expressing
fk(a, b). Since T is a substructure of T ′ we have T , x →l
T ′, x by Lemma 4.2. By Theorem 5.1(2) and the fact that
T , x |= ψ, we have T ′, x |= ψ, which is a contradiction.

Let dist3(x) be the property stating that there are nodes
y, z so that x→y→z and x, y, z have pairwise distinct data
values.

Proposition 7.5.

1. dist3 is expressible in XPathl=;

2. dist3 is not expressible in XPath↓↓∗= ;

3. neither dist3 nor its complement can be expressed in
XPathll

∗+
= .

Proof. For 1, one can check that T , x |= ϕ iff T , x sat-
isfies dist3, for ϕ = 〈ε 6= ↓↓[〈ε 6= ↑〉]〉.

Let us see 2. Consider the data trees T , x and T ′, x′ de-
picted in Figure 9. It is straightforward that T , x satisfies
dist3 and T ′, x′ does not.

Let v′1 and v′2 be the leaves of T ′ and let v be the only node
of T with data value 3. One can check that T , x↔↓ T ′, x′
via Z ⊆ T × T ′ defined by

Z = {〈u, u′〉 | h(u) = h(u′) ∧ data(u) = data(u′)} ∪
{〈v, v′1〉, 〈v, v′2〉},

where h(y) denotes the height of y, i.e., the distance from y
to the root of the corresponding tree (Z is depicted as dotted
lines in Figure 9). Since T , x satisfies dist3 but T ′, x′ does
not, from Theorem 5.1 it follows that dist3 is not expressible
in XPath↓↓∗= .

For 3, one can verify that T , x →l T ′, x′ via Z as de-

fined above. If dist3 were definable in XPathll
∗+

= via ψ and
the fact that T , x |= ψ, by Theorem 5.1(2) we would have
T ′, x′ |= ψ, and this is a contradiction.

Let dist3 denote the complement of dist3, i.e., dist3(x) iff
for all y, z so that x→y→z, we have that x, y, z do not have
pairwise distinct data values. Now T ′, x′ satisfies dist3 and
T , x does not. Since T ′ is a substructure of T , by an argu-
ment analog to the one used in the proof of Proposition 7.4-2,
we conclude that dist3 is not expressible in XPathll

∗+
= .

8. DISCUSSION
In this article we studied model theoretic properties of

XPath over both finite and arbitrary data trees using bisim-
ulations. One of the main results we discuss is the charac-
terization of the downward and vertical fragments of XPath
as the fragments of first-order logic which are invariant un-
der suitable notions of bisimulation. This can be seen as
a first step in the larger program of studying the model
theory and expressiveness of XPath with data values and,
more generally, of logics on data trees. It would be interest-
ing to study notions of bisimulation with only descendant;
or characterizations of XPath with child and descendant,
as a fragment of FO with the descendant relation on data
trees. We did not considered XPath with horizontal navi-
gation between siblings, such as the axes next-sibling and
previous-sibling. In fact, adding these axes results in
a fragment that is somewhat less interesting since the ad-
equate bisimulation notion on finite data trees corresponds
precisely to data tree isomorphism modulo renaming of data
values.

In Section 7 we show a number of concrete application of
the model theoretic tools we developed, discussing both ex-
pressivity and non-expressivity results. We also show exam-
ples of operations which are safe for a given XPath fragment.
It would be worthwhile to devise other model operations that
preserve truth of XPath formulas as we show is the case for
subtree replication.

An important application of bisimulation is as a minimiza-
tion method: given a data tree T1 we want to find a data
tree T2, as small as possible, so that T1 and T2 are bisimilar
for some fragment L of XPath. Since L cannot distinguish
between T1 and T2, we can use T2 as representative of T1

while the expressive power of L is all that is required by a
given application. The complexity of several inference tasks
(e.g., model checking) depends directly on the model size.
This is why in some cases it may be profitable to first apply

59

a minimization step. The existence of efficient minimiza-
tion algorithms is intimately related to bisimulations: we
can minimize a data tree T by partitioning it in terms of
its coarsest auto-bisimulation. We plan to design and im-
plement algorithms for data tree minimization using bisim-
ulation and investigate their computational complexity.

References
[1] M. Benedikt, W. Fan, and F. Geerts. XPath satisfia-

bility in the presence of DTDs. Journal of the ACM,
55(2):1–79, 2008.

