
Dynamic Conjunctive Queries

Thomas Zeume
TU Dortmund University

thomas.zeume@cs.tu-dortmund.de

Thomas Schwentick
TU Dortmund University

thomas.schwentick@tu-dortmund.de

ABSTRACT
The paper investigates classes of queries maintainable by
conjunctive queries (CQs) and their extensions and restric-
tions in the dynamic complexity framework of Patnaik and
Immerman. It studies the impact of union, atomic negation
and quantification on the dynamic expressiveness of CQ, for
the standard semantics as well as for ∆-semantics.

It turns out that, although there are many different combi-
nations of these features, there exist basically five important
fragments for the standard semantics, characterized by the
addition of the following features to the possibility to build
conjunctions over positive atoms: (1) arbitrary quantifica-
tion and atomic negation, (2) existential quantification and
atomic negation, (3) existential quantification, (4) atomic
negation (but no quantification), and (5) conjunction only
(and no quantification). Whether all these fragments are
actually different remains mostly open, however, it is shown
that (4) strictly subsumes (5). The fragments arising from
∆-semantics are also subsumed by the standard fragments
(1), (2) and (4).

As a further result, all (statically) FO-definable queries
are captured by fragment (2) and a complete characteri-
zation of these queries in terms of non-recursive dynamic
CQ¬-programs is given.

1. INTRODUCTION
The re-evaluation of a fixed query after an update to a

huge database can be a time-consuming process; in particu-
lar when it is performed from scratch. For this reason pre-
viously computed information such as the old query result
and (possibly) other auxiliary information is often reused in
order to speed up the process.

This maintenance of query results has attracted lots of
attention over the last decades of database related research.
For relational databases an algorithmic approach (see e.g.
[17, 11]) and a declarative approach (see e.g. [7, 16]) have
been studied. Here, we continue the study of the declarative
approach where query results are updated by queries from

(c) 2014, Copyright is with the authors. Published in Proc. 17th Interna-
tional Conference on Database Theory (ICDT), March 24-28, 2014, Athens,
Greece: ISBN 978-3-89318066-1, on OpenProceedings.org. Distribution
of this paper is permitted under the terms of the Creative Commons license
CC-by-nc-nd 4.0.

some query language.
One possible formalization of this approach is the descrip-

tive dynamic complexity framework (short: dynamic com-
plexity) introduced by Patnaik and Immerman [16]. For a
relational database subject to change, auxiliary relations are
maintained with the intention to help answering a query Q.
When an update to the database, an insertion or deletion of
a tuple, occurs, every auxiliary relation is updated through
a first-order query that can refer to both, the database and
the auxiliary relations. A particular auxiliary relation shall
always represent the answer to Q. The class of all queries
maintainable in this way, and thus also in the core of SQL,
is called DynFO.

The class DynFO is quite powerful. Many queries in-
expressible in (static) first-order logic, such as the transi-
tive closure query on undirected graphs [16] and the word
problem for context-free languages [9], can be maintained
in DynFO. In [8] a query inexpressible in first-order logic
extended by a transitive closure operator and counting has
been shown to be contained inDynFO. There are no general
inexpressibility results for DynFO at all1.

Towards a deeper understanding of the dynamic setting,
two main restrictions of DynFO have been explored in the
literature. Dong and Su started the study of restricted
auxiliary relations [6]. They restricted the arity of auxil-
iary relations and obtained inexpressibility results for unary
auxiliary relations. On the other hand, Hesse started the
exploration of syntactic fragments of DynFO, such as the
one obtained by disallowing quantification in update formu-
las [14]. Inexpressibility results for this particular fragment
have been obtained in [9].

In this work we investigate classes of queries maintainable
by conjunctive queries and extensions thereof, thus we are
following the approach of Hesse.

Conjunctive queries (CQs), that is, in terms of logic,
existential first-order queries whose quantifier-free part is
a conjunction of atoms, are one of the most investigated
query languages. Starting with Chandra and Merlin [2],
who analyzed conjunctive queries for relational databases,
those queries have been studied for almost every emerging
new database model. Usually also the extension by unions
(UCQs), by negations (CQ¬s) as well as by both unions
and negations (UCQ¬s or, equivalently, ∃∗FO) have been
studied. It is folklore that all those classes are distinct for
relational databases.

In this work we aim at the following goals.

1Except for the trivial ones due to the fact that queries main-
tainable in DynFO can be computed in polynomial time.

38 10.5441/002/icdt.2014.08

Goal 1. Understand the relationship between different
classes of dynamic conjunctive queries as well as their re-
lationship to static query classes.

Our focus for relating variants of dynamic conjunctive
queries is on the classes listed above. Some preliminary re-
sults have been obtained in [19] for the quantifier-free vari-
ants of conjunctive queries.

As for the relationship to static classes, it is interesting to
understand whether larger static classes C can be captured
by a dynamic class DynC′, for some weaker C′. Up to now
only two such results are known, namely, that MSO can
be characterized by quantifier-free DynFO on strings and
that ∃∗FO is captured by quantifier-free DynFO extended
by auxiliary functions on general structures [9].

In the framework of Patnaik and Immerman auxiliary re-
lations are always re-defined as a whole after an update.
However, in the context of query re-evaluation, it is often
convenient to express the new state of an auxiliary relation
R in terms of the current relation and some “Delta”, that
is, by specifying tuples R+ to be inserted into R and tuples
R− to be removed from R. We refer to the former seman-
tics as absolute semantics and to the latter as ∆-semantics.
Obviously, the choice of the semantics does not affect the
expressiveness of an update language that is closed under
Boolean operations. However, most of the update languages
in this paper lack some Boolean closure properties.

Goal 2. Understand the relationship between absolute
semantics and ∆-semantics for conjunctive queries and their
variants.

In this work we contribute to achieve those two goals as
follows.

Contributions. For an overview of the relationship of
the various dynamic classes of conjunctive queries we refer
to Figure 1.

The distinctness of those classes in static relational
databases does not translate into the dynamic setting:2

• We show that, in many cases, the addition of
the union-operator does not yield additional expres-
sive power in the dynamic setting, for example,
DynUCQ¬ = DynCQ¬, DynUCQ = DynCQ, and
DynPropUCQ¬ = DynPropCQ¬, where Prop indi-
cates classes without quantifiers.

• In other cases, negation does not increase the
expressive power of an update language, e.g.,
we have DynPropUCQ¬ = DynPropUCQ and
∆-DynCQ¬ = ∆-DynCQ.

• Further, often quantifiers can be replaced by their
dual quantifiers, e.g., Dyn∃∗FO(= DynUCQ¬) =
Dyn∀∗FO.

Whether DynCQ¬ = DynCQ remains open. However, a
first-step is taken towards the separation of the remaining
fragments:

• We show that dynamic conjunctive queries without
negations and quantifiers are strictly weaker than the
quantifier-free fragment of DynFO.

2The notation for classes will be formally introduced in Sec-
tions 2 and 4. In general, ∆ indicates ∆-semantics, the
absence of ∆ indicates absolute semantics.

Furthermore, we show that dynamic conjunctive queries
extended by negations capture all first-order queries:

• We characterize the class of first-order queries as
the class maintainable by non-recursive dynamic
Dyn∃∗FO-programs with a single existential quanti-
fier per update formula. This implies that dynamic
conjunctive queries extended by negations can main-
tain all first-order queries.

For the second goal, the main finding is that the difference
between absolute and ∆-semantics is much smaller than we
had expected.

• The dynamic classes corresponding to FO, CQ¬ and
Prop yield the same expressive power with respect to
absolute and ∆-semantics.

• It turns out that conjunctive queries and conjunc-
tive queries with negation coincide with respect to
∆-semantics, that is, in particular, ∆-DynCQ =
∆-DynCQ¬ and thus, also ∆-DynCQ = DynUCQ¬

.

Choice of setting. The concrete settings under
which dynamic complexity has been studied in the litera-
ture slightly differ in several aspects. We shortly discuss the
most important aspects, what choice we took for this work
and why we made this choice.

An important aspect is whether to use a finite and fixed
domain, an active domain or an infinite domain. In this
work, we follow the framework of Patnaik and Immerman
in which the domain is finite and fixed [16]. To maintain a
query, a dynamic program has to work uniformly for every
domain. This fixed domain framework for a dynamic set-
ting might appear counterintuitive at first sight. However,
it allows to study the underlying dynamic mechanisms of
dynamic programs, in particular when one is interested to
develop lower bound methods. Fixed domains also offer a
strong connection to logics and circuit complexity. In incre-
mental evaluation systems (IES), a framework proposed by
Dong and Topor [7], active domains are used. This setting
is a little closer to real database systems but most results in
dynamic complexity hold equally in both frameworks.

