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ABSTRACT

Shortest path computation is one of the most fundamental
operations for managing and analyzing graphs. A number
of methods have been proposed to answer shortest path dis-
tance queries on static graphs. Unfortunately, there is lit-
tle work on answering distance queries on dynamic graphs,
particularly graphs with edge failures. Today’s real-world
graphs, such as the social network graphs and web graphs,
are evolving all the time and link failures occur due to var-
ious factors, such as people stopping following others on
Twitter or web links becoming invalid. Therefore, it is of
great importance to handle distance queries on these failure-
prone graphs. This is not only a problem far more difficult
than that of static graphs but also important for processing
distance queries on evolving or unstable networks. In this
paper, we focus on the problem of computing the shortest
path distance on graphs subject to edge failures. We pro-
pose SIEF, a Supplemental Index for Edge Failures on a
graph, which is based on distance labeling. Together with
the original index created for the original graph, SIEF can
support distance queries with edge failures efficiently. By
exploiting properties of distance labeling on static graphs,
we are able to compute very compact distance labeling for
all singe-edge failure cases on dynamic graphs. We exten-
sively evaluate our algorithms using six real-world graphs
and confirm the effectiveness and efficiency of our approach.
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1. INTRODUCTION
Recent years have witnessed the fast emergence of massive

graph data in many application domains, such as the World
Wide Web, linked data technology, online social networks,
and Web of Things [21, 19, 22, 25]. In a graph, one of the
most fundamental challenges centers on the efficient compu-
tation of the shortest path or distance between any given
pair of vertices. For instance, distances or the numbers of
links between web pages on a web graph can be considered
a robust measure of web page relevancy, especially in rele-
vance feedback analysis in web search [21]. In RDF graphs
of linked data, the shortest path distance from one entity
to another is important for ranking entity relationships and
keyword querying [19, 14]. For online social networks, the
shortest path distance can be used to measure the closeness
centrality between users [22].

A large body of indexing techniques have been recently
proposed to process exact shortest path distance queries on
graphs [10, 23, 9, 8, 2, 26, 15]. Among them, a signifi-
cant portion of indexes are based on 2-hop distance label-
ing, which is originally proposed by Cohen et al. [12]. The
2-hop distance labeling techniques pre-compute a label for
each vertex so that the shortest path distance between any
two vertices can be computed by giving their labels only.
These labeling indexes, such as [10, 8, 2, 15], have been
proved to be efficient, i.e., being able to answer a distance
query within microseconds.

Motivation. The above mentioned approaches generally
make the assumption that graphs are static. However, in
reality, many graphs are subject to edge failures. In this pa-
per, we refer to graphs that are not subject to edge failures
as stable graphs, i.e., static graphs. Similarly, we refer to
graphs that are subject to edge failures as unstable graphs.
For example, the emerging social Web of Things calls for
graph data management with edge failures because smart
things are normally moving and their connectivity could be
intermittent, leading to frequent and unpredictable changes
in the corresponding graph models [11, 25]. Another exam-
ple is web graphs. It is not uncommon that some web links
become invalid as the web evolves. All these are examples
of unstable graphs, which are common in the real-world,
calling for efficient graph computations by considering link
failures. We believe that it is imperative to design novel
algorithms that can compute shortest path indexes for fast
response on distance queries avoiding any failed edge. Some
real-world applications/scenarios that require the computa-

 

 

145 10.5441/002/edbt.2015.14

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.14


tion of shortest path distance avoiding a failed edge are de-
scribed in the following.

Scenario 1. The most vital arc problem [17, 6] aims
to identify the edge on a given shortest path and the removal
of this edge results in the longest replacement path. Here, a
replacement path means a shortest path from a source vertex
to a destination vertex in a graph that avoids a specified edge.
To find the most vital arc in a graph, we need to compute
the shortest path distances efficiently when we are given an
arc (i.e., an edge) to avoid.

Scenario 2. In the sensitivity analysis and in many
analytical applications of transportation networks, govern-
ment agencies need to evaluate different road segments (i.e.,
to find how much a road segment is worth) through Vickrey
pricing [16], such that maintenance budget can be allocated
accordingly, or the amount of tolls can be adjusted reason-
ably [24]. For example, if tolls are not charged appropriately
and avoiding an expensive toll point causes only a small de-
tour, then it is more likely that most drivers would take the
detour, rather than pay for the toll.

Scenario 3. In order to develop game-theoretic and
price-based mechanisms to share bandwidth and other
network resources, a natural economic question is [16]: how
much is an edge in a network worth to a user who wants to
send data between two nodes along a shortest path? Or in
other words, what is the penalty of avoiding an edge in the
given network?

These application scenarios reveal an urge for handling
shortest path computations in a graph with single-edge fail-
ures. Here, single-edge failure refers to graph failures with
only one failed edge at a time [5]. Note that, other types of
edge failure, such as dual-failure in [13], may allow multiple
failed edges at a time. But they are considered much harder
than single-failure [13]. To shed light on these challenging
issues, we focus on single-edge failures in this paper.

Contributions. Since 2-hop labeling has shown its power
to support instant responses to shortest path distance queries
on stable graphs, our work aims at extending this technique
to support unstable graphs. Existing shortest path index-
ing techniques based on 2-hop labeling can be used to pre-
compute the whole shortest path index for a graph. The
resulted indexes can normally answer distance queries fast
using moderate storage space [2, 15]. However, applying in-
dexing techniques designed for static/stable graphs directly
to evolving/unstable graphs may lead to inefficiency. When
considering every single-edge failure case and constructing
a corresponding index for each case, the size of all these
indexes will become too big to manage. For instance, a
snapshot of the Gnutella peer-to-peer (P2P) file sharing net-
work in August 2002 contains more than 6,000 vertices1 and
20,000 edges. Using state-of-the-art method, Pruned Land-
mark Labeling (PLL) [2], the index size is slightly more than
5 MB. However, suppose we want to construct such index
for each single-edge failure case, the total index size would
be more than 5× 20, 000 = 105 MB.

To address the deficiency of existing shortest path in-
dexing techniques, this paper proposes a generic framework
named SIEF, a Supplemental Index for Edge Failures on a
1http://snap.stanford.edu/

graph, to construct compact shortest path indexes efficiently
for unstable graphs where single-edge failures may exist. As
an initial attempt on this challenging issue, we focus on un-
weighted, undirected graphs. Similar to other distance la-
beling based indexing methods [2, 15], our method can be
extended to weighted and/or directed graphs. We highlight
our main contributions in the following.

• We present the concept of well-ordering 2-hop distance
labeling and identify its important properties that can
be utilized to design algorithms for shortest path in-
dexes on graphs with edge failures.

• We analyze shortest path index constructions on graphs
with edge failures theoretically. We develop the corre-
sponding theorems as well as novel algorithms to en-
able constructions of compact indexes for all the single-
edge failure cases of the entire graph. By applying our
approach to the aforementioned Gnutella P2P dataset,
the size of the generated SIEF index together with the
original index created for the original graph is merely
14 MB, which is much more compact than 105 MB by
directly using PLL method [2] to construct indexes for
each single-edge failure case.

