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ABSTRACT
Social, biological, and cyberphysical networks generate
some of the most intriguing and valuable sources of
data on the planet. For at least the last two decades,
researchers have attempted to create formal (typically
stochastic) models of these networks. We examine the
database theory questions raised by these new models.
We study a simple extension of Erdös–Rényi models
that we call Zeta graphs. Zeta graphs are related to
multiple-valued zeta functions, and we show that the
expectation of a conjunctive query can be written as
a linear combination of multiple-valued zeta functions.
For queries on graphs, we use our results to devise a
complete decision procedure for whether the probabil-
ity that a query is true tends to 1 as the domain size
tends to infinity. We apply our theory of Zeta graphs
to describe the set of conjunctive graph queries that
are true with probability 1 in another graph model in
the literature that was described by Callaway, Hopcroft,
Kleinberg, Newman, and Strogatz.
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1. INTRODUCTION
The scientific and commercial value of cyberphysical,

social, and biological networks is exploding. Motivated
by this explosion, models for such networks have been
a hot topic over the last two decades [1, 2, 6, 17, 19, 24].
As with any formal model, we hope to find a math-
ematically elegant, tractable model that captures the
salient features of real-world graphs. In turn, the model
will ideally allow one to derive properties of the graph
that yield new insight into the underlying structure of
real-world networks. Newman et al. state that exactly
solvable models have already lead to a wealth of insights
and are a goal of this line of research [20]. Our goal is to
apply ideas from database theory to contribute to this
exciting line of work.

Unfortunately, there is no single agreed-on graph model
to drill into, as shown by the plethora of models for such
networks [2,6,17]. Each model seems to capture some—
but not all—aspects of real network graphs [21]. We do
not intend to add another voice to this debate; how-
ever, we do intend to understand to what extent these
models may provide new questions and opportunities
for database theoreticians. In particular, the database
community has used random models of data to explore
a wide variety of questions, e.g., privacy [10, 13], and
fundamental questions about the powers of logic [18,
19] including the celebrated zero-one law for first order
logic [12,14].

One popular model that motivated our work was de-
vised by Callaway, Hopcroft, Kleinberg, Newman, and
Strogatz (henceforth, CHKNS) and is described by the
following procedure [6, p. 1]:

At each time step, a new vertex is added.
Then, with probability δ, two vertices are cho-
sen uniformly at random and joined by an
undirected edge.

CHKNS’s model is intriguing: it has an elegant gener-
ative description and captures some of the structure of
real networks. While this model is elegant, the genera-
tive description makes it difficult to perform the compu-
tations that are needed to prove logic-based database-
style theorems [10, 18, 19]. As an application of our
main results, we are able to completely answer ques-
tions about the logical Theory of these graphs,1 i.e., we

1Following Enderton [11, p. 155] and Libkin [18, p. 241],
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describe the set of queries such that each query is true
with probability 1 as the domain size tends to infin-
ity in CHKNS’s model (and its directed-graph analog).
This result allows us to understand a fundamental ques-
tion: Which graph structures appear in this model, and
which do not? This is a component of the central the-
oretical question in network motif theory [21, 23]: Is a
particular pattern statistically significant, or should one
expect such a structure due only to random chance? Our
work provides a start on this question using the tools of
database theory.

We focus on a class of graphs called Zeta graphs that
have a simple declarative description and capture a key
technical aspect of network models including CHKNS
and the famous Albert and Barabási preferential attach-
ment model [2, p. 73]. Formally, Zeta graphs are easy
to define:

Definition 1.1. For each N ≥ 1, let ZN be a prob-
ability distribution on graphs in which the nodes are the
integers [N ] = {1, . . . , N} and the probability of each
edge (i, j) ∈ [N ]2 is an independent random variable
given by the following expression:

Pr
ZN

[(i, j) ∈ E] = u−1 where u = max{i, j}

Intuitively, this model is close to an Erdös–Rényi (ER)
model , since each edge is assigned an independent prob-
ability. In contrast to traditional Erdös–Rényi graphs,
in which the probability of all edges is the same, the
probability of an edge depends on its “latest arriving”
endpoint. This captures a property of many network
models (including CHKNS’s): that nodes enter the graph
at different times, and that those nodes that enter later
have a different probability of making connections than
those that have been around for a long time. This late-
arrival property is shared by many models including
CHKNS and preferential attachment models. Of course,
higher fidelity network models often take other factors
into account to more finely model the network, e.g., de-
gree distributions [2] or hyperbolicity [7]. In this work,
however, we focus on this one critical aspect as it al-
ready poses non-trivial technical challenges over tradi-
tional ER models.

New Technical Results. The goal of the first part of
our work is to develop techniques to compute exact
and asymptotic approximations for the probability of
conjunctive queries on Zeta graphs. Using standard
techniques for random graphs (Janson’s inequality), the
probability of a Boolean query q can be related to the
expected number of tuples returned by a second query
Q; Q has the same body as q, but Q’s head contains
all variables in the body of q. Our first technical result
is an algorithm that expresses the expected number of
tuples of an arbitrary conjunctive query (with ordered
constraints) as a linear combination of a family of spe-
cial functions, called the multiple-valued zeta functions

we call this set the Theory and use the notation Th. We
formally define this concept in Section 2.

(MVZs).2 MVZs are a generalization of Riemann’s fa-
mous zeta function ζ(s) =

∑∞
n=1 n

−s to multiple argu-

ments or values, e.g., for ζ(s1, s2) =
∑∞

0<n1<n2
n−s11 n−s22 .

MVZs have been studied for the last few decades, and
they arise in multiple areas (e.g., quantum field the-
ory [4] and analytic number theory [16]). For queries
with totally ordered variables, this algorithm is efficient
(linear time in the size of the query). For more general
queries, our algorithm takes exponential time, which is
likely unavoidable as we show that finding the expecta-
tion is ]P-Hard.

It is not clear that MVZs are substantially easier to
deal with than their original formulation as conjunctive
queries. However, MVZs are well studied. In particular,
there are rapidly converging approximations for MVZs,
which enables efficient computation [9]; there is a re-
cent theory of asymptotic approximation [8], and there
is a rich theory of combinatorial and algebraic identi-
ties [24].3 By mapping our problem to MVZs, we gain a
host of computational and approximation results from
the last 20 years.

We then turn to the problem of computing the asymp-
totic probability of a family of CQs on Zeta graphs as
the size of the domain tends to infinity. For graph-
queries (i.e., each relation is binary), we are able to
give a precise characterization of the set of conjunctive
queries that have probability 1. This result is inspired
by the fundamental results about other random graph
models [12, 19, 22]. We use this model to analyze the
CHKNS model, which was previously proposed.