Another parameter to choose is how the auxiliary data is
initialized. In the setting of Patnaik and Immerman, dy-
namic programs start from empty databases and the auxil-
iary data is either initialized by a polynomial time compu-
tation or by a formula from the same class as the update
formulas. Later this was generalized by Weber and the sec-
ond author by proposing that dynamic programs start from
an arbitrary initial database and auxiliary data initialized by
a mapping computable in some given complexity class [18].

In this work we allow for arbitrary initialization map-
pings. This is motivated by our long term goal to develop
lower bound techniques for dynamic programs. While lower
bounds in settings with restricted initialization might de-
pend on this restriction, an inexpressibility result in the
setting with arbitrary initialization, on the other hand, re-
ally shows that a query cannot be maintained. A result like
DynUCQ = DynCQ is helpful for the development of lower
bound techniques, as it shows that for proving lower bounds
for DynUCQ it is sufficient to consider DynCQ programs
— but also that one has to be aware that lower bounds for

39

DynFO DynFO∧3.3
=

Dyn∃∗FO Dyn∀∗FO

DynCQ¬ DynUCQ¬

3.1
=

3.1
=

==

DynCQ DynUCQ3.2
=

DynProp DynPropUCQ¬

DynPropCQ¬ DynPropUCQ

=

[1
9
]

=

[1
9
]

=

=

DynPropCQ

∆-DynFO ∆-DynFO∧,∨4.5
=

∆-Dyn∃∗FO ∆-Dyn∀∗FO

∆-DynCQ¬ ∆-DynUCQ¬

∆-DynCQ ∆-DynUCQ

4.1
=

4.1
=

==

4.1
=

4
.5 = 4
.5 =

∆-DynProp ∆-DynPropUCQ¬

∆-DynPropUCQ

=

4
.5 = 4
.5 =

∆-DynPropCQ ∆-DynPropCQ¬4.5
=

4.4
====

4.2
====

4.4
====

Absolute Semantics ∆-Semantics

Figure 1: Hierarchy of fragments of DynFO. Solid lines are strict separations.

DynCQ are as hard as lower bounds for DynUCQ. How-
ever, though all our results are stated for arbitrary initial-
ization mappings, they also hold in the setting with empty
initial database and first-order initialization for the auxil-
iary data. The proofs do not carry over to the strict setting
of Patnaik and Immerman where, in a dynamic class DynC,
only C initializations are allowed.

Related work. We next discuss some further related
work, beyond what we already mentioned above. The ex-
pressivity of first-order logic in the dynamic complexity
frameworks discussed above has been studied a lot (see e.g.
[16, 6, 8, 13, 14, 18, 10, 9]). Most results focus on showing
that a problem from some static complexity class can be dy-
namically maintained by programs of a weaker query class.
Some lower bounds have been achieved as well (see e.g. [3,
4, 6, 9, 10, 19]). Many other aspects such as the arity of
auxiliary relations (see e.g. [6, 14]), whether the auxiliary
relations are determined by the current structure (see e.g.
[16, 5, 10]), and the presence of an order (see e.g. [10]) have
been studied.

An algebraic perspective of incremental view maintenance
under ∆-semantics has been studied in [15]. Parts of this
work have also been implemented, see, e.g., [1].

Outline. In Section 2 we define our dynamic setting
more precisely. In Section 3 the results for absolute seman-
tics are presented. The alternative ∆-semantics is intro-
duced and studied in Section 4. In Section 5 we give the
dynamic characterization of first-order logic. We conclude
with a discussion and a first step towards separations in Sec-
tion 6.

Acknowledgement. We thank Nils Vortmeier for care-
ful proofreading. Further we are grateful to the anonymous
reviewers for several very helpful comments. We acknowl-
edge the financial support by the German DFG under grant
SCHW 678/6-1.

2. DYNAMIC SETTING
In this section, we introduce the basic concepts and fix our

notation. We mainly borrow it from our previous work [19].
A dynamic instance of a query Q is a pair (D, α), where

D is a database over a finite domain D and α is a sequence
of updates to D, i.e. a sequence of insertions and deletions
of tuples over D. The dynamic query Dyn(Q) yields as
result the relation that is obtained by first applying the up-
dates from α to D and then evaluating the query Q on the
resulting database.

The database resulting from applying an update δ to a
database D is denoted by δ(D). The result α(D) of apply-
ing a sequence of updates α = δ1 . . . δm to a database D is
defined by α(D)

def
= δm(. . . (δ1(D)) . . .).

Dynamic programs, to be defined next, consist of an ini-
tialization mechanism and an update program. The former
yields, for every (input) database D, an initial state with
initial auxiliary data. The latter defines the new state of
the dynamic program for each possible update δ.

A dynamic schema is a tuple3 (τin, τaux) where τin and
τaux are the schemas of the input database and the auxiliary

3In [19] a dynamic schema had an additional schema for
an extra database with built-in relations. As in this paper,
we do not restrict auxiliary relations in any way and allow
arbitrary initialization, we do not need built-in relations.

40

database, respectively. In this work all schemata are purely
relational, although all results also hold for input schemas
with constants. We always let τ

def
= τin ∪ τaux.

Definition 1. (Update program) An update program P
over dynamic schema (τin, τaux) is a set of first-order formu-
las (called update formulas in the following) that contains,
for every R ∈ τaux and every δ ∈ {insS ,delS} with S ∈ τin,
an update formula φRδ (~x; ~y) over the schema τ where ~x and
~y have the same arity as S and R, respectively.

A program state S over dynamic schema (τin, τaux) is
a structure (D, I,A) where D is a finite domain, I is a
database over the input schema (the current database) and
A is a database over the auxiliary schema (the auxiliary
database).

The semantics of update programs is as follows. For an
update δ(~a), where ~a is a tuple over D, and program state
S = (D, I,A) we denote by Pδ(S) the state (D, δ(I),A′),

where A′ consists of relations R′ def
= {~b | S |= φRδ (~a;~b)}. The

effect Pα(S) of an update sequence α = δ1 . . . δm to a state
S is the state Pδm (. . . (Pδ1(S)) . . .).

Definition 2. (Dynamic program) A dynamic program is
a triple (P, Init, Q), where

• P is an update program over some dynamic schema
(τin, τaux),

• Init is a mapping that maps τin-databases to τaux-
databases, and

• Q ∈ τaux is a designated query symbol.

A dynamic program P = (P, Init, Q) maintains a dy-
namic query Dyn(Q) if, for every dynamic instance (D, α),
the relation Q(α(D)) coincides with the query relation QS

in the state S = Pα(SInit(D)), where SInit(D) is the initial
state, i.e. SInit(D)

def
= (D,D, Initaux(D)).

Several dynamic settings and restrictions of dynamic pro-
grams have been studied in the literature (see e.g. [16, 8,
10, 9]). Possible parameters are, for instance

• the logic in which update formulas are expressed;
• whether, in dynamic instances (D, α), the initial data-

base D is always empty; and
• whether the initialization mapping Initaux is permu-

tation-invariant (short: invariant), that is, whether
π(Initaux(D)) = Initaux(π(D)) holds, for every data-
base D and permutation π of the domain.

We refer to the introduction for a discussion of the choices
made in the following definition.

Definition 3. (DynC) For a class C of formulas, let DynC
be the class of all dynamic queries that can be maintained
by dynamic programs with formulas from C and arbitrary
initialization mapping.

In particular DynFO is the class of all dynamic queries
that can be maintained by first-order update formulas.
DynProp is the subclass of DynFO, where update formulas
are not allowed to use quantifiers.

We note that arbitrary, (possibly) non-uniform initializa-
tion mappings permit to maintain undecidable queries, even
when the logic for expressing update formulas is very weak.

Allowing arbitrary initialization mappings in Definition 5
helps us to concentrate on the maintenance aspect of dy-
namic complexity and it helps keeping proofs short. All our
results also hold for FO-definable initialization mappings on
ordered domains.

3. FRAGMENTS OF DynFO

In this section we study the relationship between the vari-
ants of dynamic conjunctive queries. This continues the
study of fragments of first-order logic that has been started
in [19].

We first give formal definitions of the classes of queries we
are interested in:

• CQ: the class of conjunctive queries, that is, queries
expressible by first-order formulas of the form ϕ(~x) =
∃~yψ, where ψ is a conjunction of atomic formulas.

