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ABSTRACT
Most scientific and modern applications generate—in addition to
the base data—valuable annotations and metadata information at
unprecedented scale and complexity. Such annotations warrant the
need for advanced annotation management techniques that not only
propagate the raw annotations to end-users, but also mine, summa-
rize, and extract useful knowledge from them. Towards this goal,
we proposed the InsightNotes system, the first summary-based an-
notation management engine in relational databases [22]. Insight-
Notes relies on creating concise representations of the raw anno-
tations, called annotation summaries. InsightNotes addresses sev-
eral unique challenges related to the maintenance, propagation, and
zooming of these summaries. However, a key limitation is that the
annotation summaries are treated as propagate-only (report-only)
objects that cannot be directly queried or manipulated. This limita-
tion hinders higher-level applications from applying complex pro-
cessing over both the base data and its attached annotation sum-
maries even within a single query. In this paper, we propose new
extensions to InsightNotes for treating the annotation summaries
as first-class citizens. We address the challenges of: (1) Develop-
ing new manipulation functions and query operators specific for the
annotation summaries, (2) Designing summary-based index struc-
tures and access methods for efficient retrieval and predicate eval-
uation, and (3) Extending the query optimizer to optimize queries
accessing both the data and the annotation summaries. The pro-
posed extensions not only make it feasible to natively query and
manipulate the annotation summaries, but also achieve more than
two orders of magnitude speedup in query evaluation.

1. INTRODUCTION
Metadata—usually referred to as “annotations”— is gaining

an increasing importance in most modern database applications
as a valuable source of information. Applications in many sci-
ence domains, e.g., in biology, healthcare, earth sciences, and or-
nithology, create and manage annotations and metadata informa-
tion in orders of magnitude larger than the base datasets as re-
ported in [5, 20, 22]. For example, according to the geneon-
tology.org website, several biological databases, e.g., Genobase
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(http://ecoli.naist.jp/GB8/), EcoliHouse (http://www.porteco.org/),
and UniProt (http://www.ebi.ac.uk/uniprot), manage annota-
tions in a 10x scale compared to the number of genes
and proteins in the database. Moreover, in ornithological
databases, e.g., DBRC (http://www.dbrc.org.uk/), and AKN
(http://www.avianknowledge.net/), the number of annotations col-
lected from the bird watchers and scientists all over the world is
around 200x larger than the number of birds’ collection stored in
these repositories [1].

It is not only the scale of annotations that poses challenges, but
also the need for transparent processing and propagation of anno-
tations, and their combinatorial relationship with the data, e.g., an-
notations can be attached to single table cells (attributes), rows,
columns, arbitrary sets and combinations of them, or even attached
to sub-attributes. That is why annotation management has been
extensively studied in RDBMSs to address some of these chal-
lenges [4, 7, 11, 14, 17, 21]. However, all of the existing techniques
have the common limitation of manipulating only the raw annota-
tions, and hence reporting back to end-users 100s of annotations
attached to each output tuple. Nevertheless, any advanced process-
ing of mining, summarizing, and extracting useful knowledge from
the annotations is entirely delegated to end-users.

As a first step towards addressing the above limitations, we pro-
posed the “InsightNotes” system, a summary-based annotation
management engine in relational databases [22]. InsightNotes is
based on integrating data mining and summarization techniques
with annotation management in novel ways with the objective of
creating concise and meaningful representations of the raw anno-
tations, called “annotation summaries”. For example, the R.H.S
in Figure 1 illustrates a data tuple with 100s of attached raw anno-
tations, while the L.H.S illustrates the tuple with its attached sum-
mary objects using InsightNotes. The summary objects include, for
example, Classifier-type objects, e.g., ClassBird1 and ClassBird2,
that classify the raw annotations into user-defined classes, Snippet-
type objects, e.g., TextSummary1, that summarize the attached big
articles and report snippets on each, and Cluster-type objects, e.g.,
SimCluster, that group similar annotations into groups and reports
only a representative from each group. An overview on the system
will be presented in Section 2.