[2] M. Benedikt and C. Koch. XPath leashed. ACM Com-
puting Surveys, 41(1), 2008.

[3] P. Blackburn, M. de Rijke, and Y. Venema. Modal
Logic, volume 53 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2001.

[4] M. Bojańczyk, A. Muscholl, T. Schwentick, and
L. Segoufin. Two-variable logic on data trees and XML
reasoning. Journal of the ACM, 56(3):1–48, 2009.

[5] M. Bojańczyk and P. Parys. XPath evaluation in linear
time. Journal of the ACM, 58(4):17, 2011.

[6] J. Clark and S. DeRose. XML path language (XPath).
Website, 1999. W3C Recommendation. http://www.

w3.org/TR/xpath.

[7] A. Dawar and M. Otto. Modal characterisation theo-
rems over special classes of frames. Annals of Pure and
Applied Logic, 161(1):1–42, 2009.

[8] D. Figueira. Reasoning on Words and Trees with Data.
PhD thesis, Laboratoire Spécification et Vérification,
ENS Cachan, France, 2010.

[9] D. Figueira. Decidability of downward XPath. ACM
Transactions on Computational Logic, 13(4), 2012.

[10] D. Figueira and L. Segoufin. Bottom-up automata on
data trees and vertical XPath. In International Sym-
posium on Theoretical Aspects of Computer Science
(STACS’11), volume 9 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 93–104. Leibniz-
Zentrum für Informatik, 2011.

[11] M. Forti and F. Honsell. Set theory with free construc-
tion principles. Annali Scuola Normale Superiore, Pisa,
X(3):493–522, 1983.

[12] V. Goranko and M. Otto. Model theory of modal logic.
In J. Van Benthem P. Blackburn and F. Wolter, editors,
Handbook of Modal Logic, volume 3 of Studies in Logic
and Practical Reasoning, chapter 5, pages 249–329. El-
sevier, 2007.

[13] G. Gottlob, C. Koch, and R. Pichler. Efficient algo-
rithms for processing XPath queries. ACM Transac-
tions on Database Systems, 30(2):444–491, 2005.

[14] Marc Gyssens, Jan Paredaens, Dirk Van Gucht, and
George H. L. Fletcher. Structural characterizations of
the semantics of xpath as navigation tool on a docu-
ment. In PODS, pages 318–327. ACM, 2006.

[15] D. Harel. Dynamic logic. In D. Gabbay and F. Guen-
thner, editors, Handbook of Philosophical Logic. Vol.
II, volume 165 of Synthese Library, pages 497–604. D.
Reidel Publishing Co., Dordrecht, 1984. Extensions of
classical logic.

[16] N. Kurtonina and M. de Rijke. Simulating without
negation. Journal of Logic and Computation, 7:503–
524, 1997.

[17] M. Marx. XPath with conditional axis relations. In In-
ternational Conference on Extending Database Technol-
ogy (EDBT’04), volume 2992 of LNCS, pages 477–494.
Springer, 2004.

[18] M. Marx and M. de Rijke. Semantic characterizations
of navigational XPath. SIGMOD Record, 34(2):41–46,
2005.

[19] R. Milner. A Calculus of Communicating Systems, vol-
ume 92 of LNCS. Springer, 1980.

[20] M. Otto. Elementary proof of the Van Benthem-
Rosen characterisation theorem. Technical Report
2342, Fachbereich Mathematik, Technische Universität
Darmstadt, 2004.

[21] M. Otto. Modal and guarded characterisation theorems
over finite transition systems. Annals of Pure and Ap-
plied Logic, 130(1-3):173–205, 2004.

[22] M. Otto. Bisimulation invariance and finite models.
In Logic Colloquium’02, volume 27 of Lecture Notes in
Logic, pages 276–298, 2006.

[23] D. Park. Concurrency and automata on infinite se-
quences. In Theoretical Computer Science, volume 104
of LNCS, pages 167–183. Springer, 1981.

[24] E. Rosen. Modal logic over finite structures. Journal of
Logic, Language and Information, 6(4):427–439, 1997.

[25] Davide Sangiorgi. On the origins of bisimulation and
coinduction. ACM Transactions on Programming Lan-
guages and Systems, 31(4), 2009.

[26] J. van Benthem. Modal Correspondence Theory. PhD
thesis, Universiteit van Amsterdam, 1976.

60