• UCQ: the class of all unions of conjunctive queries,
that is, queries expressible by formulas of the form∨
i
∃~xψ, where ψ is a conjunction of atomic formulas.

We note that safety of queries is not an issue in this paper:
we use queries as update formulas only and we can always
assume that, for each required arity, there is an auxiliary
“universal” relation containing all tuples of this arity over
the active domain which could be used to make queries syn-
tactically safe.

The classes CQ and UCQ can be extended by addition-
ally allowing negated atoms, resulting in CQ¬ and UCQ¬,
or they can be restricted by disallowing quantification. It
is well known that UCQ¬ and ∃∗FO, the class of queries
expressible by existential first-order formulas, coincide, but
otherwise, all these classes are distinct. Furthermore, other
quantification patterns than ∃∗ can be considered, like ∀∗ or
arbitrary quantification.

The main goal of this section is to show that the relation-
ship of these classes in the dynamic setting is much simpler
than in the static setting. We prove that dynamic classes
collapse as indicated in the left part of Figure 1. More pre-
cisely, we show the following two theorems regarding the
second and the third fragment in the left part of Figure 1.

Theorem 3.1. Let Q be a query. Then the following
statements are equivalent:

(a) Q can be maintained in DynUCQ¬.

(b) Q can be maintained in DynCQ¬.

(c) Q can be maintained in Dyn∃∗FO.

(d) Q can be maintained in Dyn∀∗FO.

Theorem 3.2. Let Q be a query. Then the following
statements are equivalent:

(a) Q can be maintained in DynUCQ.

(b) Q can be maintained in DynCQ.

Using the same technique as is used for removing unions
from dynamic unions of conjunctive queries, a normal form
for DynFO can be obtained. The class DynFO∧ contains all
queries maintainable by a program whose update formulas
are in prenex normal form where the quantifier-free part is
a conjunction of atoms. The following theorem improves
Theorem 15 from [19].

Theorem 3.3. Let Q be a query. Then the following
statements are equivalent:

(a) Q can be maintained in DynFO.

41

(b) Q can be maintained in DynFO∧.

Before we turn to the proofs of these theorems, we discuss
the proof techniques that will be used.

For showing that a class DynC of queries is contained in a
class DynC′, it is sufficient to construct, for every dynamic
program with update queries from class C, an equivalent
dynamic program with update queries from class C′. In cases
where C′ ⊂ C this can also be seen as constructing a C′-
normal form for C-programs.

Most of the proofs for the collapse of two dynamic classes
in this paper are not very deep. Indeed, most of them use
one or more of the following (easy) techniques.

The replacement technique ([19]) is used to remove subfor-
mulas of a certain kind from update formulas and to replace
their “meaning” by additional auxiliary relations. In this
way, we often can remove negations (choose negative literals
as subformulas, see the proof of Theorem 3.5) and disjunc-
tions (see proof of Lemma 3.7) from update formulas.

The preprocessing technique is used to convert (more)
complicated update formulas into easier update formulas by
splitting the computation performed by the complicated up-
date formula into two parts; one of them performed by the
initialization mapping and stored in an additional auxiliary
relation, the other one performed by the easier update for-
mula using the pre-computed auxiliary relation. Applica-
tions of this technique are the removal of unions from dy-
namic unions of conjunctive queries (see example below) as
well as proving the equivalence of semantics for dynamic
conjunctive queries with negations (see Lemma 4.6).

Example 1. We consider the update formula

φ
R
δ (u; x) = ∃y

(
U(x, y) ∨ V (x, u)

)

for a unary relational symbol R. We aim at an equivalent
update formula ψRδ (u; x) without disjunction. The idea is
to store a ‘disjunction blue print’ in a precomputed auxil-
iary relation T and to use existential quantification to guess
which disjunct becomes true.

In this example, we assume that in every state of the dy-
namic program on every database, both the interpretations
of U and V are always non-empty sets.4 Then, φRδ (u;x) can
be replaced by

∃y∃z1∃z2∃z3∃z4
(
U(z1, z2) ∧ V (z3, z4)

∧ T (z1, z2, z3, z4, x, y, u)
)

where T is an additional auxiliary relation symbol which
is interpreted, in every state S , by a 7-ary relation TS con-
taining all tuples (a1, . . . , a7) with (a1, a2) = (a5, a6) or
(a3, a4) = (a5, a7). Thus TS ensures that either the val-
ues chosen for z1, z2 coincide with the values of x, y or the
values of z3, z4 coincide with x, u.

Therefore, the initialization mapping initializes T with the
result of the query

QT (z1, z2, z3, z4, x, y, u)
def
=

(
(z1, z2) = (x, y) ∨ (z3, z4) = (x, u)

)

Observe that this approach fails when U or V are inter-
preted by empty relations. In order to cover empty rela-
tions as well, some extra work needs to be done (see proof
of Lemma 3.7).

4This assumption will eventually be removed in the proof.

The squirrel technique maintains additional auxiliary re-
lations that reflect the state of some auxiliary relation after
every possible single update (or short update sequence).5

For example, if a dynamic program contains a relation sym-
bol R then a fresh relation symbol Rins can be used, such
that the interpretation of Rins contains the content of R after
update ins (for every possible insertion tuple). Of course,
Rins has higher arity than R, as it takes the actual inserted
tuple into account. Sample applications of this technique are
the removal of quantifiers from some update formulas (see
the following example and Lemma 3.4) and the maintenance
of first-order queries in DynCQ¬ (see Theorem 5.1).

Example 2. Consider the update formula

φ
Q
ins(u1;x) = ∃y

(
Q(x) ∨ ¬S(u1, y)

)

for the query symbol Q of some dynamic program P . In
order to obtain a quantifier-free update formula for Q af-
ter insertion of an arbitrary tuple we maintain the relation
Qins(· , ·) that contains a tuple (a, b) if and only if b would
be in Q in the next state, after insertion of a. Similarly for
S and deletions.

Then the update formula φ
Q
ins can be replaced by the

quantifier-free formula φ
Q
ins(u1;x)

def
= Qins(u1, x). The re-

lation Qins can be updated via

φ
Qins
ins (u0;u1, x)

def
= ∃y

(
Qins(u0, x) ∨ ¬Sins(u0, u1, y)

)

φ
Qins
del (u0;u1, x)

def
= ∃y

(
Qdel(u0, x) ∨ ¬Sdel(u0, u1, y)

)

and similarly, for the other new auxiliary relations.

We note that, in this example, the application of the tech-
nique does not eliminate all quantifiers in the program (in
fact, it removes one and introduces two new formulas with
quantifiers), but it removes quantification from the update
formula for a particular relation. Removing quantification
from the update formulas of the query relation will turn out
to be useful in the proofs of Lemmata 3.7, 3.9 and 4.6.

The proof of the following technical lemma is based on
this example. For an arbitrary quantifier prefix Q ∈ {∃, ∀}∗

let QFO be the class of queries expressible by formulas with
quantifier prefix Q. If Q is a substring of Q′ and a query Q
is in QFO then trivially Q is in Q′FO as well.

Lemma 3.4. Let Q be an arbitrary quantifier pre-
fix. For every DynQFO-program there is an equivalent
DynQFO-program P such that the update formulas for the
designated query symbol of P consist of a single atom.

Before we turn to dynamic conjunctive queries, we recall
some results from [19]. We denote by PropCQ, PropUCQ,
PropCQ¬ and PropUCQ¬ the classes of queries definable
by conjunctive queries (and their extensions) but without
quantification.

The first two results from [19] that we recall, are negation-
free normal forms for DynFO and for DynProp, the class of
queries maintainable by quantifier-free first-order formulas.

Theorem 3.5 ([19]). (a) Every DynFO-program
has an equivalent negation-free DynFO-program.

(b) Every DynProp-program has an equivalent
DynPropUCQ-program.

5Squirrels usually make provisions for every possible future.

42

Proof idea. This theorem is a generalization of Theorem
6.6 from [14]. Given a dynamic program P , the simple
idea is to maintain, for every auxiliary relation R of P ,

an additional auxiliary relation R̂ for the complement of
R.

Furthermore, there is a disjunction-free normal form for
DynProp.

Theorem 3.6 ([19]). Every DynProp-program has an
equivalent DynPropCQ¬-program.

Proof idea. The update formulas of a given DynProp-
program P can be assumed to be in conjunctive normal form.
An equivalent DynPropCQ¬-program is obtained by main-
taining an additional relation R¬C , for every (disjunctive)
clause C occurring in any update formula of P .