Application: Back to CHKNS’s Model. Our goal is to
understand the theory of the CHKNS model. Roughly,
there are two main technical challenges:

1. CHKNS has edge probabilities that are close to our
Zeta model, but they are not exactly the same. As
a result, we need to keep track of the approxima-
tion quality with some care as N →∞.

2. CHKNS’s model introduces correlations between
edge random variables, which are not present in
Zeta graphs. We need to develop bounds to com-
pensate for these correlations.

We begin with some technical work on CHKNS’s graphs.
In the case of δ = 1, we show that, in CHKNS’s model,
the probability that a disjunction of edge random vari-
ables can be computed in closed form (in terms of Eu-
ler’s Gamma function). Our technique uses a well-known
correspondence between the Gamma function and prod-
ucts of terms that are polynomial functions of the index.
Using this relationship, we can compute any proposi-
tional formula using the inclusion–exclusion formula, in
which the number of terms is bounded by a function of
the query size.

2This connection is how we came to the name Zeta
graphs.
3There are some minor technical issues that prevent us
from directly reusing these results, but we are able to
use the main techniques to derive the tools that we need:
Euler–Maclaurin summations [8] or see the textbook [15,
p. 469].
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In traditional Erdös–Rényi random graphs, one has
a simple closed formula to compute the probability of
either the conjunction or the disjunction of a set of
events; in our situation, computing the probability of
such conjunctions and disjunctions seem to require us-
ing an inclusion–exclusion formulae. To overcome this
obstacle, we use a standard technique: we develop a
pair of models, an upper- and lower-bound model for
CHKNS’s model, in the sense that the probability of any
monotone formula is only higher (resp. lower) in the up-
per (resp. lower) approximation. These approximations
have two key additional properties: (1) their edge prob-
abilities are independent and are essentially appropri-
ately scaled Zeta graphs, and (2) for any propositional
formula of positive edge atoms φ, there is a constant
γ > 0 (see Proposition 4.3) such that the probability
Pr[φ] is no more than a factor γ smaller on the inde-
pendent model than on CHKNS. We then show that
the Theory of both the upper- and lower-bound models
coincide. Since the Theory of CHKNS is sandwiched in
between these two models, this implies that the Theory
of CHKNS coincides as well. Using these ideas, we are
able to describe the Theory of conjunctive queries on
CHKNS’s graphs and show that CHKNS does not have
a zero-one law.

Outline. In Section 2, we describe CHKNS’s model, our
proposed model described above, the relevant portion
of the algebraic theory from MVZs, and some stan-
dard techniques for this area, e.g., Janson’s inequality.
In Section 3, we describe our techniques to compute
the probability of conjunctive queries on Zeta graphs.
In Section 4, we describe our main application to the
CHKNS model. We describe related work in Section 5.

2. PRELIMINARIES
We begin by introducing some notation, defining the

queries we will consider, and some background on MVZs.

2.1 Queries and Probabilistic Databases
We assume that there exists an infinite set of rela-

tional symbols, and define CQ to be the set of Boolean
conjunctive queries that do not contain constants, but
may contain comparisons (order predicates) among the
variables.4 Denote by var(q) the set of variables in a
query q. Let CQTO be the subset of CQ such that
for any q the variables var(q) are totally ordered by
constraints. That is, for any two distinct variables xi
and xj in a query q ∈ CQTO, we can deduce that
xi < xj or vice versa. R(x, y), R(y, z), x < y, y < z
is totally ordered (we can deduce x < z transitively),
while R(x, y), R(y, z), x < z is not (as we cannot deduce
whether y < x or x < y.) We refer to this total order
as the total order on variables of q.

An important special case is when a query contains
only a single binary relational symbol (R): we denote

4Many of our results can handle queries with constants
in a straightforward way, e.g., the tools that allow us
to compute probabilities. However, our results about
which queries are satisfied with probability 1 in a model
will likely have different characterizations.

this class of queries as CQ1B . Since queries in CQ1B can
be thought of as graphs, we use ideas from graph theory,
e.g., cycles, paths, and connected components. We use
CQTO

1B to denote such queries in which all variables are
totally ordered.

As we will see below, the probability that a Boolean
query q is satisfied is related to the expectation of a re-
lated query that we denote by Q. Q can be constructed
from q by first copying the body of q and then adding
all variables in the body of q to the head of Q (we call
Q the full query corresponding to q). We illustrate such
a pair of queries (q1, Q1); here q1 checks for a path of
length 2:

q1() = R(x, y), R(y, z), x < y, y < z
Q1(x, y, z) = R(x, y), R(y, z), x < y, y < z

That is, Q1 adds all variables in the body of q1 to the
head ofQ1. Our notation is that lowercase symbols, e.g.,
q1 above, always denote Boolean queries, while the same
query with a capitalized symbol, e.g., Q1, will always
be the corresponding full query. Queries denoted with
uppercase letters always denote full queries.

Databases. We consider probabilistic databases (I, µ)
that consist of a finite set of possible worlds I and a
corresponding probability measure µ:

µ : I → [0, 1] such that
∑
I∈I

µ(I) = 1

Typically, I will be huge (e.g., all subsets of a given set
of tuples) and so the measure µ will often be given im-
plicitly. For example, we often consider tuple-independent
databases in which µ is given by a product. In this
case, we are given a set of tuples T and a function
p : T → [0, 1] (the marginal function) such that

µ(I) =
∏
t:t∈I

p(t)×
∏
t:t6∈I

(1− p(t))

Query Answering. Given a probabilistic database (I, µ),
we talk about the probability that a Boolean query q
(in any language) is true or satisfied by regarding q as
a function from I → {0, 1} and we define

Pr
(I,µ)

[q] =
∑

I∈I:q(I)=1

µ(I)

Families of Databases. Our technical results are con-
cerned with countably infinite families of databases,

{(I1, µ1), (I2, µ2), . . . }.

We will take limits in these sets. For this work, a partic-
ularly important set of families is called Zeta databases.
We first introduce Zeta databases with a single rela-
tional symbol, and then we extend to multiple relational
symbols (stipulating independence between events in
each table).

Given a relational symbol R(x1, . . . , xk) of arity k, for
each N ≥ 1, we define the N th element of this family to
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be the pair (ZRN , µRN ), where ZRN is all instances of R on
the [N ]k, i.e., all subsets of {R(c̄) | c̄ ∈ [N ]k} and µRN is
defined as:

µRN (I) =
∏

c̄∈[N ]k

(
u(c̄)−11[R(c̄)∈I] + (1− u(c̄)−1)1[R(c̄)6∈I]

)
where u(c̄) = maxki=1 ci and 1[R(c̄)∈I] (resp. 1[R(c̄)6∈I])
is the indicator function for R(c̄) ∈ I (resp. R(c̄) 6∈
I). When k = 2, this matches the description given in
Definition 1.1.