• We conduct extensive experiments on six real-world
graphs to verify the efficiency and effectiveness of our
method. The results show that our method can effi-
ciently answer shortest path distance queries avoiding
a failed edge with very compact labeling indexes.

The rest of this paper is organized as follows. In Section
2, we review the related work. In Section 3, we present some
preliminaries on 2-hop distance labeling. We then present
the framework and the details of our approach in Section 4.
In Section 5, we report the results of an extensive experi-
mental study using six graphs from real-world. Finally, we
present some concluding remarks in Section 6.

2. RELATED WORK
In this section, we review the major techniques that are

most closely related to our work.
Distance labeling has been an active research area in re-

cent years. In [10], Cheng and Yu exploit the strongly con-
nected components property and graph partitioning to pre-
compute 2-hop distance cover. However, the graph parti-
tioning process introduces high cost because it has to find
vertex separators recursively. Hierarchical hub labeling (HHL)
proposed by Abraham et al. [1] is based on the partial order
of vertices. Smaller labeling results can be obtained by com-
puting labeling for different partial order of vertices. In [18],
Jin et al. propose a highway-centric labeling (HCL) that
uses a spanning tree as a highway. Based on the highway, a
2-hop labeling is generated for fast distance computation.

Very recently, the pruned landmark labeling (PLL) [2] is
proposed by Akiba et al. to pre-compute 2-hop distance la-
bels for vertices by performing a breadth-first search from
every vertex. The key idea is to prune vertices that have
obtained correct distance information during breadth-first
searches, which helps reduce the search space and sizes of
labels. Further, query performance is also improved as the
number of label entries per vertex is reduced. IS-Label (or
ISL) is developed by Fu et al. in [15] to pre-compute 2-hop
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distance label for large graphs in memory constrained en-
vironments. ISL is based on the idea of independent set of
vertices in a large graph. By recursively removing an in-
dependent set of vertices from the original graph, and by
augmenting edges that preserve distance information after
the removal of vertices in the independent set, the remaining
graph keeps the distance information for all remaining ver-
tices in the graph. Apart from the 2-hop distance labeling
technique, a multi-hop distance labeling approach [8] is also
studied, which can reduce the overall size of labels at the
cost of increased distance querying time.

Tree decomposition approach has been recently investi-
gated [23, 4] for answering distance queries on graphs. Wei
proposes TEDI [23], which first decomposes a graph into a
tree and then constructs a tree decomposition for the graph.
A tree decomposition of a graph is a tree with each vertex
associated with a set of vertices in the graph, which is also
called a bag. The shortest paths among vertices in the same
bag are pre-computed and stored in bags. For any given
source and target vertices, a bottom-up operation along the
tree can be executed to find the shortest path. An improved
TEDI index is proposed by Akiba et al. in [4] that exploits
a core-fringe structure to improve index performance. How-
ever, due to the large size of some bags in the decomposed
tree, the construction time for a large graph is costly and
thus such indexing approaches cannot scale well.

Maintenance of 2-hop reachability labeling is also stud-
ied. For example, HOPI (2-HOP-cover-based Index) intro-
duces some maintenance techniques for the constructed in-
dex. HOPI is developed by Schenkel et al. in [20] and is de-
signed to speed up connection or reachability tests in XML
documents based on the idea of 2-hop cover. HOPI is able to
update indexes for insertions and deletions of nodes, edges
or even XML documents. To the best of our knowledge,
HOPI is the first work on maintenance of 2-hop labeling.
Recently, maintenance of 2-hop labeling for large graphs has
also been studied by Bramandia et al. in [7]. However, all
these studies focus on reachability queries and are based on
2-hop labeling but not on 2-hop distance labeling.

Incremental maintenance of 2-hop distance labeling is also
studied very recently by Akiba et al. in [3]. In that work, in-
cremental updates (i.e., edge insertions) of 2-hop labeling in-
dexes are investigated. To support fast incremental updates,
outdated distance labels are kept, which will not affect the
distance computation on the updated graphs in the incre-
mental case. However, for the decremental case (i.e., edge
deletions), this approach will not work, as outdated distance
labels must be removed first and then some necessary labels
of the 2-hop labeling index need to be recomputed. Hence,
their update algorithms cannot be applied on edge deletions
(i.e., edge failures), which will be discussed in this paper.

3. PRELIMINARIES

3.1 2-Hop Distance Labeling
The technique of 2-hop cover can be used to solve reacha-

bility problems (using reachability labels) and shortest path
distance querying problems (using distance labels) on graphs
[12]. Since our work focuses on the shortest path distance
querying problems, we adopt distance labels with the 2-hop
cover technique. We specifically refer to it as 2-hop distance
labeling or 2-hop distance cover.

Assume a graph G = (V,E), where V is a set of vertices
and E is a set of edges. For each vertex v ∈ V , there is a pre-
computed label L(v), which is a set of vertex and distance
pairs (u, δuv). Here u is a vertex and δuv is the shortest
path distance between u and v. Given such a labeling for all
vertices in G, denoted by L, for any pair of vertices s and t
in G, we have

dist(s, t, L) =min{δvs + δvt|(v, δvs) ∈ L(s)

and (v, δvt) ∈ L(t)}
(1)

If L(s) and L(t) do not share any vertices, we have dist(s, t, L)
=∞. The distance between any given vertices s and t in G is
denoted by dG(s, t). If we have dG(s, t) = dist(s, t, L) for all
s and t in G, we call the labeling result L a 2-hop distance
cover.

3.2 Well-Ordering 2-Hop Distance Labeling
For a connected graph G, there exists a sequence of ver-

tices σ =< v0, v1, v2, . . . , vn−1 >. We denote the order of
any vertex vi as σ[vi] and we have σ[vi] = i for the above
given vertex sequence. Based on this, we can define Well-
Ordering 2-Hop Distance Labeling in the following.

Definition 1 (Well-Ordering 2-Hop Distance Label-
ing). Suppose that (1) each vertex vi has a distance labeling
L(vi), and the labeling result L of all vertices forms a 2-hop
distance cover of G; (2) for any pair of vertices vi and vj ,
given that σ[vi] < σ[vj ], then vj is not in L(vi) and vi may
be in L(vj). We call such a 2-hop distance cover a well-
ordering 2-hop distance labeling. Alternatively we say that
a 2-hop distance cover has well-ordering property.

Similar concepts of well-ordering 2-hop distance labeling
also appear in recent research efforts such as HHL [1], PLL
[2], and ISL [15]. This confirms that well-ordering 2-hop
distance labeling is important in the related research area.
More importantly, we will show in this paper that the well-
ordering property is also a basic concept in the design of
index construction algorithms for distance labeling compu-
tation on unstable graphs where edges may fail.
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Figure 1: A graph example

In a graph containing multiple connected components,
suppose its 2-hop labeling is L. For any pair of vertices
u and v in different connected components, we can assert
that L(u) and L(v) do not share any vertex according to
the definition of 2-hop cover. Each connected component
has its own vertex orders. For such a graph, we will have
separate vertex orders for each connected component. We
denote a connected component containing vertex u as C(u).
If u and v belong to the same connected component, we have
C(u) = C(v).