1.1 Case Study: Effectiveness and Motivation
We performed a usability case study to demonstrate the effec-

tiveness of InsightNotes and motivate the new extensions proposed
in this paper. We used a small subset of 100 data tuples from the
AKN ornithological database, each has a number of raw annota-
tions ranging between 75 to 380. The annotations describe any-
thing related to birds, e.g., color, body shape or weight, certain
behavior or sound, eating habits, geographic location, or observed
diseases. And then, we asked 20 students to query the data, and an-
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A1: Large one 
having size … 

A2: found eating 
stonewort and…  

A3: Observed in region … ClassBird1 TextSummary1 
[“Experiment E … ”,  
“Wikipedia article …“] 

A4 

A5 

Annotated tuple with 100s of attached 
raw annotations 

The same tuple annotated with  
its summary objects 

Swan Goose Anser cygnoides …

[(Behavior, 33),  
(Disease, 8),  
(Anatomy, 25), 
(Other, 16)] 

Swan Goose Anser cygnoides … A6: size seems  
wrong SimCluster 

A1# A2#

ClassBird2 
[(Provenance, 11),  
(Comment, 83),  
(Question, 7)] 

Using&&
InsightNotes&

… … … 

Figure 1: Summary-Based Annotation Management in InsightNotes.

Query Semantics # Qualifying 
data tuples 

InsightNotes 
Group 

Raw-Annotations 
Group 

Q1: Report the disease-related 
annotations attached to birds with 
name like “Swan*'’. 

5 Time: 47 sec 
Accuracy: 100% 

Time: 21 mins 
False Positives: 17% 
False Negatives: 25% 

Q2: Aggregate based on the bird’s 
family column, and report the 
number of behavior-related 
information on each group. 

3 Time: 47 sec 
Accuracy: 100% 

Time: 45 mins 
False Positives: 18% 
False Negatives: 34% 

Q3: Report the data tuples sorted 
based on the number of attached 
disease-related annotations  

100 Time: 5.2 mins 
Accuracy: 100% 

  
             ----- 
 

Figure 2: Usability Case Study using InsightNotes.

swer the three questions highlighted in Figure 2. These are simple
annotation-based analytical queries that scientists or end-users may
ask over their datasets. Half of the students use the InsightNotes en-
gine, while the other half uses an existing annotation management
engine that reports the raw annotations [11]. We then measured the
average time taken by each group (including writing the query) as
well as the results’ accuracy.

To answer Q1, the InsightNotes group needs to submit a single
SQL query to get the 5 expected data tuples (similar to the L.H.S
in Figure 1). And then, they need to issue another follow-up com-
mand, i.e., a zoom-in command, to retrieve the raw disease-related
annotations over these tuples. In contrast, the Raw-Annotations
group will get the 5 tuples along with their raw annotations (similar
to the R.H.S in Figure 1). And then, they need to manually read the
annotations and extract the desired ones. It took them, on average,
21 minutes and they reported the results with high false-positive
and false-negative ratios as indicated in the figure.

To answer Q2, the InsightNotes group needs to only retrieve the
number of the behavior-related annotations from the answer, i.e.,
ClassBird1.Behavior. It took them few seconds for writing and ex-
ecuting the query. In contract, the other group took very long time
and still produced erroneous results—Notice thatQ2 is an aggrega-
tion query, and thus each output tuple may have many annotations
collected from multiple base tuples.

The Q3 query is more challenging because InsightNotes does
not provide mechanisms for sorting the data based on their attached
summaries. Thus, the InsightNotes group needed to go over the 100
reported tuples, and manually sort them according to the Class-
Bird1.Disease field. For the other group, it was not even feasible
to analyze 100s of annotations over each of the reported tuples to
figure out the number of disease-related annotations, and then sort
based on that.