Given a schema σ = {R1, . . . , Rm} with multiple re-
lational symbols and N ≥ 1, we extend this definition
by insisting that the events are independent. We de-
note the N th member of the resulting Zeta database as
ZσN = ×mi=1ZRiN and µσN (I) =

∏
i=1 µ

Ri
N (I|Ri) where I|Ri

denotes the instance restricted to (or projected onto) the
relation Ri.

Given a query q, we will often assume implicitly that
we are considering a database that contains only the
schema symbols mentioned in q. As a result, we write
PrZN [q] as a shorthand for the probability that the
query is true on the N th element of the Zeta family
that has the appropriate schema from q instead of the
heavier, but less ambiguous, notation Pr

(Zσ(q)
N

,µ
σ(q)
N

)
[q].

Theory. Given a class of queries Q (e.g., Q = CQ)
and a countably infinite family of instances I1, I2, . . . ,
our technical results deal with the limits as N goes to
infinity of the quantity PrIN [q]. Given an infinite family
I1, I2, . . . we write q ∈ Th(I∞,Q) whenever

lim
N→∞

Pr
IN

[q] = 1

We are especially interested in Th(Z∞,CQ1B), as CQ1B

captures graph patterns, which are of independent in-
terest and form the core of our later technical results.

2.2 Probabilistic Tools
One tool that we use is Janson’s inequality, which has

also been used extensively in random graph work (see
Alon and Spencer [3]). The typical usage is to relate
the probability that a Boolean query is satisfied to the
expectation of a corresponding full query. We restate
Janson’s inequality in the terminology of this paper and
an easily derived corollary.

Lemma 2.1 (Janson’s inequality). Given a Boolean
query q with variables x̄, let Q denote its corresponding
full query. Define λ and ∆:

λ = E[Q(x̄)] =
∑
c̄∈[N ]|x| E[Q(c̄)] and

∆ =
∑
c̄,d̄∈[N ]k:Q(c̄) properly overlaps Q(d̄) E[Q(c̄) ∧Q(d̄)]

where Q(c̄) properly overlaps Q(d̄) if Q(c̄) 6= Q(d̄), and
there is some subgoal that is identical in each Q(c̄) and
Q(d̄). Then,

1− Pr[q] ≤ exp{−λ+ ∆/2}

and if ∆ > λ then

1− Pr[q] ≤ exp{−λ2/(λ+ ∆)}

A corollary that is often easier to apply for the results
of this paper is the following:

Corollary 2.1. With the notation of Lemma 2.1,
for N ≥ 0, if EIN [λ] = ω(1) and EIN [∆] = o(λ2), then

lim
N→∞

Pr
IN

[q] = 1.

where all asymptotic notation is with respect to N .

This corollary is a just restatement of the second
case of Janson’s inequality: the conditions of the Corol-
lary 2.1 imply that λ+∆ = o(λ2) and so exp{−λ2/(λ+
∆)} = o(1).

2.3 Zeta Functions
To apply Janson’s inequality, we need to compute the

expected number of tuples returned by a query on the
probability model. In traditional Erdös–Rényi graphs,
this computation is typically straightforward since the
probability of every edge is the same (see Dalvi et al. [10]).
However, for ZN the probability of an edge varies and,
as we describe below, the computation is related to ζ
functions. We introduce ζ functions and their relevant
properties.

Arguably the most famous of these functions is Rie-
mann’s Zeta function, which is denoted ζ and is defined
as:

ζ(s) =

∞∑
i=1

i−s

This function, ζ, is one of the most famous in mathe-
matics; the location of the zeros of this function in the
complex plane is the subject of the Riemann hypothesis.

We consider a classical generalization of this func-
tion [24], called MVZs. We will also consider a finite
variant. In particular, for k numbers s1, . . . , sk and
N ≥ k we define:

ζN (s1, s2, . . . , sk) =
∑

0<x1<x2<···<xk≤N

k∏
j=1

x
−sj
j

Clearly, limN→∞ ζ
N (s1) = ζ(s1).5 We know that ζN (1)

is the N th harmonic number.

Zeta Notation. Following the survey by Zudlin [24] and
standard practice for MVZs, we will often denote the
arguments to MVZs using the following compressed no-
tation: if a value appears (consecutively) several times,
then we enclose the value in set braces and subscript
this term with the number of times that this value oc-
curs. For example, we shall abbreviate ζN (0, 0, 1, 2, 2, 2)
as ζN ({0}2, 1, {2}3).

3. ZETA DATABASES
The main result of this section is a simple-to-check

characterization of Th(Z∞,CQ1B). Given q and its cor-
responding full query Q, we begin with an exact algo-
rithm to compute EZ∞ [Q] when q ∈ CQ, and describe
the hardness of computing this quantity. We then de-
scribe our main result.
5This is true definitionally, but the limit may be diver-
gent.
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3.1 Exact Algorithms in terms of ζ
Given (q,Q), our goal in this section is to compute

the expected number of tuples returned by a query Q
for some q ∈ CQ on ZN , denoted EZN [Q]. We first
state a connection between EZN [Q] when q is in the
class CQTO.

3.1.1 Exact Expectations for CQTO in Terms of
ζN

We fix some positive N (to avoid triviality, assume
N is larger than the number of variables). We illustrate
the connection between MVZs and the expected number
of tuples of a query Q with an example:

Example 3.1. Consider the query q2 defined as

q2 = R(x, y), R(y, z), x < y, y < z.Then,

EZN [Q2(x, y, z)] =
∑

1≤i1<i2<i3≤N

i−1
2 i−1

3 = ζN (0, 1, 1)

A quick calculation shows that we can resolve this even
further.

ζN (0, 1, 1) =
∑

1≤i2<i3≤N (i2 − 1)i−1
2 i−1

3

=
∑

1≤i2<i3≤N i
−1
3 − ζN (1, 1)

=
∑

1≤i3≤N (i3 − 1)i−1
3 − ζN (1, 1)

= ζN (0)− ζN (1, 1)− ζN (1)
= N − ζN (1, 1)−HN

where HN is the N th harmonic number. Using dis-
tinct relational symbols does not change the expectation,
e.g., Q3(x, y, z) = R(x, y), S(y, z), x < y < z, then
EZ∞ [Q3] = EZ∞ [Q2]. However, we do need to be careful
about the ordering of the variables. Consider the query,

Q2′(x, y, z) = R(x, y), R(y, z), x < z < y.

It yields a different function that we can also resolve:

EZ∞ [Q2′(x, y, z)] =
∑

1≤i1<i2<i3≤n i
−2
3 = ζN (0, 0, 2)

=
∑
i3

(
i3−1

2

)
i−2
3 ∼ 1

2
N

The change in variable order cut the expectation in half.
Later (Example 3.3), we give an example in which the
difference in expectation between two orderings is arbi-
trarily large (i.e., the difference depends on N).