Figure 1 shows an example graph with 11 vertices and
Table 1 shows a well-ordering 2-hop distance labeling result
L for the graph (L can be constructed by PLL [2] using the
same vertex ordering as that specified in the table). In the
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Table 1: 2-Hop Distance Labeling L for Figure 1
Label Entries
L(0) (0,0)
L(1) (0,1) (1,0)
L(2) (0,1) (2,0)
L(3) (0,1) (2,1) (3,0)
L(4) (0,1) (1,1) (4,0)
L(5) (0,2) (1,1) (2,1) (5,0)
L(6) (0,2) (2,2) (3,1) (4,2) (6,0)
L(7) (0,2) (2,2) (3,1) (6,1) (7,0)
L(8) (0,1) (4,1) (6,1) (8,0)
L(9) (0,3) (2,3) (3,2) (4,3) (6,1) (9,0)
L(10) (0,4) (2,4) (3,3) (4,4) (6,2) (9,1) (10,0)

table, the order of vertices is < 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 >.
Take L(5) as an example to further explain the idea of well-
ordering 2-hop distance labeling. L(5) is the label of vertex
5. By the well-ordering property, label entries in L(5) can
only contain vertices 0, 1, 2, 3, 4 and 5. Since label entries
containing vertices 3 and 4 are redundant in L(5) (this will
be explained in more details later in this section), label en-
tries in L(5) only contain vertices 0, 1, 2 and 5.

3.3 Properties of Well-Ordering 2-Hop Distance
Labeling

Technically speaking, if we index shortest paths for all
pairs using a labeling method, we will obtain an index that
occupies O(n2) disk space. This index can be considered
as a special 2-hop distance labeling. Obviously, the space
complexity of this is too high for large graphs. Constructing
a minimal 2-hop distance labeling has been proven to be NP-
hard [12]. Therefore, an alternative way to obtain labeling
results with reduced sizes is by using heuristic methods [10,
8, 2, 15]. Well-ordering 2-hop distance labeling is one of the
techniques that can help to design efficient algorithms for
constructing shortest path distance labeling indexes and for
index maintenance. We identify its useful properties in the
following.

Lemma 1. Given a well-ordering 2-hop distance labeling
L of a connected graph G, suppose u ∈ G and σ[u] is a
minimum among all vertices in G, then for any vertex v ∈ G,
we must have (u, δuv) ∈ L(v).

Proof. It is trivial to prove this when v = u since (u, 0) ∈
L(u). We prove the case when v ̸= u by contradiction. Sup-
pose there exists a vertex v ∈ G, (u, δuv) /∈ L(v). By the
definition of L, since σ[u] is minimum, L(u) will contain only
one label entry (u, 0). Then it is obvious that L(u) and L(v)
do not share any vertex, which leads to dist(u, v, L) = ∞.
This implies that u and v belong to different connected com-
ponents, which is false. Therefore, the lemma is proved.

Lemma 2. Given a well-ordering 2-hop distance labeling
L of a connected graph G, suppose s, t, u ∈ G and dist(s, t, L)
= dist(s, u, L)+dist(u, t, L), then u must be an internal ver-
tex of a certain shortest path between s and t.

Proof. Since dist(s, t, L) = dist(s, u, L) + dist(u, t, L),
there must exist some shortest path that starts from s,
passes u, and ends at t. Hence the lemma is proved.

Take vertices 5, 6 and 2 in Figure 1 as an example. From
Table 1, we have dist(5, 6, L)=3 and dist(5, 2, L)+dist(2, 6, L)

=1+2=3. From Figure 1, we can see that vertex 2 is an in-
ternal vertex on some shortest path, denoted as p, between
vertex 5 and vertex 6. In this case, we have p =< 5, 2, 3, 6 >.

Lemma 3. Given a well-ordering 2-hop distance labeling
L of a connected graph G, suppose s, t, u ∈ G and u has
minimum vertex order σ[u] among all shortest paths between
s and t. Then we must have (u, δus) ∈ L(s) and (u, δut) ∈
L(t) and dist(s, t, L) = δus + δut.

Proof. We prove this by contradiction. Without loss of
generality, suppose (u, δus) /∈ L(s). In order to calculate
dist(s, u, L), there must exist some vertex v other than u,
where (v, δvs) ∈ L(s), (v, δvu) ∈ L(u) and dist(s, u, L) =
δvs + δvu. According to Lemma 2, v must be an internal
vertex of some shortest path between s and u. Hence v
must also be an internal vertex of some shortest path be-
tween s and t. Meanwhile, by definition, we must have
σ[v] < σ[u]. This contradicts our assumption that u has the
minimum vertex order among all shortest paths between s
and t. Hence, we must have (u, δus) ∈ L(s). Furthermore, u
is an internal vertex of some shortest path between s and t,
thus dist(s, t, L) = δus+δut. Hence the lemma is proved.

Take vertices 1 and 6 in Figure 1 as an example. Paths
p1 =< 1, 0, 8, 6 >, p2 =< 1, 0, 3, 6 > and p3 =< 1, 4, 8, 6 >
are all the shortest paths between vertices 1 and 6. Vertex 0
is the one with minimum order along all these paths. From
Table 1 we can see that both vertices 1 and 6 contain a label
entry (0, δ). We can also easily check that dist(1, 6, L) =
δ0,1 + δ0,6 = 1 + 2 = 3.

Lemma 4. Given a well-ordering 2-hop distance labeling
L of a connected graph G, suppose σ[u] < σ[v]. If there is
a label entry (u, δuv) ∈ L(v), we must have for any label
entry (r, δrv) ∈ L(v), (1) δuv ≤ δrv + dist(r, u, L); (2) if
σ[r] < σ[u] and δuv = δrv+dist(r, u, L) then (u, δuv) ∈ L(v)
is a redundant label entry.

Proof. We first prove the first claim that δuv ≤ δrv +
dist(r, u, L). By definition and the triangle inequalities we
must have δuv = dG(u, v) = dist(u, v, L) ≤ δrv+dist(r, u, L).

We then prove the second claim. We need to prove that
if δuv = δrv + dist(r, u, L), then for any vertex t, when we
calculate dist(v, t, L), (u, δuv) in L(v) is not required. For t,
there are three cases: (1) (u, δut) /∈ L(t); (2) (u, δut) ∈ L(t)
but δuv + δut > dist(v, t, L); (3) (u, δut) ∈ L(t) and δuv +
δut = dist(v, t, L). For Case (1) and Case (2), it is trivial
since (u, δuv) in L(v) is not required to calculate dist(v, t, L).
For Case (3), according to Lemma 2, u is an internal vertex
of some shortest paths between v and t. Similarly, since
δuv = δrv + dist(r, u, L), r is an internal vertex of some
shortest paths between u and v, which means r is also an
internal vertex of some shortest paths between v and t. In
such case, we prove in the following that there must exist a
vertex s other than u and we have (s, δsv) ∈ L(v), (s, δst) ∈
L(t) where δst + δsv = dist(v, t, L).