1.2 Limitations and Proposed Extensions
The results from the our study show that InsightNotes opens

a promising direction for better understanding of large-scale an-
notations and extracting useful knowledge from them. However,
the results also show that InsightNotes has the critical limitation

of treating the annotation summaries as “propagate-only objects”.
This limitation hinders the applications from mixing operations
over both the data content and annotation summaries even within
a single query (Refer to Q3 in Figure 2). In this paper, we pro-
pose extending the InsightNotes system by elevating the annotation
summaries to be first-class citizens, where end-users and applica-
tions can manipulate them in various ways, e.g., selecting, join-
ing, or ordering the data tuples based on their attached annotation
summaries. To build such full-fledged summary-based annotation
management engine, we propose the following contributions:
• Seamless Manipulation of Diverse Summary Types: In-

sightNotes supports three types of summarization techniques, i.e.,
clustering, classification, and text summarization. And hence, the
summary objects attached to the data tuples can have diverse types,
structures, and properties (Refer to Figure 1). Therefore, we pro-
pose manipulation functions at different granularities, e.g., at the
tuple-level to manipulate the entire set of attached summary ob-
jects, and at the object-level to manipulate the individual summary
objects according to their types.
• Summary-Based Query Processing: We propose building

an extended query engine, where end-users can process both the
data and their attached annotation summaries seamlessly in a single
query plan. For example,Q3 in Figure 2 involves a summary-based
ordering operation. Another query may be interested in retrieving
only the data tuples with zero provenance-related annotations, i.e.,
ClassBird2.Provenance = 0, which involves a summary-
based selection operation. Therefore, we extend the InsightNotes’s
query engine by introducing new summary-based query operators,
e.g., filter, selection, join, and sort, that operate on the summaries’
content. We define their algebraic semantics and integrate them
with the standard operators in a single query plan.
• Efficient Access Methods and Retrieval Mechanisms:

Applying predicates and operators on top of the annotation
summaries warrants the need for efficient retrieval mechanisms
and indexing techniques to achieve scalable performance. For
example, how could the system efficiently answer the two
queries mentioned above, i.e., a selection query based on
ClassBird2.Provenance = 0, and an ordering query based
on ClassBird1.Disease. We propose summary-based index-
ing techniques that achieve efficient execution for the summary-
based queries, while retaining the optimal summary-propagation
performance.
• Extended Summary-Based Query Optimizer: The integra-

tion between the summary-based and the standard SQL operators
within a single query engine opens several new opportunities for
query optimization. For example, one query may now involve joins
and selections based on both the data and the summaries, and thus
the query optimization becomes even more challenging. Therefore,
we introduce several new equivalence and transformation rules as
well as an extended cost model that guide the query optimizer in
generating efficient execution plans.
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• Realization and Evaluation: We developed the proposed ex-
tensions within the InsightNotes prototype engine [22]. The ex-
perimental analysis demonstrates the value-added functionalities of
directly manipulating and querying the annotation summaries, e.g.,
enabling a seamless expression of more complex annotation-based
analytical queries, and the significant performance gain from the
proposed optimizations.

The rest of the paper is organized as follows. In Section 2, we
overview the InsightNotes system. In Section 3, we present the new
summary-based functions and query operators. Sections 4 and 5
introduce the summary-based indexing scheme, and the extended
query optimizer, respectively. The experimental evaluation is pre-
sented in Section 6, while the related work is presented in Section 7.
Finally, the conclusion remarks are included in Section 8.

2. OVERVIEW ON InsightNotes SYSTEM
InsightNotes addresses several challenges related to managing

the annotation summaries, which include: (1) Designing an exten-
sible engine where domain experts and database admins can de-
fine how to summarize and mine their annotations, (2) Developing
efficient and incremental mechanisms for the maintenance of an-
notation summaries to scale up with large number of annotations,
(3) Extending the query engine and relational algebra to operate
on and propagate the annotation summaries along with the queries’
answers, and (4) Building zoom-in query processing mechanisms
that enable end-users to zoom-in and retrieve the raw annotations
of specific summaries of interest. In this section, we overview the
basic functionalities of InsightNotes needed for this paper.