To generalize this example, we define some notation.
Given a query q ∈ CQTO with subgoals g1, . . . , gt, we
say that a subgoal is redundant if gi = gj . We first
remove all redundant subgoals, which can be done in
linear time. Let the variables of q be x1, . . . , xk, and
without loss of generality, assume they are in order (i.e.,
that xi < xj in the total order specified by q.). Define
si(q) as follows for i = 1, . . . , k

si(q) = |{j ∈ [t] | i = max var(gj)}|

Proposition 3.1. Using the notation above, given q ∈
CQTO with k variables, x1, . . . , xk, and Q its corre-
sponding full query, let si = si(q). Then,

EZN [Q(x1, . . . , xk)] = ζN (s1, . . . , sk). (1)

Proof. Since q ∈ CQTO, any homomorphism of q
must be injective (since the images of all of the variables
of q must be totally ordered, and so no two variables can
be equated). Hence, the result of Q(x̄) can be written
as

Q(x̄) = ∪c̄:c1<···<cnQ(c̄).

Since the union is disjoint,

EZN [Q] =
∑

c̄:c1<···<cn

EZN [Q(c̄)].

For any such query, since there are no redundant sub-
goals all edges must be present. Then, EZ∞ [Q(c̄)] =∏t
j=1 Pr[gj ] =

∏t
j=1 u

−1
j where uj = max{c : c ∈ gj}.

In turn, one can rewrite this as
∏k
i=1 c

−si
i , grouping by

the variables. Summing over all such c̄ is the claimed
MVZ, ζN (s1, . . . , sk).

3.1.2 Extending to All CQs
We reduce the problem of computing EZ∞ [Q] for q ∈

CQ to the problem of computing the expectation for
several queries in CQTO, for which the algorithms of
the last section apply. A straightforward way to do this
is to essentially consider all possible orderings and uni-
fications that are consistent with the comparisons in q.
We describe this idea more precisely below, and we give
an algorithmic description so that we can discuss the
running time of our procedure.

Given a query q ∈ CQ, we perform a two-step pro-
cess to describe the set of all mappings of q to CQTO,
denoted Hom(q,CQTO):6 (1) We define the set of all
mappings of variables to variables that respect the com-
parisons, and (2) we construct canonical images under
each mapping. In step (1), for a query q denote by
Hk(q) the set of surjective maps σ : var(q) → [k] that
are also order-preserving maps, i.e., if xi < xj then
σ(xi) < σ(xj). Finally, define Hom(q,CQTO) = ∪kHk,
the set of all such mappings from q.7

Each σ ∈ Hk(q) can be associated with a query, q+σ,
which is its homomorphic image, as follows: q+σ is ini-
tialized to a copy of q. Then, for each pair (xi, xj) ∈
var(q)2, if σ(xi) = σ(xj) then we add the equality
xi = xj to q+σ, otherwise without loss σ(xi) < σ(xj)
and we add xi < xj to q+σ (if it is not already present).
Notice that q+σ is in CQTO and all such homomorphic
images arise this way, justifying the Hom(q,CQTO) no-
tation above.

Example 3.2. Let q = R(x1, x2), R(x2, x3), x1 < x3.
We denote the mapping σ with its domain a triple sub-
script: σy1y2y3 denotes the mapping that σ(xi) = yi for
i = 1, 2, 3. Then we have H3(q) = {σ213, σ123, σ132},
H2(q) = {σ112, σ122}, and H1(q) = ∅. The second stage
results in five queries (one for each mapping above),

6Observe that the set of homomorphisms from q is in a
bijection with homomorphism from Q (the bijection is
given by syntactically identical homomorphisms). Thus,
we abuse notation and think about homomorphisms as
being from either structure into CQTO.
7The support of ∪kHk is finite, since Hj = ∅ for all
j ≥ |var(q)|.
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e.g.,

Q+σ213(x1, x2, x3) = R(x1, x2), R(x2, x3), x2 < x1 < x3

Q+σ112(x1, x1, x2) = R(x1, x1), R(x1, x2), x1 < x2

With this, we can prove the main result for CQs:

Proposition 3.2. With the notation above:

EZN [Q] =
∑

σ∈Hom(Q,CQTO)

EZN [Q+σ]

Proof. First, on any database instance Q(I) is con-
tained in

⋃
σ∈Hom(Q,CQTO) Q

+σ(I), since any homomor-

phism fromQ to I must be a mapping σ ∈ Hom(Q,CQTO).
On the other hand, all q+σ are homomorphic images of
Q, so

⋃
σ Q

+σ ⊆ q. To ensure that the sum does not
over count, it suffices to observe that the union is dis-
joint, since the comparisons force the output of Q+σ and

Q+σ′
to be disjoint if σ 6= σ′.

Straightforwardly applying this proposition gives an
exponential time algorithm (in the size of |Q|) for com-
puting the expectation for any Q ∈ CQ. A natural
question is: can one create a substantially more efficient
algorithm, e.g., in polynomial time? We show next that
the answer is likely no.

Proposition 3.3. Given a q ∈ CQ, the problem of
computing EZN [Q] is ]P-Hard.

Dalvi et al. [10] establish NP-hardness of the related
problem over standard random graphs. In their reduc-
tion, the source of the difficulty is the unifications (e.g.,
the size of the automorphism group of q essentially de-
termines the complexity of the algorithm). However,
even for q with trivial automorphism groups (e.g., if any
relational symbols appear in q’s body at most once), the
]P-hardness result still holds. The reason is that one can
encode the problem of counting all extensions of a par-
tial order to a total order (i.e., counting all linear exten-
sions); a problem which admits a fully polynomial time
approximation scheme (FPTAS). The standard FPTAS
for counting linear extensions can be directly adapted to
approximate EZN [Q] [5]. Thus, for q ∈ CQ, our simple
algorithm may be close to optimal.

3.2 Application: Th(Z∞,CQ1B)

We now describe the set of Boolean conjunctive queries
in CQ1B whose probability approaches 1 as N →∞.

3.2.1 Asymptotic Approximation of Expectation
For a query q, to compute limN→∞ PrZN [q], our tech-

nique will be to use Janson’s inequality (Lemma 2.1). To
apply Janson’s inequality, we need to estimate EZN [Q],
in which Q is the full query corresponding to q.

Asymptotic Properties. We prove a useful proposition
that roughly describes the rate of growth of ζ in terms
of the partial sums of the arguments. This is a minor
extension of Costerman et al. [8]:

Lemma 3.1. Let s̄ ≥ 0̄, let Sk(s̄) =
∑r
i=k(si−1) and

define Smin = mink Sk(s̄). Then,

ζN (s̄) =


O(1) if Smin > 0

Θ(logkN) if Smin = 0 and k = |{i | Si = 0}|
Θ̃(N−Smin) if Smin < 0

Here Θ̃(·) hides factors up to log|s̄|N .