Suppose s is the vertex with minimum vertex order among
all shortest paths between v and t. According to Lemma
3, we must have (s, δsv) ∈ L(v), (s, δst) ∈ L(t) and δst +
δsv = dist(v, t, L). Since σ[s] ≤ σ[r] < σ[u], s is not the
same vertex of u. Therefore, (u, δuv) in L(v) is not required
to calculate dist(v, t, L). Hence, the second claim is also
proved.
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Take label entries of vertex 5 in Table 1 as an example.
We have σ(3) < σ(5) and σ(2) < σ(3). We also have δ3,5 =
2 = δ2,5 + δ2,3. Therefore (3, 2) is a redundant label entry
in L(5), which can be removed from L(5).

4. THE SIEF APPROACH
In this section, we first provide an overview of our SIEF

approach. We then analyze the 2-hop distance labeling com-
putation on graphs with single-edge failures and introduce
a set of algorithms to achieve fast and compact index con-
structions.

4.1 SIEF Overview
After an edge fails on a graph, we observe that distances

of a considerable proportion of shortest paths between any
pair of vertices remain unchanged. Therefore, to construct a
new index for each single-edge failure case, we only need to
compute new labels for those vertices with changed shortest
path distances due to the edge failure. Overall, our index
construction approach can be divided into two main stages.
In the first stage, IDENTIFY, we identify affected vertices
after an edge fails. In the second stage, RELABEL, we re-
label all affected vertices with necessary additional label en-
tries for the single-edge failed graph. These new label entries
form a new part of the index, which is called a supplemental
index.

Before the detailed discussions of our algorithms, suppose
that the failed edge is (u, v) inG, and the new graph isG′, we
introduce a concept for the supplemental index construction:

Definition 2 (Affected vertices AV(u,v)). For any vertices
s and t, if dG′(s, t) ̸= dG(s, t), then s ∈ AV(u,v) and t ∈
AV(u,v).

To be specific, AV(u,v) contains all vertices whose distance
to some other vertex must have been changed due to the
failed edge (u, v). It is quite clear that supplemental indexes
should be constructed to maintain all new distances for each
single-edge failure case. In other words, supplemental in-
dexes are constructed based on all the vertices in AV(u,v).
Further, in order to be compact, the supplemental indexes
should only answer distances that cannot be answered by
the original index.

4.2 Identification of Affected Vertices
Before we can start to construct supplemental indexes, we

need to identify all the affected vertices in AV(u,v) first. A
naive method would be to compare distances for any possible
pair of affected vertices in the original graph G and the new
graph G′ with a failed edge (u, v), but that would be very
time consuming as it will need to test distances of O(n2)
pairs of vertices. In the following, we will try to identify
some important properties for vertices in AV(u,v) for us to
identify AV(u,v) more efficiently and accurately.

Lemma 5. After removing the failed edge (u, v) from graph
G, for any vertex s, t in G′, we must have dG′(s, t) ≥ dist(s, t,
L).

Proof. In the old graph G, there are only two types of
shortest paths: (1) shortest paths containing edge (u, v);
and (2) shortest paths not containing edge (u, v). For the
former, we have dG′(s, t) ≥ dG(s, t) = dist(s, t, L). For the
latter, we have dG′(s, t) = dG(s, t) = dist(s, t, L). Thus the
lemma is proved.

Lemma 6. After removing the failed edge (u, v) from graph
G, for any vertex s, t in G′, if dG′(s, t) > dist(s, t, L), and
suppose a shortest path between s and t in G is πG(s, t), then
we must have uv ∈ πG(s, t) or vu ∈ πG(s, t).

Proof. This can be proved by contradiction. Suppose
we have dG′(s, t) > dist(s, t, L) but uv /∈ πG(s, t) and vu /∈
πG(s, t), which means edge (u, v) does not appear in πG(s, t).
In such case, there must exist a path PG′(s, t) in G′ where
πG(s, t) = PG′(s, t). This means dG′(s, t) must be at most
the length of PG′(s, t), i.e., the length of πG(s, t). Thus, we
must have dG′(s, t) = dist(s, t, L′) ≤ dG(s, t). This contra-
dicts our assumption dG′(s, t) > dist(s, t, L).

According to Lemma 6 and the definition of affected ver-
tices, if we have dG′(s, t) > dist(s, t, L) = dG(s, t), we must
have that s, t ∈ AV(u,v). This further means the shortest
path(s) between s and t in the original graph G must con-
tain the failed edge (u, v). Then, after edge (u, v) fails, take
any one of these shortest paths (if multiple shortest paths
exist; if not, we will have one and only one shortest path con-
taining (u, v)) as an example, denoted as πG(s, t). Then it is
easy to imagine that πG(s, t) will become two segments: one
segment ends at u, denoted as Segu and the other segment
ends at v, denoted as Segv. Without loss of generality, sup-
pose s falls on the Segu and t falls on Segv. Since Segu and
Segv must also be shortest paths from s to u and from t to
v, respectively, this means we must have dG(s, u) = d′G(s, u)
and dG(t, v) = d′G(t, v). But in the meantime, we must have
dG(s, v) ̸= d′G(s, v) and dG(t, u) ̸= d′G(t, u) since otherwise
we will have dG′(s, t) = dG(s, t), which is impossible. Based
on this observation, we can see that vertices in AV(u,v) form
two disjoint sets: one set is AV(u,v)(u) and the other set is
AV(u,v)(v), where for ∀s ∈ AV(u,v)(u) and ∀t ∈ AV(u,v)(v),
we must have dG′(s, t) > dG(s, t), dG(s, u) = d′G(s, u) and
dG(t, v) = d′G(t, v). Since (u, v) is the failed edge, obviously,
we must have u ∈ AV(u,v)(u) or v ∈ AV(u,v)(v). Further,
it should be noted that, ∀s, t ∈ AV(u,v)(u), we must have
dG(s, t) = d′G(s, t). The same conclusion can be made on
∀s, t ∈ AV(u,v)(v).

Next, we are going to show that all vertices s ∈ AV(u,v)(u)
form a tree rooted at u and similarly, all vertices t ∈ AV(u,v)(v)
also form a tree rooted at v.

Lemma 7. After removing the failed edge (u, v), for any
vertex w in G′, suppose w is an affected vertex, i.e. w ∈
AV(u,v)(u) or w ∈ AV(u,v)(v). Without loss of generality,
we assume w ∈ AV(u,v)(u). Then we must have dG(w, v) =
dG(w, u) + 1.

Proof. Since w ∈ AV(u,v)(u), we must have that dG(w, v)
̸= d′G(w, v), which means that any shortest path between w
and v in G, denoted as pwv must contain the failed edge
(u, v), which must also be a shortest path between w and
v. Hence, there must exist a certain shortest path between
w and v containing edge (u, v) in the original graph and we
can denote it as pwv = pwu + (u, v). Hence, we must have
dG(w, v) = dG(w, u) + 1.