With these additional relations, every update formula

φ = C1(~x1) ∧ . . . ∧ Ck(~xk)

with clauses C1(~x1), . . . , Ck(~xk) can be replaced by the con-
junctive formula

¬R¬C1(~x1) ∧ . . . ∧ ¬R¬Ck
(~xk)

The new auxiliary relations R¬C themselves can be main-
tained by viewing ¬C as a conjunction of atoms and taking
the conjunction of all the conjunctive update formulas for
the literals6 in ¬C.

The two normal forms for DynProp can be seen
as collapse results for quantifier-free conjunctive
queries. Together they state that the dynamic classes
DynPropUCQ, DynPropCQ¬ and DynPropUCQ¬

coincide with DynProp.
Now we present new collapse results for dynamic con-

junctive queries. First, we prove that in the dy-
namic setting disjunctions can be simulated by existen-
tial quantifiers, that is DynUCQ and DynCQ as well as
DynUCQ¬ and DynCQ¬ coincide. However, we can not
apply the idea of the proof of Theorem 3.6 directly for this
result, since UCQ and UCQ¬ are not closed under nega-
tions.

Lemma 3.7. (a) For every DynUCQ¬-program there is
an equivalent DynCQ¬-program.

(b) For every DynUCQ-program there is an equivalent
DynCQ-program.

(c) For every DynFO-program there is an equivalent
DynFO∧-program.

Proof. We first prove the statements for domains with
at least two elements and show how to drop this restriction
afterwards. The construction uses the idea from Example 1.
We give it for (a) but, as it does not introduce any negation
operators it works for (b) as well. For (c) one starts from a
negation-free DynFO-program and uses the same construc-
tion used for (a)7.
6For this step it is needed that P contains, for every aux-

iliary relation R, an additional auxiliary relation R̂ for the
complement of R. This can be ensured by the technique
from Theorem 3.5.
7More precisely, replace the quantifier prefix ∃~y used
throughout the construction of (a) by a general quantifier-
prefix ∃~y1∀~y2

Let P = (P, Init, Q) be a DynUCQ¬-program over
schema τ . Without loss of generality, we assume that
the quantifier-free parts of all update formulas of P are
in disjunctive normal form. We convert P into an equiv-
alent DynCQ¬-program P ′ whose update formulas are in
prenex normalform with quantifier-free parts of the form∧
i
Li(~xi) ∧ T (~y), where Li are arbitrary literals over the

modified schema τ̂ and the symbols T are fresh auxiliary
relation symbols.

The program P ′ = (P ′, Init′, Q) is over schema τ ′ = τ ∪

τ̂ ∪ τT , where τ̂ contains a (k + 1)-ary relation symbol R̂
for every k-ary relation symbol R ∈ τ ; and τT contains a
relation symbol TS,δ for every relation symbol S ∈ τ ∪ τ̂ and
every update operation δ.

The intention for relation symbols from τ ′ is as follows.
The relation symbols R ∈ τ shall always be interpreted as

in P . The intention of R̂ ∈ τ̂ is, on one hand, to contain a
“copy of R” (in tuples with first component c, for some fixed
element c) and on the other hand, to have a guarantee that

R̂ is non-empty. The latter is strongly ensured by enforcing

all tuples that do not have c as first component to be in R̂,
and by |D| ≥ 2:

R̂
S def
= {(c,~a) | ~a ∈ R

S} ∪ {(d,~a) | d 6= c and ~a ∈ D
k} (1)

The relations TS,δ will be used as in Example 1.
Now we construct the update formulas for program P ′.

Let R ∈ τ and δ be an update. Further let

φ
R
δ (~u; ~x) = ∃~y(C1(~u, ~x, ~y) ∨ . . . ∨ Ck(~u, ~x, ~y))

be the update formula of R with respect to δ in P , where
every Ci is a conjunction of literals. For

Ci(~u, ~x, ~y) = L1(~v1) ∧ . . . ∧ Lm(~vl)

we define

Ĉi(v, ~u, ~x, ~y)
def
= L̂1(v,~v1) ∧ . . . ∧ L̂m(v,~vl)

where L̂j = R̂ if Lj = R and L̂j = ¬R̂ if Lj = ¬R.

The update formula ψR̂δ (~u;x
′, ~x) for R̂ ∈ τ̂ in P ′ is

ψ
R̂
δ (~u;x

′
, ~x)

def
=∃~y ∃z′1∃~z1 . . .∃z

′
k∃~zk(

Ĉ1(z
′
1, ~z1) ∧ . . . ∧ Ĉk(z

′
k, ~zk)

∧ T
R̂,δ

(~y, z′1, ~z1, . . . , z
′
k, ~zk, ~u, x

′
, ~x)

)

The update formula ψRδ (~u;x
′, ~x) for R ∈ τ in P ′ is

ψ
R
δ (~u; ~x)

def
=∃~y ∃z′1∃~z1 . . .∃z

′
k∃~zk(

Ĉ1(z
′
1, ~z1) ∧ . . . ∧ Ĉk(z

′
k, ~zk)

∧ TR,δ(~y, z
′
1, ~z1, . . . , z

′
k~zk, ~u, ~x)

)

To ensure equivalence of this program with the original
program, the relations TS,δ are defined as follows.

• TR,δ contains all tuples8 (~y, z′1, ~z1, . . . , z
′
k~zk, ~u, ~x), for

which, for some i, z′i = c and ~zi = (~u, ~x, ~y).

• T
R̂,δ

contains all tuples (~y, z′1, ~z1, . . . , z
′
k, ~zk, ~u, x

′, ~x)),
for which

– x′ 6= c, or

8For simplicity, we reuse variable names as element names.

43

– for some i, z′i = c and ~zi = (~u, ~x, ~y).

These are initialized as intended by simple quantifier-free
formulas (but with disjunction). Their interpretation is
never changed, that is, for every TS,δ, both update formulas
reproduce the current value of TS,δ.

The initialization for relation symbols from τ and τ̂ is
straightforward. Auxiliary relation symbols R ∈ τ are ini-

tialized as in P ; and auxiliary relation symbols R̂ ∈ τ̂
are initialized by Init′ analogously to Init but respecting
Equation (1).

This concludes the proof of (a), (b) and (c) for domains
with at least two elements. The restriction on the size of the
domains can be dropped as follows. In all three cases the
idea is to make a case distinction on the size of the domain
in the update formulas of the designated query symbol.

To this end, we first construct a DynPropCQ-program
P ′′ = (P ′′, Init′′, Q′′) over schema τ ′′ with τ ′ ∩ τ ′′ = ∅
which is equivalent to P over databases with domains of
size one. Then we construct a program P ′′′ equivalent to P
by combining P ′′ and the program P ′ for domains of size at
least two.

For the construction of P ′′ we observe that every relation
of a database over a single element domain D = {a} contains
either exactly one tuple, namely (a, . . . , a), or no tuple at all.
Thus every such relation R corresponds to a 0-ary relation
R0 where R0 is true if and only if (a, . . . , a) ∈ R. Hence, by
Lemma 3.8, there is a DynPropCQ-program equivalent to
P for databases with domains of size one.

To combine P ′ and P ′′ we use two different approaches,
one for (a) and one for (b) and (c).

First we consider (a). To this end, we can assume, by
Lemma 3.4, that the update formulas for the query relations
Q′ and Q′′ of P ′ and P ′′ consist of single atoms, respectively.

We construct an intermediate program P̃ = (P̃ , Ĩnit, Q̃)

over schema τ̃ = {Q̃, U} ∪ τ ′ ∪ τ ′′ where U is a fresh 0-
ary relation symbol. The intention is that interpretations of
symbols in τ ′ and τ ′′ are as in P ′ and P ′′, respectively, and
that U is interpreted by true if and only if the domain is of
size one. The initializations are accordingly.

Thus all update formulas of P̃ for relation symbols from
τ ′ and τ ′′ are as in P ′ and P ′′ (and thus disjunction-free).
The update formula for U is φUδ

def
= U and

φ
Q̃
δ

def
= (φQ

′

δ ∧ ¬U) ∨ (φQ
′′

δ ∧ U)

≡ (φQ
′

δ ∨ φQ
′′

δ) ∧ (¬U ∨ φQ
′′

δ) ∧ (φQ
′

δ ∨ U)

The program P ′′′ is obtained from P̃ by removing dis-

junctions from φ
Q̃
δ using the method9 from the proof of

Theorem 3.6. For example, the first clause is replaced by
¬R¬(Q′∨Q′′) where R¬(Q′∨Q′′) is a fresh auxiliary relation
symbol intended to be always interpreted by the result of

the query ¬(φQ
′

δ ∨φQ
′′

δ). The update formula for R¬(Q′∨Q′′)

after an update δ is ¬φQ
′

δ ∧¬φQ
′′

δ ; it is disjunction-free since,

by our assumption, φQ
′

δ and φ
Q′′

δ both consist of a single
atom. This concludes the proof of (a).