That is, ζ(s̄) is bounded if and only if Smin > 0. For
the lower bound, if any suffix s̄ would result in a diver-
gent sum, then the whole sum diverges. Second, on the
upper-bound side, we can construct upper bounds using
an integral to upper bound the sum [15, p. 469] or by
using the Euler–Maclaurin summation formula.

The final ingredient in the proof of Lemma 3.1 is a
majorization-type inequality: given two vectors s̄ and t̄
of the same arity, call it r, we write s̄ v t̄ if

∑r
k=1 si ≤∑r

k=1 tj for each k = 1, . . . , r − 1. With this notation,

Proposition 3.4. If s̄ v t̄, then ζ(s̄) ≥ ζ(t̄).

We highlight the result as it allows us to easily deter-
mine which ordering of the vertices of a query in CQTO

1B

graph has the largest expectation.

3.2.2 The Theory of Th(Z∞,CQ1B)

First, we begin with an example that shows that to
compute the probability of a query, it is not enough to
consider just the expectation; one needs also to consider
the logical structure of the query.

Example 3.3 (K4 with and without a tail).

qK4 =
∧

(i,j)∈([4]2 )R(xi, xj) ∧
∧3
k=1(xk < xk+1)

qK4+T =
∧

(i,j)∈([4]2 )R(xi, xj) ∧R(x4, x5)∧4
k=1(xk < xk+1)

From Lemma 3.1, one can see that EZ∞ [QK4 ] = O(1)
and EZ∞ [QK4+T ] = Ω(logN). We show the stronger
statement that:

EZN [QK4 ] = ζN (0, 1, 2, 3) < 1/36

Since EZ∞ [qK4 ] < 1, we have that PrZ∞ [qK4 ] < 1.8

However, the converse is not true. Although EZ∞ [qK4+T ] =
Ω(logN), still Pr[qK4+T ] ≤ PrZ∞ [K4]. Thus, if a K4

occurs, then it is likely to have a large number of such
tails.

This example illustrates that to understand Th(ZN ),
it is insufficient to consider expectation alone, and we
must examine the structure of the query.

Before stating our general result, we describe how to
tie together all of our tools to establish that oriented
triangles are in Th(Z∞).

Example 3.4. Let qK3 be the following query:

qK3() = R(x, y), R(y, z), R(x, z), x < y, y < z
QK3(x, y, z) = R(x, y), R(y, z), R(x, z), x < y, y < z

8It is easy to see that Pr[qK4 ] > 0, which establishes
that there is no zero-one law for Z∞.
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Query Shape Biggest Zeta Asymptotic Expectation

Path of length t ≥ 1 ζN (0, {1}t) Θ(N)

Simple cycle of size c ≥ 3 ζN (0, {1}c−1, 2) Θ(logN)

Single cycle of length c ≥ 3 ζN (0, {1}c−1, 2, {1}t) Θ(logt+1 N)
with t other nodes

Unification of the above ζN (0, {1}c−1, 2, {1}2t) Θ(log2t+1 N)

Unification of the above ζN (0, {1}2c−2, 2, 2, {1}2t) Θ(log2tN)

Bicycle (b1, b2, t) ζ(0, {1}b1−1, 2, {1}b1+t−1, 2) Θ(1)

Figure 1: For each graph pattern, we give the largest Zeta function, by majorization, and the leading
term of its expectations.

By Proposition 3.1, we have EZ∞ [QK3 ] = ζ(0, 1, 2) and
by Lemma 3.1, we have EZ∞ [QK3 ] = Ω(logN). To ap-
ply Janson’s inequality, we need to describe the unifica-
tions of QK3 with itself that properly overlap. A quick
check reveals that all such structures are images of the
following query, Q1(x, y, z, u) =

R(xy), R(yz), R(zx), R(yu), R(ux), x < y, y < z.

Using Proposition 3.4, a highest expectation ordering is
x < y < z < u: let Q1 with the additional compar-
ison z < u be Q0. Then, using Proposition 3.1 and
Lemma 3.1, EZN [Q0] = ζN (0, 1, 2, 2) = O(1). As this is
a highest expectation ordering and there is only a con-
stant number of unifications (in N), this tells us that
∆ = O(1). Finally, Janson’s inequality (Corollary 2.1)
tells us that

lim
N→∞

Pr
ZN

[qK3 ] = 1, i.e., qK3 ∈ Th(Z∞)

We describe Th(Z∞,CQ1B) in two steps. The first
step is to decide membership in Th(Z∞,CQTO

1B ), in which
the variables in the query are totally ordered. Then we
will show that q ∈ Th(Z∞,CQ1B) if and only if we can
find an ordering of the variables θ (i.e., a map to CQTO)
such that θ(q) ∈ Th(Z∞,CQTO

1B ).

Step 1: Deciding q ∈ Th(Z∞,CQTO
1B ). We first con-

sider CQTO
1B , and we are able to give an explicit charac-

terization of Th(Z∞,CQTO
1B ). Let G(q) = (V,E) be the

directed graph naturally associated to a query in which
the variables are nodes and two nodes are connected if
the variables to which they correspond participate in
some subgoal in q.

Proposition 3.5. For q ∈ CQTO
1B , q ∈ Th(Z∞) if

and only if G(q) if each connected component contains
at most one cycle.

We outline the main steps of the proof. In the for-
ward direction, we use the expectations in Figure 1 and
Janson’s inequality (Corollary 2.1) as we have done in
Example 3.4. We show the reverse direction by explic-
itly computing the probability of a family of queries,
which we call bicycle graphs, that are essentially two
cycles connected by a path. We show that every mem-
ber of this family has probability less than 1. Then, the
proposition follows by observing that an image of one
member of the bicycle family can be embedded in any

graph with two cycles. This implies that, for any query
in q ∈ CQTO

1B with two cycles, q 6∈ Th(Z∞).

Step 2: Deciding q ∈ Th(Z∞,CQ1B). We first de-
scribe the challenge to extend our result to CQ1B . We
have:

Pr[q] = Pr

 ∨
θ∈Hom(q,CQTO)

θ(q)


That is, we can reduce evaluation of q to the problem of
evaluating the disjunction of several queries in CQTO.
It’s tempting to take a union bound, i.e., by writing

Pr
Z∞

 ∨
θ∈Hom(q,CQTO)

θ(q)

 ≤ ∑
θ∈Hom(q,CQTO)

EZ∞ [θ(Q)] .