Lemma 8. After removing the failed edge (u, v), suppose
w in G′ is an affected vertex, i.e. w ∈ AV(u,v)(u) or w ∈
AV(u,v)(v). Without loss of generality, we assume w ∈ AV(u,v)

(u). Then there must exist a certain shortest path between
w and v containing edge (u, v) in the original graph, where
each internal vertex is an affected vertex in AV(u,v)(u).
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Algorithm 1 Identify affected vertices

Input: G, (u, v), distance vectors du, dv, d
′

u, d
′

v

Output: AV(u,v)(u), AV(u,v)(v)
1: Initialize flag m[t]← 0 for any vertex t in G
2: m[u]← 1
3: Q← ∅
4: Enqueue u into Q
5: while Q is not empty do
6: Dequeue t from Q
7: for all neighbor vertex r of t do
8: if m[r] = 0 then
9: if dv[r] = du[r] + 1 and d′v[r] ̸= du[r] + 1 then
10: AV(u,v)(u)← AV(u,v)(u) ∪ {r}
11: Enqueue r into Q
12: m[r]← 1
13: Repeat the above steps by mapping u ← v and v ← u

to identify AV(u,v)(v)
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Figure 2: Affected vertices identification

Proof. Since w ∈ AV(u,v)(u), then according to Lemma
7, we must have the fact that any shortest path between w
and u, denoted as pwu, plus edge (u, v) in the original graph
must be a shortest path between w and v. Then, there must
exist a certain shortest path between w and v containing
edge (u, v) in the original graph and we can denote it as
pwv = pwu + (u, v).

It is clear that the internal vertices of pwv must also be on
some shortest path pwu. And all shortest paths from these
internal vertices to vertex v must contain edge (u, v), which
means, their distances to vertex v must have changed in the
new graph G′. Therefore, they must also be affected vertices
in AV(u,v)(u) like w.

Note that, according to Lemma 8, AV(u,v)(u) and AV(u,v)

(v) can be considered as trees rooted at u and v, respectively.
Moreover, we must have AV(u,v)(u)

⋂
AV(u,v)(v) = ∅. This

is because otherwise, any vertex r in AV(u,v)(u)
⋂

AV(u,v)(v)
must have dG(r, v) = dG(r, u)+1 and dG(r, u) = dG(r, v)+1,
which is impossible. Lemma 8 forms the basis of Algorithm
1. Note that, in Algorithm 1, we need to calculate distance
vectors du, dv, d

′

u and d′v for each single-edge failure case.
Here, du stores distances from all vertices in G to vertex u
while d′u stores distances from all vertices in G′ to vertex
u. Distance vectors dv and d′v are similar. The calculations
can be done efficiently using a BFS algorithm. To reduce
the calculation cost, we will fix an end point of failed edges,
i.e., we will firstly compute affected vertices for all edges
attached to u then we move to other vertices for processing
the rest single-edge failure cases.

Figure 2 shows two examples of identifying affected ver-
tices. It uses the same graph in Figure 1. In this figure,
the first example is Case (a), where the failed edge is (0, 8).

The second example is Case (b), where the failed edge is
(6, 9). In Case (a), starting from vertex 0, we identify the
affected vertex set rooted at 0 as AV(0,8)(0) = {0, 2} since
only vertices 0 and 2 have changed their distance to vertex
8. Meanwhile, starting from vertex 8, we identify the af-
fected vertex set rooted at 8 as AV(0,8)(8) = {8} since only
vertex 8 has changed its distance to vertex 0. Differently, in
Case (b), as can be observed in the figure, the original graph
will become two connected components rooted at vertices 6
and 9, respectively. In this case, it is obvious that we have
AV(6,9)(6) = {6, 7, 8, 0, 3, 4, 2, 5} and AV(6,9)(9) = {9, 10}.

4.3 Relabeling: Supplemental Index Construc-
tion

After identifying all affected vertices, we can start rela-
beling the affected vertices in order for fast computation of
shortest path distances on the graph with single-edge fail-
ures. Only supplemental indexes will be created, i.e., only
changed distance information will be captured in supplemen-
tal indexes. All the unchanged distance information will be
still computed using the original indexes (such as the dis-
tance labeling in Table 1 for the example graph in Figure
1). We develop two relabeling algorithms for the supplemen-
tal index construction, namely the BFS AFF algorithm and
the BFS ALL algorithm. Detailed descriptions of these two
algorithms are presented in the following.

4.3.1 BFS AFF algorithm
The BFS AFF algorithm relabels affected vertices using

the traditional BFS algorithm. The BFS AFF algorithm
uses a late label-pruning strategy which can save memory
usage during the relabeling process. The detail steps are
shown in Algorithm 2. To help understand the main idea of
the BFS AFF algorithm, Figure 3 also depicts an example of
the supplemental index construction process using the BFS
AFF algorithm.

The failed edge is (0,8) in this example and there are three
steps in Figure 3. Each step relabels one affected vertex. At
Step (1), BFS AFF algorithm performs BFS from vertex
0. The number beside each node is the distance from that
node to the BFS root, vertex 0. In this step, vertex 8 is
the only affected vertex in AV(0,8)(8) that has larger vertex
order than vertex 0. Therefore, the BFS process starting
from vertex 0 will stop at distance 2 and will not examine
vertices 9 and 10. After the BFS process stops, we add a
supplemental label entry to the supplemental label of ver-
tex 8, resulting in SL(0,8)(8) = {(0, 2)}. At Step (2), BFS
process starts from vertex 2. Note that, the distance infor-
mation has been discarded at this step. Similarly, vertex
8 is the only affected vertex in AV(0,8)(8) that has larger
vertex order than vertex 2. Then the BFS process starting
from vertex 2 will stop at distance 3. Then we may want
to add another label entry (2, 3) into SL(0,8)(8). But based
on the original index shown in Table 1 and the current sup-
plemental label SL(0,8)(8) = {(0, 2)}, we find that (2, 3) is a
redundant label entry in SL(0,8)(8) = {(0, 2)} since the dis-
tance between vertex 2 and vertex 8 can be computed based
on SL(0,8)(8) = {(0, 2)} and the original index in Table 1.
We call this the late-pruning strategy. Finally, at Step (3),
the BFS process will start from vertex 8. However, since no
vertex in AV(0,8)(0) has smaller vertex order than vertex 8,
no label entry will be added to the supplemental index at
this step. The final supplemental index that is constructed
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Algorithm 2 BFS AFF algorithm

Input: G, (u, v), AV(u,v)(u), AV(u,v)(v)
Output: The supplemental index SIu and SIv for the edge

failure case of (u, v)
1: G′ ← G− {(u, v)}

//Construct SIu for vertices in AV(u,v)(u)
2: SIu ← ∅
3: for all r ∈ AV(u,v)(u) (in ascending vertex order) do
4: Initialize supplemental label for r: SL← ∅
5: Start BFS algorithm to compute all the distances from

r to any vertices in AV(u,v)(v) that have larger vertex
order than σ(r)

6: for all vertex t in AV(u,v)(v) that has σ(t) > σ(r) do
7: if (t, dG′(t, r)) is not a redundant label entry in SL

then
8: SL← SL ∪ (t, dG′(t, r))
9: SIu ← SIu ∪ (r, SL)

//Construct SIv for vertices in AV(u,v)(v)
10: SIv ← ∅
11: for all r ∈ AV(u,v)(v) (in ascending vertex order) do
12: Initialize supplemental label for r: SL← ∅
13: Start BFS algorithm to compute all the distances from

r to any vertices in AV(u,v)(u) that have larger vertex
order than σ(r)

14: for all vertex t in AV(u,v)(u) that has σ(t) > σ(r)
do

15: if (t, dG′(t, r)) is not a redundant label entry in SL
then

16: SL← SL ∪ (t, dG′(t, r))
17: SIv ← SIv ∪ (r, SL)

for the failed edge (0, 8) on the graph shown in Figure 1 is
shown at Step (3). We will show later in Section 4.4 that
such supplemental index is adequate for distance query eval-
uation.