The program P ′′′ for (b) and (c) is over schema τ ′′′ =
{Q′′′}∪τ ′∪τ ′′. Again all update formulas of P ′′′ for relation
symbols from τ ′ and τ ′′ are as in P ′ and P ′′ and

φ
Q′′′

δ = φ
Q′

δ ∧ φQ
′′

δ

9This method cannot be used for DynCQ and DynFO∧.

The case distinction is delegated to the initialization map-
ping. Recall that the size of the domain is fixed when the
auxiliary relations are initialized. The initialization map-
ping Init′′′ is as follows. If |D| = 1 then

Init′′′(R) =

Init′′(Q′′) for R = Q′′′,

Dk for R ∈ τ ′,

Init′′(R′′) for R ∈ τ ′′

If |D| ≥ 2 then

Init′′′(R) =

Init′(Q′) for R = Q′′′,

Init′(R′) for R ∈ τ ′,

Dk for R ∈ τ ′′

Thus Init′′′ selects either φQ
′

δ or φQ
′′

δ , depending on the

size of the domain. If |D| = 1 then φQ
′

δ always evaluates to

true whereas φQ
′′

δ yields the same value as in P ′′, and vice
versa for |D| ≥ 2. As update formulas do not use negation,
all relations in the program, that is initialized to “true” (P ′

or P ′′) remain “full” throughout.10 This concludes the proof
of (b).

0-ary relations can either be true (containing the empty
tuple) or false (not containing the empty tuple and thus
being empty), thus 0-ary atoms are basically propositional
variables. Queries on 0-ary databases are therefore basi-
cally families of Boolean functions, one for each domain size.
Such queries are not very interesting from the perspective of
databases, but we need to show the following lemma as we
used it in the previous proof. As quantification in queries on
0-ary databases is useless, every FO query can be expressed
by a quantifier-free formula and therefore can be maintained
in DynProp. Yet, even more general, all queries on a 0-
ary database can be maintained by even more restricted dy-
namic programs. Let DynPropCQ be the class of dynamic
queries definable by update programs whose update formu-
las are solely conjunctions of atoms (i.e. no negations, no
disjunctions and no quantifiers are allowed).

Lemma 3.8. Every query on a 0-ary database can be
maintained by a DynPropCQ-program.

Proof. Let τin be an input schema with 0-ary relation
symbols A1, . . . , Ak. Further let Q1, . . . ,Qm be an enumer-

ation of all m = 22
k

many queries on τin. We actually show
that all of them can be maintained by one DynPropCQ-
program P with auxiliary schema τaux = {R1, . . . , Rm}
maintaining Qi in Ri, for every i ∈ {1, . . . ,m}.

To this end, let ϕ1, . . . , ϕm be propositional formulas over
τin such that ϕi expresses Qi and each ϕi is in conjunctive
normal form. Without loss of generality, no clause contains
Al and ¬Al for any Al ∈ τin and any ϕi. As τaux con-
tains a relation symbol, for every propositional formula over
A1, . . . , Ak, it contains, in particular, an auxiliary relation
symbol RC , for every disjunctive clause over A1, . . . , Ak.

The update formulas for Rj after changing input relation
Al can be constructed as follows. Let C be the set of clauses
of ϕj , i.e. ϕj =

∧
C∈C C. We denote by C+

Al
, C−

Al
and CAl

the subsets of C whose clauses contain Al, ¬Al and neither
Al nor ¬Al, respectively.

10This cannot be guaranteed for DynUCQ¬.

44

If Al becomes true by an update then ϕj evaluates to
true if all clauses in CAl

and all clauses C \ {¬Al} with
C ∈ C−

Al
evaluated to true before the update (clauses in C+

Al

will evaluate to true after enabling Al).
If Al becomes false by an update then ϕj evaluates to

true if all clauses in CAl
and all clauses C \ {Al} with C ∈

C+
Al

evaluated to true before the update (clauses in C−
Al

will

evaluate to true after disabling Al).
Therefore the update formulas for Rj after updating Al

can be defined as follows:

φ
Rj
insAl

def
=

∧

C∈CAl

RC ∧
∧

C∈C−

Al

RC\{¬Al}

φ
Rj
delAl

def
=

∧

C∈CAl

RC ∧
∧

C∈C+
Al

RC\{Al}

The initialization is straightforward. The correctness of
this construction can be proved by induction over the length
of update sequences.

Finally we prove that Dyn∃∗FO = Dyn∀∗FO, and there-
fore that unions of conjunctive queries with negation coin-
cide with Dyn∀∗FO in the dynamic setting. The proof uses
the replacement technique to maintain the complements of
the auxiliary relations used in the Dyn∃∗FO-program via
Dyn∀∗FO-formulas. A small complication arises from the
fact, that the query relation (and not its complement) has to
be maintained. This is solved by ensuring that the update
formulas of the query relation are atomic.

A slightly more general result can be shown.

Lemma 3.9. Let Q be an arbitrary quantifier prefix. A
query can be maintained in DynQFO if and only if it can
be maintained in DynQFO.

Now Theorems 3.1 and 3.2 follow immediately from
Lemma 3.7 and Lemma 3.9.

4. ∆-SEMANTICS
So far we considered a semantics where the new version of

the auxiliary relations is redefined, after each update, from
scratch by formulas that are evaluated on the structure with
the current auxiliary relations. We refer to this as absolute
semantics in the following.

However, in the context of view maintenance, one usually
expects only few auxiliary tuples to change after an update.
Therefore it is common to express the new version of the
auxiliary relations in terms of the current relations and some
“Delta”, that is, a (small) relation R+ of tuples to be inserted
into R and a (small) relation R− of tuples to be removed
from R (with R+∩R− = ∅). The updated auxiliary relation
R′ is then defined by

R
′ def
= (R ∪R+) \R−

We refer to this semantics as ∆-semantics. This is the se-
mantics usually considered in view maintenance. As already
stated in the introduction, absolute and ∆-semantics can
only be different if the underlying update language is not
closed under Boolean operations.

Next we formalize ∆-semantics via ∆-update programs
which provide formulas defining the relations R+ and R−,
for every auxiliary relation R.

Definition 4. (∆-Update program) A ∆-update program
P over dynamic schema (τin, τaux) is a set of first-order for-
mulas (called ∆-update formulas in the following) that con-
tains, for every R ∈ τaux and every δ ∈ {insS ,delS} with

S ∈ τin, two formulas φR
+

δ (~u; ~x) and φR
−

δ (~u; ~x) over the
schema τ where ~u and S have the same arity, ~x and R have

the same arity, and φR
+

δ ∧ φR
−

δ is unsatisfiable.

The semantics of ∆-update programs is as follows. For an
update δ = δ(~a) and program state S = (D, I,A) we denote
by Pδ(S) the state (D, δ(I),A′), where the relations R′ of
A′ are defined by

R
′ def
=

(
R ∪

{
~b | S |= φ

R+

δ (~a;~b)
})

\
{
~b | S |= φ

R−

δ (~a;~b)
}
.

The effect of an update sequence on a state, dynamic ∆-
programs and so on are defined like their counterparts in
absolute semantics except that ∆-update programs are used
instead of update programs.

Definition 5. (∆-DynC) For a class C of formulas, let
∆-DynC be the class of all dynamic queries that can be
maintained by dynamic ∆-programs with formulas from C
and arbitrary initialization mapping.

We note that the definitions above do not require that
R+∩R = ∅ or R− ⊑ R, that is, R+ might contain tuples that
are already in R, andR− might contain tuples that are not in
R. However, in all proofs below, we construct only ∆-update
formulas that guarantee these additional properties. As a
consequence, for the considered fragments, the expressive
power is independent of this difference.

The goal of this section is to prove the remaining results
of Figure 1, that is, the collapse results depicted in the right
part of the figure and the correspondences between absolute
semantics and ∆-semantics.

Theorem 4.1. Let Q be a query. Then the following
statements are equivalent:

(a) Q can be maintained in ∆-DynUCQ¬.

(b) Q can be maintained in ∆-DynUCQ.

(c) Q can be maintained in ∆-DynCQ¬.

(d) Q can be maintained in ∆-DynCQ.

(e) Q can be maintained in ∆-Dyn∃∗FO.