For some queries, this bound is tight enough. But in
general, the right-hand side may be much bigger than 1
and so the bound is trivial—even if Pr[θ(q)] < 1 for each
θ. The observation is that θ(q) and θ′(q) are positively
correlated as probabilistic events. In turn, we have:

Pr
Z∞

 ∨
θ∈Hom(q,CQTO)

θ(q)

 ≤ 1−

1−
∏

θ∈Hom(q,CQTO)

θ(q)


Since |Hom(q,CQTO)| is constant with respect to N ,
we can conclude that PrZ∞ [

∨
θ∈Hom(q,CQTO) θ(q)] < 1 if

and only if PrZ∞ [θ(q)] < 1 for each θ ∈ Hom(q,CQTO).
This gives an exponential time algorithm, by enumer-

ating all θ ∈ Hom(q,CQ). More precisely, this is an
NP-algorithm, since we only need to guess a single θ
and check whether the resulting θ(q) ∈ Th(Z∞,CQTO

1B );
this check can be done efficiently using Prop 3.5. The
following proposition shows that it is unlikely that one
could design a substantially more efficient algorithm.

Proposition 3.6. Given a query q, it is NP-Complete
to decide if q ∈ Th(Z∞,CQ1B).

The proof relies on the combinatorial information from
Proposition 3.5, namely that q is in the Theory if and
only if there is an automorphism to a cycle-like struc-
ture. Deciding this efficiently would give an efficient al-
gorithm to solve 3-coloring. It is worth noting that some
special cases can be solved efficiently. For example, if q
does not contain any comparison predicates, then check-
ing this condition is trivially true (since h(x) = 1 for
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x ∈ var(q) is a valid homomorphism). Also, if there
are no self joins, or if there are not-equal constraints
between each pair of variables, then using a greedy al-
gorithm based on majorization (Proposition 3.4) gives
a linear time algorithm to decide if q ∈ Th(Z∞).

Discussion. While our techniques enable us to com-
pute PrZ∞ [q] for q ∈ CQ, we were unable to extend
Proposition 3.5 to describe the Theory, as our current
technique requires an explicit description of the two
classes.

4. APPLICATION: Th(CHKNS∞,CQ1B)

We first compute some descriptive statistics of the
CHKNS model, e.g., the marginal probability of an edge
or set of edges. Then we use the classical idea of sand-
wiching [3], where we ensure that the probability a query
is true on CHKNS is in between two different scalings of
Z∞.

Recall the definition of CHKNS from Section 1; there
is a parameter δ ∈ [0, 1] that controls a coin flip to add
an edge (or not) as each node is introduced. In this sec-
tion, we consider δ = 1 to simplify our discussion, and
we return to the case when δ ∈ (0, 1) in the extensions.
(Note that δ = 0 implies that the graph is empty).

4.1 Propositional Queries
We develop the tools to write tractable expressions

for the probability of propositional queries, e.g.,

Pr
CHKNSN

[R(3, 4), R(4, 9), R(10, 11)].

In many models, e.g., in Zeta graphs or Erdös–Rényi
graphs, computing this probability is trivial; in contrast,
it is non-trivial in the CHKNS model. It is, however,
easy to write an explicit equation for the probability
that an edge occurs, denoted PrCN [R(i, j)], but with
≈ N terms:

1− Pr
CHKNSN

[R(i, j)] =
N∏
n=u

(
n(n− 1)

n(n− 1) + 1

)
(2)

where u = max{i, j}. This is a directed analog of
CHKNS’s model described in the introduction. The ra-
tionale for this product is that at instant n, there are n
nodes and hence n2 possible edges. And in the previous
n − 1 steps, we have already picked n − 1 to add into
the model. Hence, there are n2− (n− 1) = n(n− 1) + 1
edges remaining. We want to avoid a particular edge
R(i, j), hence we want to pick one of the n(n−1) edges.
Thus, we have the fraction for each term. We then take
a product over all such terms to arrive at Equation 2.9

This product is difficult to work with, as it involves
a number of terms that depends on N . We resolve this
using a standard technique to resolve infinite products
in terms of Euler’s Γ function.10 To that end, we define
9Extending to the undirected case is straightforward
and is therefore omitted.

10Euler’s gamma function is defined as Γ(t) =∫∞
0
xt−1et dx. For integer t, Γ(t + 1) = t!, where t!

is the factorial function.

four functions, r−, r+, U , and Z, as follows:

r±(m) =
1

2

(
1±
√

1 + 4m
)

U(l, u,m) =
Γ(u− r+(m))Γ(u− r−(m))

Γ(l − r+(m))Γ(l − r−(m))

Z(l, u) =
Γ(l − r+(−1))Γ(l − r−(−1))

Γ(u− r+(−1))Γ(u− r−(−1))

The pair of functions r±(m) are the roots of the poly-
nomial n2−n−m, which we use to factor the numerator
and denominator of Equation 2. Specifically, with this
notation, we can rewrite Equation 2:

1− Pr
CN

[R(i, j)] = Z(u,N + 1)U(u,N + 1, 0) (3)

This statement can be verified from the functional equa-
tion that defines the Γ function, namely, Γ(z + 1) =
zΓ(z) and the above observation about r±(m). We can
give a more general interpretation:

Z(l, u+1)U(l, u+1,m) is the probability that
none of m+ 1 distinguished edges is selected
in any of the rounds between l and u.

This formula allows us to compute the probability that
one of several edges occurs (that may arrive at different
times). We illustrate the idea by example.

Example 4.1. Given R(ai, bi) where for i = 1, . . . , k,
ai, bi ∈ [N ] such that the pairs (ai, bi) are distinct, let
ui = max{ai, bi}. Suppose, without loss of generality,

that u1 ≤ u2 ≤ · · · ≤ uk. Then, Pr[
∨k
i=1 R(ai, bi)] =

1−Z(u1, N+1)

(
k−1∏
i=1

U(ui, ui+1, i− 1)

)
U(uk, N+1, k−1)

This simply computes that each edge must be missing
in the rounds when it is possible to be selected, e.g., an
edge i can only be selected if both end points are present,
which implies that N ≥ ui.

Using inclusion–exclusion, we can extend the computa-
tions in this example to compute the probability of any
propositional expression of edges of graphs.

4.2 Asymptotic Edge Probabilities
and an Intermediate Model

An advantage of this formulation is that since the Γ
function is well studied, so we have standard approxi-
mations for Γ [15, p. 482]. Using these approximations,
the following proposition is straightforward:

Proposition 4.1. Let u = max{i, j} and N large
enough,

Pr
CHKNSN

[R(i, j)] ∈ [u−1, u−1 + u−2/2]

Figure 2 shows several values for CHKNS∞ and u of
this function with indicators for Zeta graphs.