2.1 InsightNotes’s Data Model
The system supports three widely-used families (types) of min-

ing and summarization techniques, which are: Text Summarization,
Clustering, and Classification techniques. The system is extensible
such that the database admins can customize these techniques—and
instantiate what is called Summary Instances—to fit their domains
and produce the desired summaries. Each user relation R can be
linked to as many summary instances as needed. For example,
Figure 1 illustrates Table Birds having four summary instances
linked to it (2 Classifiers, 1 Snippet, and 1 Cluster). Therefore,
the raw annotations attached to each data tuple in this table (the
R.H.S) will be summarized according to these four summary in-
stances. This will result in creating the Summary Objects, which
will be attached back to the corresponding data tuple (the L.H.S).

Assume a user’s relation R having n data attributes and k sum-
mary instances linked to it. Then, each tuple r ∈ R has the
following conceptual schema:

r =< a1, a2, ..., an, {s1, s2, ..., sk} >
where a1, a2, ..., an are the data values of r, and s1, s2, ..., sk are
the summary objects attached to r. Each summary object con-
sists of a five-ary vector {ObjID, InstanceID, TupleID, Rep[], Ele-
ments[][]} as depicted in the following figure:

!"#$%&

'()*+$%&

,*+-+./01212&

$.0/3.4+$%&

5+)12&

Type Structure of Representatives (Rep[]) 

Cluster [(Text annotation, Number groupSize)] 

Classifier [(Text classLabel, Numbr annotationCnt)] 

Snippet [(Text snippetValue)] 

!"#"$%&' ()*'!"#"$%&'

The ObjID is the objects’s unique identifier, and the Instan-
ceID and TupleID are references for the corresponding summary
instance, and the data tuple, respectively. The Rep[] array stores the
representatives produced from the summarization algorithm, while
Elements[][] is a two-dimensional array storing for each represen-

tative, the references (Ids) to its contributing raw annotations. At
query time, end-users will see only the InstanceID and Rep[] fields
of each propagated summary object as illustrated in Figure 1.

For each summary object si, the structure of its representatives
stored in Rep[] depends on si’s type as depicted in the above figure.
For example, in the case of the Cluster type, each cluster (group)
will report an annotation as its representative as well as the number
of annotations in that group. Hence, the Rep[] array consists of a
list of representatives in the form of pairs [(Text annotation, Num-
ber groupSize)]. In the case of the Classifier type, each represen-
tative will have a class label along with the number of annotations
assigned to this label. For the Snippet type, each large annotation
will have a corresponding short snippet as its representative.

2.2 Summary-Aware Query Processing and
Propagation

InsightNotes’s query engine has several extensions that enable
efficient and seamless propagation of the summary objects under
complex transformations, e.g., projection, join, grouping and ag-
gregations, and duplicate elimination. We proposed extensions to
the semantics and algebra of each query operator to manipulate the
summary objects on-the-fly without the need for accessing the raw
annotations. The following example demonstrates a Select-Project-
Join (SPJ) query involving summary propagation in InsightNotes.
The formal semantics of all query operators can be found in [22].

Example 1: Assume an SQL query "Select r.a, r.b,
s.z From R r, S s Where r.a = s.x And r.b =
2" over the two tuples r and s presented in Figure 3. Tuple r
has four summary objects attached to it, while tuple s has only
two attached summary objects. We proved in [22] in Theorems
1 and 2 that to guarantee identical summary propagation under
different—but equivalent—query plans, InsightNotes needs to
project out the un-needed annotations before any merge operation
over the summary objects. Therefore, the projection operator in
Step 1 in Figure 3 projects out attributes r.c and r.d and eliminates
the effect of their annotations from r’s summary objects. For
example, the annotationCnt field in the classifier objects is
decremented, the wikipedia article in the snippet object is deleted,
and the cluster objects are modified, e.g., some annotations are
dropped from each cluster, and hence the groupSize field is
decremented. Moreover, if a cluster’s representative is dropped,
then another representative is elected (See A5 representative
replacing the dropped A2 representative). The same operation
takes place over tuple s, where the effect of all annotations
attached to both s.x and s.y is removed from s’s summary objects.
The only difference is that s.x attribute will not be projected out
because it is needed in the subsequent join operator.