(f) Q can be maintained in ∆-Dyn∀∗FO.

Theorem 4.2. Let Q be a query. Then the following
statements are equivalent:

(a) Q can be maintained in DynUCQ¬.

(b) Q can be maintained in ∆-DynUCQ¬.

The technique used for removing unions from dynamic
unions of conjunctive queries under ∆-semantics can be
used to obtain a ∆-DynFO∧ normal form for ∆-DynFO-
programs.

Theorem 4.3. Let Q be a query. Then the following
statements are equivalent:

(a) Q can be maintained in ∆-DynFO.

45

(b) Q can be maintained in ∆-DynFO∧.

We state some basic facts about dynamic programs with
∆-semantics before proving those theorems. The following
lemma establishes the obvious fact that the absolute seman-
tics and ∆-semantics coincide in expressive power for dy-
namic classes closed under boolean operations. We observe
that the proof does not work for (extensions of) conjunc-
tive queries. Later we will see how to extend the result to
conjunctive queries.

Lemma 4.4. Let C be some fragment of first-order logic
closed under the boolean operations {∨,∧,¬}. Then for ev-
ery query Q the following are equivalent:

(a) There is a DynC-program that maintains Q.

(b) There is a ∆-DynC-program that maintains Q.

Proof. From an DynC-update formula φRδ , the
∆-DynC-update formulas are defined as

φ
R+

δ (~u; ~x)
def
= φ

R
δ (~u; ~x) ∧ ¬R(~x)

φ
R−

δ (~u; ~x)
def
= ¬φRδ (~u; ~x) ∧ R(~x)

From a ∆-DynC-update formulas φR
+

δ and φR
+

δ , an DynC-
update formula is obtained via

φ
R
δ (~u; ~x)

def
=

(
R(~x) ∨ φR

+

δ (~u; ~x)
)
∧ ¬φR

−

δ (~u; ~x)

Removing negations in dynamic programs with ∆-
semantics is straightforward using the replacement tech-

nique, since the complement R̂ of an auxiliary relation R can

be maintained by exchanging the formulas φR
+

δ and φR
−

δ .
Observe that in contrast to absolute semantics this works
for arbitrary query classes, even if they are not closed un-
der complementation, and in particular for (extensions of)
conjunctive queries.

Lemma 4.5. Let C be some fragment of first-order logic.
If a query Q can be maintained in ∆-DynC then Q can be
maintained in negation-free ∆-DynC.

Proof. The idea is again to maintain the complements
for auxiliary relations. For the sake of completeness we give
a full proof.

Given a dynamic ∆-program P over schema τ we con-
struct a dynamic ∆-program P ′ over schema τ ∪ τ̂ where
τ̂ contains, for every k-ary relation symbol R ∈ τ , a fresh

k-ary relation symbol R̂ with the intention that R̂ always
stores the complement of R.

The update formulas for R ∈ τ are as in P . For a relation

symbol R ∈ τ let φR
+

δ (~u; ~x) and φR
−

δ (~u; ~x) be the update for-

mulas of R. Then the update formulas for R̂ can be defined
as follows:

φ
R̂+

δ (~u; ~x) = φ
R−

δ (~u; ~x)

φ
R̂−

δ (~u; ~x) = φ
R+

δ (~u; ~x)

From P ′, a negation-free dynamic ∆-program P ′′ can be
constructed by replacing, for all R ∈ τ , all occurrences of

¬R(~x) in update formulas of P ′ by R̂(~x). We omit the ob-
vious proof of correctness.

We now turn towards proving the main results of this sec-
tion. We first prove Theorem 4.2. Afterwards we use the
connection between absolute and ∆-semantics that it estab-
lishes as well as the adaption of Lemma 3.7 to ∆-semantics
to prove the characterization of conjunctive queries with ∆-
semantics.

The only-if-direction of Theorem 4.2 can be generalized
to arbitrary quantifier prefixes. It is open whether the if-
direction generalizes as well.

Lemma 4.6. Let Q be an arbitrary quantifier prefix. If a
query can be maintained in DynQFO then it can be main-
tained in ∆-DynQFO as well.

Proof. Let P = (P, Init, Q) be a DynQFO-program
with schema τ . By Lemma 3.4 we can assume, with-
out loss of generality, that the update formulas of Q are
atomic. We construct a dynamic ∆-DynQFO-program
P ′ = (P ′, Init′, Q′).

The main challenge is to design update formulas of the

kind φR
−

δ without being able to complement the given up-
date formulas because this would lead to QFO-formulas (ad-

ditionally, the disjointness requirement for formulas φR
+

δ

needs to be ensured).
The basic idea is to use two copies of the auxiliary re-

lations, both alternating between empty and useful states,
such that one copy is useful for even steps and the other one
for odd steps. More precisely, for every auxiliary relation
R used by P , the program P ′ uses two auxiliary relations
Reven and Rodd with the intention that after an even se-
quence of updates Reven stores the content of R after the
same sequence of updates while Rodd is empty. After an
odd sequence of updates Reven is empty while Rodd stores
the content of R.

Then, for an even update, the relation R+
even can be simply

expressed as in absolute semantics (using “odd” relations)
and R−

even is empty. For an odd update R−
even can be simply

chosen as Reven and R+
even is empty. Similarly for Rodd.

In the following we give a precise construction of P ′ over
schema τeven ∪ τodd ∪ {Odd, Q′} where Odd is a boolean
relation symbol, and τeven and τodd contain, for every k-ary
relation symbol R ∈ τ , a k-ary relation symbol Reven and
Rodd, respectively. The relation Odd is used to store the
parity of the number of updates performed so far.

Let φRδ be the update formula of R ∈ τ for an update δ
in the dynamic program P . Denote by φRδ [τ → τeven] the
formula obtained from φRδ by replacing every atom S(~x) with
S ∈ τ by Seven(~x). Analogously for φRδ [τ → τodd]. Now, the
update formulas for Rodd and Reven are as follows:

φ
R

+
odd

δ (~u; ~x)
def
= ¬Odd ∧ φRδ [τ → τeven](~u; ~x)

φ
R

−

odd

δ (~u; ~x)
def
= Odd ∧Rodd(~x)

φ
R+

even

δ (~u; ~x)
def
= Odd ∧ φRδ [τ → τodd](~u; ~x)

φ
R−

even

δ (~u; ~x)
def
= ¬Odd ∧Reven(~x)

Observe that all those formulas can be easily converted
into QFO-formulas. The boolean auxiliary relation Odd
can be updated straightforwardly.

Now, since the update formulas of Q in P are quantifier-
free, the relation Q′ can be updated with the following

46

quantifier-free update formulas:

φ
Q′+

δ (~u; ~x)
def
= φ

Q
δ (~u; ~x)∧

¬
((

Odd ∧Qodd(~x)
)
∨
(
¬Odd ∧Qeven(~x)

))

φ
Q′−

δ (~u; ~x)
def
= ¬φQδ (~u; ~x)∧((
Odd ∧Qodd(~x)

)
∨
(
¬Odd ∧Qeven(~x)

))

The initialization mapping of P ′ is straightforward. Every
Reven ∈ τeven is initialized with Init(R). All Rodd ∈ τodd
are initialized with the empty relation. The relation Odd is
initialized with ⊥, and Q′ is initialized with Init(Q).

Lemma 4.7. (a) If a query can be maintained in
∆-DynUCQ¬ then it can be maintained in DynUCQ¬

as well.

(b) If a query can be maintained in ∆-Dyn∀∗FO then it
can be maintained in Dyn∀∗FO as well.

We note that the first statement could equally be expressed
in terms of ∆-Dyn∃∗FO and Dyn∃∗FO.

Proof. We only prove (a), the proof of (b) is analogous.
Let P = (P, Init, Q) be a dynamic ∆-DynUCQ¬-program
over schema τ . By Lemma 4.5 we can assume, without loss
of generality, that the update formulas of P are negation-
free. For ease of presentation we assume that the input
schema contains a single binary relation symbol E.

We construct an equivalent DynUCQ¬-program P ′ us-
ing the following idea. Consider some update formulas

φR
+

δ (~u; ~x) and φR
−

δ (~u; ~x) of a relation R ∈ τ for an update δ
in P . The näıve translation into a DynFO-update formula
φRδ (~u; ~x) yields the formula

φ
R
δ (~u; ~x) = (R(~x) ∨ φR

+

δ (~u; ~x)) ∧ ¬φR
−

δ (~u; ~x)

which is possibly non-UCQ¬ due to ¬φR
−

δ (~u; ~x). Therefore,

P ′ maintains a relation R−
δ that contains all tuples (~a,~b)

such that ~a would be removed from R after applying the up-

date δ(~b). Those relations are maintained using the squirrel
technique.