Proposition 4.1 offers a glimpse of the connection be-
tween Zeta graphs and the CHKNS model. To make
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Figure 2: (A) The x axis is u and the red line plots log uPrC∞ [R(i, j)] where u = max{i, j}. Thus, 0
would be a perfect agreement with the lower bound of u from Proposition 4.1. We also plot the
upper bound from Proposition4.1 in green. Visually, the upper bound is in close agreement with the
true value. Together (B) and (C) give a glimpse at the two ways CHKNS differs from C∞: (B) shows
the effect of edge probability growing as N increases, while (C) illustrates the negative correlations
in CHKNS (versus the edge-independent C∞). (B) We calculate the relative error in using CHKNSN
(versus C∞) to compute the probability of an edge for the first 1000 edges as we vary N in CHKNSN :

for an edge (i, j) let u = max{i, j}; for a fixed N we vary u along the x axis and plot 1 − PrCHKNSN
[R(i,j)]

PrC∞ [R(i,j)]

for choices of N . (C) Shows the expected number of triangles (EX [QK3 ]) that occur within the first N
nodes, where X ∈ {Z∞, C∞,CHKNSN}. The rate of growth is approximately the same for all models.
However, we can see a small difference between C∞ and CHKNS even at very large N values (10100)
due to correlation. This suggests that Proposition 4.3 is loose for larger values of N ; an observation
that we leverage in our final result.

the connection precise, we introduce a model C∞ that is
an edge-independent version of CHKNS. That is, each
tuple R(i, j) is an independent event with probability
PrC∞ [R(i, j)] defined as

Pr
C∞

[R(i, j)] = lim
N→∞

Pr
CHKNSN

[R(i, j)]

The probability of an edge in C∞ is its limit in CHKNS.
Below, we use C∞ to compute Th(CHKNS∞,CQ1B).

First, we establish the relationship between Th(C∞,CQ1B)
and Th(Z∞,CQ1B). To this end, we observe that the
edge probabilities do not change too much between the
two models:

Corollary 4.1. For i, j ≥ 1, we have

PrC∞ [R(i, j)]

PrZ∞ [R(i, j)]
∈ [1, 1.5] and Pr

C∞
[R(i, j)] ≤ Pr

Z∞
[R(i+1, j+1)]

Since expectation is linear in these quantities, the for-
ward direction of Proposition 3.5 is immediate (since
PrZ∞ [q] ≤ PrC∞ [q] for any monotone q). In the reverse
direction, we observe that for every connected query
q 6∈ Th(Z∞,CQTO

1B ), we have EZN [Q] < 0.5. Thus, the
second portion of the above corollary implies that we
can bound term-by-term by simply mapping each term
in the expectation to c′i = ci + 1. The only terms not
covered by this mapping contribute a vanishingly small
amount. In particular, a loose bound is EC∞ [Q] < 0.75.
The rest of the reasoning for Proposition 3.5 is un-
changed. Therefore, we have

Proposition 4.2. With the notation above,

Th(C∞,CQ1B) = Th(Z∞,CQ1B)

4.3 Upper and Lower Models
We show that Th(C∞,CQTO

1B ) = Th(CHKNS∞,CQTO
1B ).

First, we observe that:

Pr
CHKNS

[q] ≤ Pr
C∞

[q] for q ∈ CQ

Thus, Th(C∞,CQ1B) ⊇ Th(CHKNS∞,CQ1B). The proof
is straightforward: Proposition 4.1 shows that every
edge is upper bounded by its probability in C∞ and that
the edges in CHKNS are negatively correlated (formally,
see Proposition 4.3).

Establishing that Th(C∞,CQ1B) ⊆ Th(CHKNS∞,CQ1B).
Establishing the reverse inequality will take essentially
the remainder of this section. The first issue is to handle
the correlations between edges in CHKNS. We establish
that any positive conjunction of k propositions is within
a constant factor, γ on C∞.

Proposition 4.3. For N ≥ 0, let e1, . . . , ek be dis-
tinct edges (i.e., elements of [N ]2), then

Pr
C∞

[
k∧
i=1

ei

]
≥ Pr

CHKNS∞

[
k∧
i=1

ei

]
≥ γ

k∏
i=1

Pr
C∞

[ei] and

γ−1 Pr
C∞

[
k∨
i=1

ei

]
≥ Pr

CHKNS∞

[
k∨
i=1

ei

]
≥

k∏
i=1

Pr
C∞

[ei]

in which γ = 1

Γ((3+
√

3)/2)((3−
√

3)/2)
≈ 0.581 and so γ−1 ≈

1.721.

This proposition shows that one can lower bound the
CHKNS model with C∞. The proof is by direct calcula-
tion and approximates the inclusion–exclusion terms.
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A consequence of the above result is that the expec-
tation of any full query is within constant factors on C∞
and Z∞. Since all queries in CQTO

1B that are in Th(Z∞)
have unbounded expectation, this implies

Th(C∞,CQTO
1B ) ⊇ Th(CHKNS∞,CQTO

1B ).

In the other direction, we use Proposition 4.3 to see
that all those not in the theory have expectation less
than 0.75. Thus, we have shown:

Proposition 4.4. With respect to CQTO
1B all three The-

ories are equal.

Th(Z∞,CQTO
1B ) = Th(C∞,CQTO

1B ) = Th(CHKNS∞,CQTO
1B )

We now observe that if q ∈ Th(C∞,CQ1B) then there
is some mapping θ ∈ Hom(q,CQTO) such that Pr[θ(q)] =
1. This same mapping applies to CHKNS just as well,
and by the above we have:

Th(C∞,CQ1B) ⊇ Th(CHKNS∞,CQ1B).

The reverse direction is more technically involved. To
mirror the case of C∞ (or our analysis of Th(Z∞,CQ1B)),
we would like to argue that if Pr[θ(q)] < 1 for each
θ ∈ Hom(q,CQTO) then

Pr
CHKNS∞

 ∨
θ∈Hom(q,CQTO)

θ(q)

 < 1

But we only know PrCHKNS∞ [
∨
θ∈Hom(q,CQTO) θ(q)] <

1− ε, where ε is a constant ε > 0 that may depend on q
but does not depend on N . From Proposition 4.3, this
argument may give us a meaningless upper bound if (1−
ε)/γ ≥ 1. The key technical observation is that γ is very
loose. In particular, in the statement of Proposition 4.3,
if u∗ = mini ui where ui = min{ei1 , ei2} then one can
show: (

1 +O(u−1
∗ )
)

Pr
C∞

[
k∨
i=1

ei

]
≥ Pr

CHKNS∞

[
k∨
i=1

ei

]
Motivated by this observation, we introduce a class of
models Cl,N that has a node set [l, N ] = {l, . . . , N} and
for i, j ∈ [l, N ] we have

Pr
Cl,N

[R(i, j)] = Pr
CN

[R(i, j)]

We then show that for any l ≥ 1,

Th(Cl,∞,CQ1B) = Th(C∞,CQ1B)

To establish this statement, we make a detour back
to Zeta graphs and prove that the analogous statement
holds for Zeta graphs. That is,

Th(Zl,∞,CQ1B) = Th(Z∞,CQ1B)

where Zl,∞ is defined in the obvious way. The technical
issue here is to observe that Lemma 3.1 holds even if
we slice off all terms below l. For sums like

∑N
i=l i

−1 =
Θ(logN), our statement is trivial: removing only a finite
number of terms from a divergent series keeps the series
diverging at the same rate. However, for sums like

ζNa (1, 1) =
∑

a≤i1<i2≤N

i−1
1 i−1

2

we are removing infinitely many terms from ζN (1, 1).
The proof of Lemma 3.1 needs this stronger result.