4.3.2 BFS ALL algorithm
The BFS ALL algorithm is very similar to the BFS AFF

algorithm. The major diference is that the BFS ALL algo-
rithm uses an early label-pruning strategy which consumes
more memory during the relabeling process but gains ac-
celeration of the relabeling process. The detail steps are
shown in Algorithm 3. Figure 4 also depicts an example of
the supplemental index construction process using the BFS
ALL algorithm.

The failed edge is also (0,8) in this example and there are
three steps in Figure 4. The main difference between BFS
ALL an BFS AFF algorithms is that, in the BFS ALL al-
gorithm, the distance information will be kept at each BFS
step, using a set of temporary labels stored in TL. This dis-
tance information in TL can be used to prune label entries
at the later BFS steps of the index construction process for
all vertices in the graph and some vertices can be pruned
during a BFS process. For example, at Step (2) in Figure
4, the number of vertices we need to visit (the vertices with
bold label entries) is only seven, while at Step (2) in Figure
3, that number is 10 (by counting the vertices with dis-
tance information). Therefore, three vertices can be pruned
at Step (2) in the BFS ALL algorithm. We call this the
early-pruning strategy. It is obvious that the BFS ALL al-
gorithm introduces more memory usage since BFS ALL has
TL while BFS AFF does not. But the benefit of TL is that it
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Figure 3: Supplemental index construction: BFS
AFF on failed edge (0, 8)

can prune vertices at an early stage, and as will be shown in
Section 5, this can speed up the BFS process greatly. Nev-
ertheless, the final supplemental index constructed by the
BFS ALL algorithm is the same as that constructed by the
BFS AFF algorithm as the construction of SIu and SIv in
both algorithms is the same.

4.4 Distance Query Evaluation on SIEF
For each single-edge failure case, we classify all possible

distance queries into different types. Suppose the graph is
G, the original labeling index is L, the failed edge is (u, v),
the affected vertices are in AV(u,v)(u) and AV(u,v)(v), and
the supplemental index is SI(u,v) (here, SI(u,v) = SIu ∪
SIv). We also denote G′ = G − {(u, v)}. Given any pair of
vertices s, t, we would like to compute the distance between
s, t on G′, denoted as dG′(s, t). Then we have the following
different cases:

• Case 1: s /∈ AV(u,v)(u)∪AV(u,v)(v) and t /∈ AV(u,v)(u)∪
AV(u,v)(v)

• Case 2: s /∈ AV(u,v)(u)∪AV(u,v)(v) and t ∈ AV(u,v)(u)∪
AV(u,v)(v), or similarly, s ∈ AV(u,v)(u)∪AV(u,v)(v) and
t /∈ AV(u,v)(u) ∪AV(u,v)(v)
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Algorithm 3 BFS ALL algorithm

Input: G, (u, v), AV(u,v)(u), AV(u,v)(v)
Output: The supplemental index SIu and SIv for the edge

failure case of (u, v)
1: G′ ← G− {(u, v)}

//Construct SIu for vertices in AV(u,v)(u)
2: SIu ← ∅
3: Initialize temporary labels TL← ∅
4: for all r ∈ AV(u,v)(u) (in ascending vertex order) do
5: Initialize supplemental label for r: SL← ∅
6: Start BFS algorithm to compute all the distances from

r to any vertices in AV(u,v)(v) that have larger vertex
order than σ(r) and record all temporary labels for all
encountered vertices in TL; during the BFS process,
if a new temporary label entry for a vertex w is redun-
dant in TL, all neighbor vertices of w can be ignored
by BFS

7: for all vertex t in AV(u,v)(v) that has σ(t) > σ(r) and
has been searched by the above BFS process do

8: if (t, dG′(t, r)) is not a redundant label entry in SL
then

9: SL← SL ∪ (t, dG′(t, r))
10: SIu ← SIu ∪ (r, SL)

//Construct SIv for vertices in AV(u,v)(v)
11: SIv ← ∅
12: Initialize temporary labels TL← ∅
13: for all r ∈ AV(u,v)(v) (in ascending vertex order) do
14: Start BFS algorithm to compute all the distances from

r to any vertices in AV(u,v)(u) that have larger vertex
order than σ(r) and record all temporary labels for
all encountered vertices in TL; during the BFS pro-
cess, if a new temporary label entry for a vertex w is
redundant in TL, then all neighbor vertices of w will
not be searched by BFS

15: for all vertex t in AV(u,v)(u) that has σ(t) > σ(r)
and has been searched by the above BFS process do

16: if (t, dG′(t, r)) is not a redundant label entry in SL
then

17: SL← SL ∪ (t, dG′(t, r))
18: SIv ← SIv ∪ (r, SL)

• Case 3: s ∈ AV(u,v)(u) and t ∈ AV(u,v)(u), or similarly,
s ∈ AV(u,v)(v) and t ∈ AV(u,v)(v)

• Case 4: s ∈ AV(u,v)(u) and t ∈ AV(u,v)(v), or similarly,
s ∈ AV(u,v)(v) and t ∈ AV(u,v)(u)

Case 1 is trivial and we must have dG′(s, t) = dG(s, t) =
dist(s, t, L).

In Case 2 and in Case 3, according to Lemma 6 and the
definition of affected vertices (see analysis in Section 4.2),
we must also have dG′(s, t) = dG(s, t) = dist(s, t, L).

In Case 4, suppose s ∈ AV(u,v)(u) and t ∈ AV(u,v)(v)
(the other case can be analyzed in the same way). Obvi-
ously, distance between s and t changes to a larger value
due to the failed edge. If s and t become disconnected to
each other in G′, both will not have labels in SI(u,v), then
we have dG′(s, t) = ∞. If s and t is still connected in G′

and without loss of generality, suppose the vertex order is
σ(s) < σ(t), then at least vertex t contains supplemental
label entries. This is because in both the BFS AFF algo-
rithm and the BFS ALL algorithm, the affected vertex with
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Figure 4: Supplemental index construction: BFS
ALL on failed edge (0, 8)

minimum vertex order in AV(u,v)(u) (which is at most σ(s))
must produce one supplemental label entry for vertex t in
SI(u,v) (see Lemma 3 for related details). For vertex s it-
self, if it does not produce any supplemental label entry for
vertex t in SI(u,v), then it must be because the produced
label entry is a redundant label. This means, in either case,
the label entries of the supplemental label for vertex t in
SI(u,v) must already contain adequate distance information
for the computation of dG′(s, t). For example, to calculate
dG′(2, 8) in Figure 4, SL(0,8)(8) = {(0, 2)} combining with
L(2) = {(0, 1) (2, 0)} in Table 1 is adequate and we can see
that dG′(2, 8) = 1 + 2 = 3.