The dynamic program P ′ is over schema τ ∪ τ∆ where τ∆
contains a (k + 2)-ary relation symbol R−

δ ∈ τ for every k-
ary relation symbol R ∈ τ and every update δ ∈ {ins,del}
of the input relation E.

The update formula for a relation symbol R ∈ τ is

φ
R
δ (~u; ~x)

def
= (R(~x) ∨ φR

+

δ (~u; ~x)) ∧ ¬R−
δ (~u, ~x)

This formula can be translated into an existential formula
in a straightforward manner.

For updating a relation R−
δ1

after an update δ0, the update

formula φR
−

δ1
for R− is used. However, since R−

δ1
shall store

tuples that have to be deleted after applying δ1, the formula

φR
−

δ1
has to be adapted to use the content of relation symbols

S ∈ τ after update δ0 (instead, as usual, the content from
before the update). For this purpose relation symbols S ∈ τ

in φR
−

δ1
need to be replaced by their update formulas as

defined above.
The update formula for R−

δ1
is

φ
R

−

δ1

δ0
(~u0; ~u1, ~x)

def
= φ

R
−

δ1

δ0
[τ → φ

τ](~u0; ~u1, ~x)

where φ
R

−

δ1

δ0
[τ → φτ](~u0; ~u1, ~x) is obtained from φR

−

δ1
(~u; ~x)

by replacing every atom S(~z) by φSδ0(~u0; ~z), as constructed

above. Since by our initial assumption, φR
−

δ1
itself is an

existential formula without negation and all update formulas

φSδ0 for S ∈ τ are existential, the formula φ
R

−

δ1
δ0

can be easily
converted into an existential formula as well.

Lemmas 4.6 and 4.7 together yield Theorem 4.2. We now
finally prove Theorem 4.1. For this we need the following
adaption of Lemma 3.7 to ∆-semantics.

Lemma 4.8. (a) For every ∆-DynUCQ¬-program
there is an equivalent ∆-DynCQ¬-program.

(b) For every ∆-DynFO-program there is an equivalent
∆-DynFO∧-program.

Now, Theorem 4.1 follows from the Lemmata 4.5, 4.8, 4.6
and 4.7 as well as from Theorem 3.1.

5. A DYNAMIC CHARACTERIZATION OF
FIRST-ORDER LOGIC

In this section we characterize first-order queries as
the class of queries maintainable by non-recursive UCQ¬-
programs and, equivalently, by non-recursiveDyn∃1FO-pro-
grams. Here ∃1FO is the class of queries expressible by
first-order formulas in prenex normal form with at most one
existential quantifier and no universal quantifiers, and “non-
recursive” is explained next. This characterization in combi-
nation with Theorem 3.1 yields that first-order queries can
be dynamically maintained by CQ¬-programs.

The dependency graph of a dynamic program P with aux-
iliary schema τ has vertex set V = τ and an edge (R,R′) if
the relation symbol R′ occurs in one of the update formu-
las for R. A dynamic program is non-recursive if it has an
acyclic dependency graph (as a directed graph). For every
class C, non-recursive DynC refers to the set of queries that
can be maintained by non-recursive DynC-programs.

The objective of this section is to prove the following the-
orem.

Theorem 5.1. For every query Q the following state-
ments are equivalent

(a) Q can be expressed in FO.

(b) Q can be maintained in non-recursive DynFO.

(c) Q can be maintained in non-recursive Dyn∃1FO.

(d) Q can be maintained in non-recursive Dyn∀1FO.

With respect to the number of quantifiers in update formulas
this result is optimal because the first-order definable alter-
nating reachability query on graphs of bounded diameter
cannot be maintained with quantifier-free update formulas
[9]. Theorem 5.1 should be compared with the result of [9]
that all ∃∗FO queries can be maintained with quantifier-free
update programs extended by auxiliary functions.

Combining Theorem 5.1 with Theorem 3.1 immediately
yields the following corollary.

Corollary 5.2. Every first-order query can be main-
tained in DynCQ¬.

47

The rest of this section is devoted to the proof of Theorem
5.1, more precisely to the equivalence of statements (a)-(c).
The equivalence with (d) follows from Theorem 3.1 and the
fact that its proof does not introduce recursion when applied
to a non-recursive program.11 It is obvious that (c) implies
(b). For ease of presentation, we prove the remaining direc-
tions (a)⇒(c) and (b)⇒(a) for the input schema τin = {E}
where E is a binary relation symbol. The proofs can be
easily adapted to general (relational) signatures.

The following example outlines the idea of the construc-
tion for the proof of (a)⇒(c).

Example 3. Consider the query Q defined by

ϕ = ∃x∀y
(
E(x, x) → E(x, y)

)

≡ ∃x¬∃y¬
(
E(x, x) → E(x, y)

)

We construct a non-recursive dynamic Dyn∃1FO-program
P that maintains Q under deletions only (for simplicity).
The construction of P uses the squirrel technique. It uses
a separate auxiliary relation Rψ for each subformula ψ ob-
tained from ϕ by stripping off a “quantifier prefix” from the
existential prefix form of ϕ. The relation Rψ reflects the pos-
sible states after a sequence of changes whose length equals
the number of stripped off ¬- and ∃-symbols.

In order to update the query relation after the dele-
tion of an edge, we maintain an auxiliary ternary
relation12 R1 that contains the result of the query
ψ1

def
= ¬∃y¬

(
E(x, x) → E(x, y)

)
for every choice a1 for x and

every (possibly deleted) edge ~e1, that is (a1, ~e1) ∈ R1 if and
only if

(V,E \ {~e1}, {x 7→ a1}) |= ∀y
(
E(x, x) → E(x, y))

)

Then we can define φQdel(~v1)
def
= ∃xR1(x,~v1) and it only re-

mains to find a way to update the relation R1. To this end,
we maintain a further relation R2 that contains the result of
ψ2

def
= ∃y¬

(
E(x, x) → E(x, y)

)
for every choice a1 for x and

all (possibly deleted) edges ~e1, ~e2, that is (a1, ~e1, ~e2) ∈ R2 if
and only if

(V, E \ {~e1, ~e2}, {x 7→ a1}) |= ∃y¬
(
E(x, x) → E(x, y))

)

Then φR1
del(~v1;x,~v2)

def
= ¬R2(x,~v1, ~v2) and it remains to up-

date the relation R2. Therefore we maintain a relation R3

that contains the result of ψ3 = ¬
(
E(x, x) → E(x, y)

)
for

every choice a1, a2 for x, y and all (possibly deleted) edges
~e1, ~e2, ~e3. Then

φ
R2
del(~v1;x,~v2, ~v3)

def
= ∃yR3(x, y,~v1, ~v2, ~v3)

and it remains to update relation R3 via

φ
R3
del(~v1;x, y,~v2, ~v3, ~v4)

def
=

¬
(
E

′(x, x,~v1, . . . , ~v4) → E
′(x, y,~v1, . . . , ~v4)

)

where E′ is the edge relation obtained from E by deleting
~v1, ~v2, ~v3 and ~v4, that is E

′(x, y,~v1, . . . , ~v4) can be replaced
by

E(x, y) ∧ (x, y) 6= ~v1 ∧ . . . ∧ (x, y) 6= ~v4.

This completes the description of the program P for ϕ which
is easily seen to be non-recursive.

11Alternatively, the proof of (a)⇒(c) can be easily adapted
to show (a)⇒(d)

12For simplicity we write R1 instead of Rψ1
.

The proof of the implication (b)⇒(a) of Theorem 5.1 is
based on the squirrel technique with the following idea.
Given a non-recursive dynamic DynFO-program P =
(P, Init, Q), we construct (again), for every update pattern
δ = δ1 . . . δj and every auxiliary relation R, a first-order
formula ϕRδ that “precomputes” the state of R for every pos-
sible update sequence with the pattern δ. Thanks to non-
recursiveness, the formula ϕRδ can only use relations from
the input schema, once δ is longer than the number of aux-
iliary relations, that is, it is just a first-order formula over
τin. To obtain a first-order formula for Q it thus suffices to
pick such a formula with an update sequence δ that does not
change the structure. We now turn to the formal statement
and proof of the result.

A topological sorting of a graph (V,E) is a sequence
v1, . . . , vn such that every vertex from V occurs exactly once
and i > j for all edges (vi, vj) ∈ E. Every acyclic graph has
a topological sorting. In particular, if R1, . . . , Rm is a topo-
logical sorting of the dependency graph of a non-recursive
dynamic program P = (P, Init, Q) then update formulas for
R1 do only contain relation symbols from τin. Further we
can assume, without loss of generality, that Rm = Q.