The next operator in the query plan is the selection operator over
r (Step 2). Based on the query’s predicate, r will pass the opera-
tor and all its summary objects will propagate without any change.
Then, the produced tuples will join and their summary objects will
be merged (Step 3). According to the merge procedure, r’s sum-
mary objects ClassBird1 and TextSummary1 will propagate
without any change since they do have no counterpart objects over
s. Whereas summary objects ClassBird2 and SimCluster
will be combined. This action takes into account the case where
the same annotation may be attached to both tuples r and s, and
hence the annotation’s effect on the summary objects should not be
double counted. For example, assuming that there are five common
annotations on both r and s classified as Comment, then when the
two objects are merged the sum of that classifier label will be 22
instead of 27 as illustrated in the figure. The merge of the clus-
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TextSummary1 
[“Experiment E … ”,  
“Wikipedia article …“] 

Tuple r 

ClassBird1 
[(Behavior, 33),  
(Disease, 8),  
(Anatomy, 25), 
(Other, 16)] SimCluster 

A1& A2&
ClassBird2 

[(Provenance, 11),  
(Comment, 83),  
(Question, 7)] 

ClassBird2 
[(Provenance, 5),  
(Comment, 10),  
(Question, 1)] 

x&

SimCluster 

B1& B2&

B3&
x&x&
x&

r.a = 1  r.b =2 r.c r.d s.x = 1 s.z 

Q:&Select&r.a,&r.b,&s.z&
From&R&r,&&S&s&
Where&r.a&=&s.x&And&r.b&=&2;&

TextSummary1 
[“Experiment E … ”] 

ClassBird1 
[(Behavior, 14),  
(Disease, 2),  
(Anatomy, 16), 
(Other, 0)] 

SimCluster 

A1& A5&

ClassBird2 
[(Provenance, 7),  
(Comment, 20),  
(Question, 2)] r.a = 1  r.b =2 

ClassBird2 
[(Provenance, 2),  
(Comment, 7),  
(Question, 1)] 

SimCluster 

B5& B7&
x&x&x&

s.x = 1 s.z 

s.y 

1A&Project&on&summary&objects&&
(Eliminate&unAneeded&annota,ons)&

r.a = 1  r.b =2 s.x = 1 s.z 

TextSummary1 
[“Experiment E … ”] 

ClassBird1 
[(Behavior, 14),  
(Disease, 2),  
(Anatomy, 16), 
(Other, 0)] 

SimCluster 

A1&

A5&

ClassBird2 
[(Provenance, 9),  
(Comment, 22),  
(Question, 2)] 

B7&
x&x&x&

3A&Join&operator&&
(Merges&the&annota,on&summaries)&

π&&π&&

σ 2A&selec,on&operator&&
(does&not&change&summaries)&

�&&

Tuple s 

π&&4A&Project&out&column&s.x&
(does&not&change&summaries)&

Figure 3: Example Query in InsightNotes.

ter summary objects is slightly more complex. The main idea is
that the overlapping groups from both sides, e.g., the groups rep-
resented by A1 and B5, will be combined together, whereas the
non-overlapping groups, e.g., the groups represented by A5 and
B7, will propagate separately as illustrated in the figure. Finally
attribute s.x will be projected out before producing the output.

3. SUMMARY-BASED FUNCTIONS & OP-
ERATORS

3.1 Summary-Based Manipulation Functions
The first step in treating the annotation summaries as first-class

citizens is to design a set of interfaces and manipulation functions
on top of them. In the following, we demonstrate few of the devel-
oped functions, which we use throughout the paper. We also ex-
pect the end-users to leverage these basic functions to create more
semantic-rich summary-based UDFs.

• Summary Set Functions: We introduce a special variable “$”
for each data tuple that represents the set of summary objects at-
tached to this tuple, i.e., r.$ represents the set of summary objects
attached to r. Then, we define interface functions over the $ vari-
able, which include:
◦ Int $.getSize(): Returns the number of summary objects

within the set. For example, referring to tuple r in Table Birds in
Figure 1(c), r.$.getSize() = 4.
◦ SummaryObj $.getSummaryObject(String InstName):

The function takes a summary instance name as in-
put, and returns the summary object corresponding
to that name, otherwise it returns Null. For exam-
ple, r.$.getSummaryObject(‘ClassBird1′) and
r.$.getSummaryObject(‘TextSummary1′) return the
Classifier and Snippet summary objects attached to tuple r.
◦ SummaryObj $.getSummaryObject(Int i ): This function

takes a position within the summary set as input, and returns the
summary object at that position. Since the objects in the set do not
follow a pre-defined order, this function is more useful when used

within UDFs, e.g., to iterate over the objects within a summary set
and apply a certain functionality.