Using the family of graphs Cl,∞, we are able to show
our main result for this section. Essentially, given any
q, we pick l so that the argument we outline works.
Summarizing our discussion,

Proposition 4.5. For each l ≥ 0

Th(Cl,∞,CQ1B) = Th(CHKNS,CQ1B)

We now turn to extending this result when δ ∈ (0, 1).

Extending to CHKNS with δ ∈ (0, 1). We describe how
to extend our results to the case in which δ is a constant
in (0, 1). We denote this as CHKNSN,δ with the obvious
meaning. Note that the case δ = 0 is the empty graph,
and its theory is straightforward. It is also straightfor-
ward to show that for δ < 1 there are fewer edges than
when δ = 1, and so fewer queries in the Theory. To
show the reverse direction requires some work: First,
we observe that ECHKNSδ,∞ [Q] ≈ δkECHKNS1,∞ [Q], where
k is the number of relations in the body of Q (where
q ∈ CQTO). Since our arguments based on Janson’s in-
equality arguments depend on whether E[Q] is bounded
or not, this result is enough to prove that all queries in
Th(CHKNS,CQ1B) are in Th(CHKNSN,δ) (we still have
to go through the same technique we used for Cl,∞).
Our techniques do not give information about the global
structure (e.g., whether there is a single, giant com-
ponent) as CHKNS’s methods do; instead they tell us
about the fine structure of these larger structures.

To establish that ECHKNSδ,∞ [Q] ≈ δkECHKNS1,∞ [Q], we
need to redo the technical tools in this section. One
added technical complication is that for δ ∈ (0, 1), the
probability distribution over edges depends on how many
edges have been introduced in previous steps; in con-
trast at δ = 1, there are always t edges at time t. To
cope, we show that a fractional version of Equation 2
is within a small constant (vanishing in u) of the above
Markov chain. The remaining techniques apply in a
straightforward but tedious way.

5. RELATED WORK
There is a staggering amount of work on network anal-

ysis. We refer readers to two textbooks in this area:
Wasserman and Faust [23] and Newman’s introduction
to networks [21]. There are also several recent surveys
as this area continues to explode in interest. We do not
hope to completely summarize these areas, but rather
to describe the work that is most technically relevant to
this paper.

Arguably one of the most famous works on random
network graph models is the Albert and Barabási pref-
erential attachment model [2]. Neither CHKNS’s model
nor Zeta graphs are preferential attachment models; in
particular, neither is scale free. In Albert and Barabási’s
seminal work [2, p. 73], this is the model they call Model
A, which contains half of the preferential attachment
story. It is interesting future work to incorporate the
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additional information of preferential attachment. One
simple observation is that rather than selecting a match
to each node, one could view this model as selecting
links to attach to. Thus, the relaxation of this graph
may be some kind of dual to Zeta graphs. We are also
able to show that one preferential attachment graph
(where the probability two edges connected is propor-
tional to the degree of a node) is actually a slight gen-
eralization of zeta graph, and we are able to extend
much of our theory to such graphs. However, it has
been observed that several important properties of real
network graphs are not captured by these models, and
researchers are designing higher fidelity models. Still,
there is no consensus on the right model and all known
models capture some aspects, but fail to capture others.
For example, there are currently no models that match
the hyperbolicity or clustering of real-world graphs [7,
21]. Our work here explicitly does not argue about
whether a particular model has higher fidelity with a
particular empirical aspect of real-world graphs; instead
our work is about using databse theory to contribute to
the theoretical underpinning of these models.

Theoretical researchers have approximated these dis-
tributions to prove theorems. For example, most closely
related is Lynch [19], who captured the power-law dis-
tribution by allowing a distribution over all nodes with a
specified degree sequence. He showed that such graphs
exhibited a zero-one law for first-order logic. However,
as we show, there are conjunctive queries (without con-
stants, of course) for which CHKNS’s model does not
have a zero-one law.

Our model is close to an Erdös–Rényi model, and
so it’s not surprising that our techniques borrow from
query answering on Random graphs, e.g., Dalvi et al.’s
work [10]. Our results build on their results, but our
technical challenges are different: the bulk of work in
this paper goes into dealing with correlations, inho-
mogenous probability values, and the technical difficul-
ties that have to do with inifinite series to compute sim-
ple propositional expressions—none of these challenges
are present in Dalvi et al.’s work. The complexity of
related questions seems to be higher in the model here.
For example, in Dalvi et al.’s work, one source of hard-
ness is unification, e.g., if the automorphism group of q
is trivial, then it is not hard to show that their algorithm
is in P-time. However, in our setting, ]P-hardness holds
even for families of queries with a trivial automorphism
group, e.g., if all relational symbols in q are distinct.

Shelah and Spencer [22] gave a nearly complete clas-
sification of sparse, Erdös–Rényi random graphs. If we
examine Zeta graphs, we see that the expected number
of edges in ZN is

∑
i=1

∑
j≤i i

−1 = N . Hence, a natural

ER modeling is that p = N−1. However, in G(N,N−1)
model notice that the theory is slightly different: each
node has a constant expected degree, while any fixed
node in Zeta graphs has unbounded degree as N →∞.
In some ways, our theory is closer to G(N, p) p = logN

N
.

These are further indications that the class of random
graph models we consider do not coincide with these
previous models.

6. CONCLUSION AND FUTURE WORK
We studied the theory of graph queries on two random

graph models. We described Zeta databases, which were
motivated by our desire to find a simple Erdös–Rényi-
like model that would allow us to answer traditional
database-theory questions. Our technical contributions
were the basic tools for conjunctive query answering on
Zeta databases, and a complete characterization of the
Theory for a language inspired by conjunctive graph
patterns (CQ1B). These techniques were simplified by
a well-developed set of tools for dealing with multiple-
valued zeta functions, which have been developed for a
completely unrelated purpose.

Our future work will be in two directions: (1) more
expressive languages and (2) higher-fidelity graph mod-
els. For (1), to extend our results beyond CQ1B to all
of CQ, and perhaps all of first-order logic, to more fully
compare our results with those of Lynch [19]. It may
also be interesting to investigate the introduction of con-
stants into the language. For (2), we plan to add in con-
straints on preferential attachment following Albert and
Barabási’s work [2]. One interesting result here would
be an analytic theory of the statistical signficance of
motifs for this popular family of random graphs.
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