4.5 Some Remarks

Initial Index Construction. Pruned Landmark Labeling (PLL)
technique presented in [2] is a state-of-the-art indexing tech-
nique for large static graphs. Indexes constructed by PLL
[2] already have well-ordering property defined in Section 3.
Therefore we use indexes constructed by PLL as the initial
indexes for all original graphs in our experiments.

Time Complexity. Our algorithms can be directly applied on
indexes constructed by PLL. Let w be the tree width [2] ofG,
n be the number of vertices and m be the number of edges in
G. Also let (u, v) be the failed edge. If let p = |AV(u,v)(u)∪
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AV(u,v)(v)| for each single-edge failure case (on average),
the time complexity of the BFS AFF algorithm is O(pn +
pm) as it requires to perform p times BFS to compute SIu
and SIv. Further, according to analysis of PLL in [2], the
number of label entries per vertex is O(w log n). Then the
time complexity of the BFS ALL algorithm is O(nw log n+
p2w log n), where O(nw log n) is the time upper bound to
build temporary labels TL (note that p BFS rounds are
enough to build the TL index that contains at most nw log n
label entries) and O(p2w log n) is the time upper bound for
redundancy tests.

5. EXPERIMENTS
We evaluated the performance of our proposed SIEF ap-

proach and this section reports the results. All experiments
were performed under Linux (Ubuntu 10.04) on a server pro-
vided by eResearch SA2. The server was running on Dell
R910 with 32 processing cores (four 8-core Intel Xeon E7-
8837 CPUs at 2.67 GHz), 1024 GB main memory and 3 TB
local scratch disk. All methods were implemented in C++
(the code of PLL [2] was obtained from the first author’s
code repository on GitHub3) using the same gcc compiler
(version 4.4.6) with the optimizer option O3. It is worth
mentioning that although we have a large amount of main
memory on the server, the memory usage of our approach is
in fact quite small and as observed during our experiments,
the memory usage was within 12 GB for all datasets.

5.1 Datasets
Table 2 lists the six real-world datasets used in our exper-

iments, which are briefly introduced as follows:

• Gnutella is a snapshot of the Gnutella peer-to-peer
file sharing network collected in August 2002. Vertices
represent hosts in the Gnutella network topology and
edges represent connections between the hosts.

• The dataset Facebook consists of circles (or friends
lists) from Facebook, which were collected from sur-
vey participants using a Facebook app called Social

Circles.

• Wiki-Vote contains all Wikipedia voting data from the
inception of Wikipedia till January 2008.

• Oregon is a graph of Autonomous Systems (AS) peer-
ing information inferred from Oregon route-views on
May 26 2001.

• Ca-HepTh collaboration network of Arxiv High Energy
Physics Theory category (there is an edge if authors
coauthored at least one paper). The data covers papers
in the period from January 1993 to April 2003 (124
months).

• Ca-GrQc collaboration network of Arxiv General Rela-
tivity category. Like Ca-HepTh, the data covers papers
in the period from January 1993 to April 2003 (124
months).

More details on these datasets can be found at the Stan-
ford Network Analysis Project website4. Similar to [3, 2],
we treat all graphs as undirected, unweighted graphs.
2http://www.ersa.edu.au/
3https://github.com/iwiwi/pruned-landmark-labeling
4http://snap.stanford.edu/

It should be noted that, in Table 2, |V | refers to the num-
ber of vertices and |E| refers to the number of edges. In
addition, IT denotes the indexing time or index construc-
tion time (in seconds) and LN denotes the average number
of label entries of each vertex. We obtained these IT and LN
results by using the Pruned Landmark Labeling (PLL) tech-
nique presented in [2]. As mentioned, we applied our index
construction algorithms directly on the indexes constructed
by PLL in our experiments.

Table 2: Real-world Datasets and Their Statistics
Dataset |V| |E| IT (s) LN

Gnutella 6,301 20,777 0.825 163.647
Facebook 4,039 88,234 0.173 25.887
Wiki-Vote 7,115 103,689 0.525 69.915
Oregon 11,174 23,409 0.080 11.189
Ca-HepTh 9,877 51,971 0.557 75.311
Ca-GrQc 5,242 28,980 0.141 43.828

5.2 Performance Evaluation
We have conducted extensive experiments to validate our

proposed approach. In the experiments, we compared the
numbers of affected vertices (Section 5.2.3), the average la-
bel entry numbers with and without considering edge fail-
ures (Section 5.2.1). We performed queries with and without
SIEF indexes (Section 5.2.4) and great efficiency improve-
ment was observed if using SIEF indexes. We also studied
the impact of our approach in terms of index size, identi-
fication time, and relabeling time for each dataset (Section
5.2.2 to 5.2.6). Note that, we construct SIEF indexes by
computing supplemental indexes for all single-edge failure
cases of a given graph.

5.2.1 Supplemental Label Entry Numbers
Figure 5 shows the difference between the original label

entry number (OLEN) without support of single-edge fail-
ures and the supplemental label entry number (SLEN) with
support of single-edge failures. SLEN and OLEN of Wiki-
Vote5 have the biggest gap, i.e., the ratio of SLEN to OLEN
is observed around 80. SLEN and OLEN of Facebook have
the second biggest gap and the ratio of SLEN to OLEN is
around 40. For other datasets, the ratios of SLEN to OLEN
are all under 10. This means, compared with the total num-
ber of label entries needed for the original graphs without
considering edge failures, in the case of edge failures, the to-
tal extra number of label entries (in supplemental indexes)
is less than 10 times of the number of the label entries in the
original index. These results indicate that the SIEF indexes
are very compact.

5.2.2 Index Size
Figure 6 shows the original index size for the graphs with

no failed edges and the supplemental index size when con-
sidering edge failures. The sum of the original index size and
the supplemental index size is the total index size for han-
dling shortest path distances on graphs with all single-edge
failure cases. From the figure, the Gnutella dataset shows
comparatively smaller proportion of its supplemental index
over its total index size while the Facebook dataset shows
5We use the first three letters in the names of each dataset
(e.g., Wik for Wiki-vote) for better illustration in the figure.
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Figure 5: Comparisons between supplemental la-
bel entry numbers (SLENs) and original label entry
numbers (OLENs)

largest proportion of its supplemental index over the related
total index size. The Wiki-Vote dataset has the largest sup-
plemental index size due to the fact that each single-failure
case incurs a large number of affected vertices as well as
a relatively large number of supplemental label entries (for
more details, please see Table 3).
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Figure 6: Index Size

5.2.3 Affected Vertices
Table 3 presents the relationship between affected vertices

and average supplemental label entry number. Avg |AU |/|V |
represents the average percentage of affected vertices in a
single-edge failure case, showing the impact of a single-edge
failure on a graph. It is also the average proportion of af-
fected vertices of the original graphs. Avg |AU | represents
the average number of affected vertices from the graph and
Avg SLEN denotes the average number of supplemental la-
bel entries in a single-edge failure case.