The following definition will be useful in the proof of
Lemma 5.3. For every first-order formula ϕ with k free
variables and every sequence δ = δ1 . . . δj over {ins,del}
let ϕEδ1...δj be a (k + 2j)-ary formula such that for every

graph G = (V,E), every ~a ∈ V k and every instantiation
α = δ1(~e1) . . . δ2(~ej) of δ with tuples ~e1, . . . , ~ej ∈ V 2:

α(G) |= ϕ if and only if G |= ϕδ1...δj (~a,~e1, . . . , ~ej).

It is straightforward to construct ϕEδ1...δj .

Lemma 5.3. If a query can be maintained in non-
recursive DynFO, then it can be expressed in FO.

Proof. Let Q be a query which can be maintained by
a non-recursive DynFO-program P = (P, Init, Q) over
schema τ = τin ∪ τaux. We assume for simplicity that
τin = {E}, for a binary symbol E. We let R0

def
= E and

assume that the auxiliary relations R1, . . . , Rm are enumer-
ated with respect to a topological sorting of the dependency
graph of P with Rm = Q.

We define inductively, by i, for every sequence δ1 . . . δj
with j ≥ i, first-order formulas ϕRi

δ1...δj
(~y, ~x1, . . . , ~xj) over

schema τin = {E} such that ϕRi
δ1...δj

defines Ri after updates

δ1(~x1) . . . δj(~xj). More precisely ϕRi
δ1...δj

will be defined such

that for every state S = (V,ES ,AS) of P and every sequence
δ = δ1(~a1) . . . δj(~aj) of updates the following holds:

Pδ(S)↾Ri = {~b | (V,E) |= ϕ
Ri
δ1...δj

(~b,~a1, . . . ,~aj)} (2)

For R0 = E the formula ϕEδ1...δj can be defined just as
in the previous lemma. For Ri with i ≥ 1 the formula
ϕ
Ri
δ1...δj

(~y, ~x1, . . . , ~xj) is obtained from the update formula

φ
Ri
δj

(~xj ; ~y) of Ri by substituting all occurrences of Ri′(~z) by

ϕ
Ri′

δ1...δj−1
(~x1, . . . , ~xj−1, ~z) for all i

′ < i. Using induction over

i, one can prove that the formulas ϕRi
δ1...δj

satisfy Equation

2. As P is non-recursive, each formula ϕRi
δ1...δj

with j ≥ i is

over schema {E}.
The first-order formula ϕ for Q over schema τin = {E}

can be constructed as follows. The formula “guesses” a tuple

48

~a ∈ E, deletes and inserts it m times and applies ϕRm

(del ins)m

to the result (which is identical to the current graph), or (for
the case that E is empty) it guesses a tuple ~a 6∈ E, inserts
and deletes it m times and applies ϕRm

(ins del)m to the result.

More precisely, ϕ for Q is defined by

ϕ(~y)
def
= ∃~x

(
(E(~x) ∧ ϕRm

(del ins)m(~y, ~x, ~x, . . . , ~x︸ ︷︷ ︸
2m−times

))

∨ (¬E(~x) ∧ ϕRm

(ins del)m (~y, ~x, ~x, . . . , ~x︸ ︷︷ ︸
2m−times

))
)
.

6. DISCUSSION AND FUTURE WORK
In this work, we studied dynamic conjunctive queries. We

have shown that, contrary to the static setting, many frag-
ments collapse in the dynamic world. Furthermore, a close
connection between absolute semantics and ∆-semantics for
conjunctive queries has been established. These results were
summarized in Figure 1. Finally, it has been shown that
dynamic conjunctive queries with negations capture (static)
first-order logic.

All results are for arbitrary initialization mappings. How-
ever, they also hold in the setting with first-order definable
initialization mappings. They do not carry over when the
initialization mapping and updates have to be definable in
the same class.

Some first steps towards separation of the remaining
classes have been taken. We only state the results; the proofs
will appear in the full version of this work.

Theorem 6.1. The class DynPropCQ is a strict sub-
class of DynProp.

Theorem 6.2. The class DynProp is a strict subclass of
DynCQ.

The first result requires some work. The second result
relies on the observation that DynCQ captures the dy-
namic class DynQF, that is, the extension of DynProp
by auxiliary functions; and the separation of DynQF
and DynProp [9]. The even weaker dynamic class
DynProjections (where update formulas are restricted
to be projections) was separated from DynProp already
in [12].

Whether the remaining classes DynCQ, DynCQ¬ and
DynFO can be separated or collapsed remains open.

In addition to untangling the remaining variations of con-
junctive queries, the dynamic quantifier hierarchy and quan-
tifier alternation hierarchy, respectively, deserve a closer
look. Lemma 3.9 shows that in the dynamic setting the
Σi- and Πi-fragment of first-order logic coincide. Whether
there is a strict Σi-hierarchy remains open. Furthermore,
the equivalence of ∃∗FO with absolute and ∆-semantics does
not immediately translate to fragments of FO with alter-
nating quantifiers (although one of the direction does, see
Lemma 4.6).

Capturing first-order logic by dynamic conjunctive queries
with negations does not immediately yield performance
gains (since a first-order queries with k quantifiers is trans-
lated to a dynamic DynCQ¬-program of arity at least k).
In future work we plan to study whether the work that has
been started here can be used to improve the performance
of query maintenance.

7. REFERENCES
[1] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and

Milos Nikolic. Dbtoaster: Higher-order delta
processing for dynamic, frequently fresh views.
PVLDB, 5(10):968–979, 2012.

[2] Ashok K Chandra and Philip M Merlin. Optimal
implementation of conjunctive queries in relational
data bases. In Proceedings of the ninth annual ACM
symposium on Theory of computing, pages 77–90.
ACM, 1977.

[3] Guozhu Dong, Leonid Libkin, and Limsoon Wong. On
impossibility of decremental recomputation of
recursive queries in relational calculus and SQL. In
DBPL, page 7, 1995.

[4] Guozhu Dong, Leonid Libkin, and Limsoon Wong.
Incremental recomputation in local languages. Inf.
Comput., 181(2):88–98, 2003.

[5] Guozhu Dong and Jianwen Su. Deterministic FOIES
are strictly weaker. Ann. Math. Artif. Intell.,
19(1-2):127–146, 1997.

[6] Guozhu Dong and Jianwen Su. Arity bounds in
first-order incremental evaluation and definition of
polynomial time database queries. J. Comput. Syst.
Sci., 57(3):289–308, 1998.

[7] Guozhu Dong and Rodney W. Topor. Incremental
evaluation of datalog queries. In ICDT, pages
282–296, 1992.

[8] Kousha Etessami. Dynamic tree isomorphism via
first-order updates. In PODS, pages 235–243. ACM
Press, 1998.

[9] Wouter Gelade, Marcel Marquardt, and Thomas
Schwentick. The dynamic complexity of formal
languages. ACM Trans. Comput. Log., 13(3):19, 2012.

[10] Erich Grädel and Sebastian Siebertz. Dynamic
definability. In ICDT, pages 236–248, 2012.

[11] Ashish Gupta, Inderpal Singh Mumick, and
Venkatramanan Siva Subrahmanian. Maintaining
views incrementally. In ACM SIGMOD Record,
volume 22, pages 157–166. ACM, 1993.

[12] W. Hesse. Conditional and unconditional separations
of dynamic complexity classes. Unpublished
manuscript, 2003.

[13] William Hesse. The dynamic complexity of transitive

closure is in DynTC0. In ICDT, pages 234–247, 2001.

[14] William Hesse. Dynamic Computational Complexity.
PhD thesis, University of Massachusetts Amherst,
2003.

[15] Christoph Koch. Incremental query evaluation in a
ring of databases. In PODS, pages 87–98, 2010.

[16] Sushant Patnaik and Neil Immerman. Dyn-FO: A
parallel, dynamic complexity class. In PODS, pages
210–221. ACM Press, 1994.

[17] Oded Shmueli and Alon Itai. Maintenance of views. In
SIGMOD Conference, pages 240–255, 1984.

[18] Volker Weber and Thomas Schwentick. Dynamic
complexity theory revisited. Theory Comput. Syst.,
40(4):355–377, 2007.

[19] Thomas Zeume and Thomas Schwentick. On the
quantifier-free dynamic complexity of reachability. In
MFCS, 2013.

49