From the table, we can see that the smallest percentage
and the smallest average number of affected vertices are both
observed in the Ca-GrQc dataset, with values of 1.486% and
77.884, respectively. We can also see from the table that the
average supplemental label number decreases (or increases)
together with the average number of the affected vertices.
Also around 36% of vertices are affected in the Wiki-Vote

dataset, which is the largest proportion. The largest average
number of affected vertices is observed in the Oregon dataset,
which is around 2,861 affected vertices for one failed edge.
However, no clear linear relationship is found between the
two. The largest gap occurs in the Oregon dataset, which
indicates that the label pruning process on the affected ver-
tices is quite powerful, leading to much fewer label entries
per affected vertex. Meanwhile, the smallest gap happens in
the Gnutella dataset and this indicates that label pruning
is not very effective in this dataset.

Note that, although the proportion of affected vertices
for a single-edge failure case could be large, as having been
clarified in Figure 6, the final SIEF index for all single-edge
failure cases is still of moderate sizes compared with the
original index.

Table 3: Affected Vertices
Dataset Avg |AU |/|V | Avg |AU | Avg SLEN

Gnutella 6.053% 381.386 78.445
Facebook 16.099% 650.241 47.042
Wiki-Vote 35.841% 2,550.090 396.971
Oregon 25.605% 2,861.070 45.323
Ca-HepTh 2.743% 270.881 51.095
Ca-GrQc 1.486% 77.884 13.064

5.2.4 Query Time
Table 4 shows the average BFS query time and the average

SIEF query time. The former represents query time without
using indexes proposed in this work, while the latter repre-
sents the query time when using SIEF indexes. From the ta-
ble, we can see that the difference for Oregon dataset is the
least, which still achieves at least 40 times faster when us-
ing SIEF indexes compared with the traditional BFS query
approach. The largest gap occurs in the Facebook dataset,
where the average BFS query time is around 500 times more
than the SIEF query time. These results show that when
using SIEF indexes, the query efficiency can be improved
significantly and the query response times are normally no
more than 5 µs. As mentioned in Section 4, we use supple-
mental indexes to support edge failures, the query process
needs to examine the supplemental indexes first. When ex-
amining the supplemental indexes, SIEF checks whether the
querying source and querying destination are both affected
vertices given the edge failure constraint using binary search
strategy. Based on the searching result, SIEF knows whether
we can compute the shortest path distance based only on the
supplemental indexes or based only on the original indexes.
Nevertheless, the querying process is still much faster. The
main reason is that the number of affected vertices for each
single-edge failure case is typically small (more details are
presented in Section 5.2.3) and hence the binary search pro-
cess finishes quickly. This results in fast query responses in
SIEF.

5.2.5 Identification Time
Table 5 shows the total time for identifying affected ver-

tices for all single-edge failure cases. From the figure, we
can see that, for the most datasets, the identification pro-
cess can be done fairly fast and is normally finished within
80 seconds. The exception is Wiki-Vote, which requires a
bit more than 600 seconds. The fast identification time is
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Table 4: Average Query Time
Dataset BFS Query Time SIEF Query Time

Gnutella 140.329 µs 0.452 µs
Facebook 243.060 µs 0.522 µs
Wiki-Vote 284.867 µs 1.100 µs
Oregon 163.465 µs 4.985 µs
Ca-HepTh 325.196 µs 0.689 µs
Ca-GrQc 159.412 µs 0.479 µs

mainly because the affected vertices can be identified in a
BFS manner and we only need to examine the distances be-
tween the affected vertices to one of the end vertices of a
failed edge.

Table 5: Average Identification Time
Dataset Identification Time

Gnutella 43.3708 s
Facebook 80.6844 s
Wiki-Vote 612.522 s
Oregon 35.6307 s
Ca-HepTh 36.2022 s
Ca-GrQc 4.32942 s

5.2.6 Labeling Time
Figure 7 shows the time for relabeling the affected vertices,

which need extra distance label information to maintain cor-
rect distances to some other vertices due to a single-edge
failure. Here, we used the estimated time for naive method
(shown as “Estd Time for Naive Method” in the figure) as
the baseline. The naive method refers to the method that
we recompute a complete distance labeling index for each
single-edge failure case. The process of labeling a new graph
with a single-edge failure should be almost the same as the
process of labeling the original graph. Therefore, the total
labeling time of the naive method can be estimated by mul-
tiplying the total edge number in the original graph, i.e.,
the total number of single-edge failure cases, with the index
time of the original graph (see Table 2).
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Figure 7: Labeling Time

Then, we compared the labeling times of the naive method
and the two labeling methods proposed in our work: BFS

AFF and BFS ALL. Recall that BFS AFF uses a late-label-
pruning strategy and avoids labeling any unaffected vertices
while BFS ALL uses an early-label-pruning strategy which
needs labeling the unaffected vertices. From the figure, we
can see that for some datasets, such as Gnutella, Ca-HepTh
and Ca-GrQc, BFS AFF outperforms the naive method be-
cause the label-pruning process incurs some overhead when
labeling unaffected vertices compared with the pure BFS
process. However, BFS AFF is beaten by the naive method
in terms of labeling time for other datasets, including Face-

book, Wiki-Vote and Oregon, which contain a large number
of vertices and/or a large number of edges. Hence, the late-
label-pruning strategy in BFS AFF does not work well on all
datasets. These results indicate that although label-pruning
incurs some overhead on top of the BFS process, the label-
pruning approach is quite effective in some datasets, espe-
cially datasets with more vertices and edges.

In contrast, BFS ALL performs the best on all datasets.
For some datasets, such as Facebook, Wiki-Vote and Ca-

Hepth, BFS ALL even performs orders of magnitude faster
than both the naive method and the BFS AFF method.
This confirms that the early-label-pruning strategy works
very well on various datasets and the overhead on labeling
unaffected vertices can be ignored due to the substantial
label-pruning power it brings (for more details, please refer
to Section 4.3).

6. CONCLUSION
This paper has studied the problem of computing the

shortest path distance on graphs with single-edge failures
based on 2-hop distance labeling techniques. The concept
of well-ordering 2-hop distance labeling and its properties
have been defined and analyzed. We have particularly fo-
cused on the constructions of compact distance labeling for
all possible single-edge failure cases, a challenging problem
that remains open, to the best of our knowledge. A generic
framework, SIEF, has been designed for this purpose. Based
on the most recent technique Pruned Landmark Labeling
(PLL) [2] that handles only static graphs, we have imple-
mented an extended version using the SIEF framework de-
veloped in this paper. Extensive experiments have also been
performed on six real-world graphs to confirm its effective-
ness and efficiency. SIEF is able to support compact in-
dex construction for all single-edge failure cases on graphs
efficiently. Specifically, the SIEF index size is compara-
ble to that of the indexes constructed for original static
graphs, which is very compact. SIEF can answer distance
queries with edge failure constraints several orders of mag-
nitude faster than traditional Breadth-First-Search (BFS)
algorithms.

In our future work, we will further investigate several as-
pects of answering distance queries on graphs with edge
failures. The first one centers on how to support distance
queries with more complex edge failure constraints, i.e., dual-
failure on edges. The second aspect is to further speed up the
index construction process in order to process larger graphs.
Finally, it is also interesting to investigate the problem of an-
swering distance queries on graphs with node failures, which
is even more challenging than edge failures.
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