We then define a set of manipulation functions over each sum-
mary object O according to its summary type. Some functions are
common to all types. For example, O.getSummaryType() and
O.getSummaryName(), return the type of the summary object—
as either “Classifier”, “Snippet”, or “Cluster”—, and the summary
instance name, respectively. Another common function to all types
is O.getSize(), which returns the number of representatives within
object O, i.e., the size of O.Rep[]. For example, referring to Fig-
ure 1, the ClassBird1 classifier object has 4 representatives, while
SimCluster cluster object has 2 representatives. Other functions are
specific to each summary type. For example:

• Classifier Type Functions: For a summary object O of type
Classifier, the defined functions include:
◦ String O.getLabelName(Int i): Returns the class label at po-

sition i, i.e., Rep[i].classLabel. The order among the class labels is
pre-defined based on the order specified when creating the classifier
summary instance in the system.
◦ IntO.getLabelValue(Int i | String label): This function takes

either an index i or a class label label as input, and returns the
corresponding value, i.e., Rep[i].annotationCnt (for input i), or
Rep[j].annotationCnt, where Rep[j].classLabel = label (for input
label).

• Snippet Type Functions: For a summary object O of type Snip-
pet, the defined functions include:
◦ String O.getSnippet(Int i): Returns the snippet value at po-

sition i. The order among the snippets is arbitrary and does not
follow a pre-defined order.
◦ Boolean O.containsSingle(String kw1 [, String kw2, ...]):

Returns True if all of the given keywords kw1, kw2, ... are con-
tained within any one of O’s snippets or the raw annotations.
As we studied in [16], there is a tradeoff—w.r.t accuracy and
performance—between searching the snippets vs. searching the
raw annotations.
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◦ Boolean O.containsUnion(String kw1 [, String kw2, ...]):
Returns True if all of the given keywords kw1, kw2, ... are con-
tained within the union of O’s snippets or O’s raw annotations. In
this function, the keywords may span multiple annotations attached
to the same tuple.

Internally, InsightNotes—which uses PostgreSQL as its underly-
ing DBMS— implements the summary objects as composite data
types. On top of these types, the manipulation functions presented
above are defined.

3.2 Summary-Based Relational Operators
We now introduce several summary-based relational operators.

Unlike the standard SQL operators, these operators operate on the
summary objects attached to each tuple instead of its data content.
The summary-based operators can be mixed with other standard
relational operators in a single query pipeline for seamless process-
ing. The new operators include:
• Filter Operator (Fp(R)): The filter operator takes a set of
summary-based predicates p, and returns each tuple r ∈ R along
with only its summary objects satisfying p. The operator is for-
mally defined as:

Fp(r) = {r′ =< a1, a2, ..., an, {si, ...} > | p(si) = True,
where 1 ≤ i ≤ k }

For example, referring to Figure 1(c), the predicate
(getSummaryName() = ‘SimCluster’) returns r along
with only the the specified cluster summary object. In contrast,
the predicates (getSummaryType() = ‘Classifier’)
return r along with only the two classifier summary objects
ClassBird1 and ClassBird2.

• Selection Operator (Sp(R)): The summary-based selection op-
erator takes a set of summary-based predicates p, and returns the
data tuples r ∈ R having summary objects satisfying p. Other-
wise, r is dropped. For qualifying tuples, all their summary objects
will pass without change. The algebraic expression of the operator
is as follows:

Sp(R) = {r ∈ R, r =< a1, a2, ..., an, {s1, s2, ..., sk} >
| p(r.$) = True}

The summary-based predicates may range from black-box
UDFs that take r.$ as a parameter and return a Boolean value,
to explicit predicates based on the system-defined manipula-
tion functions presented in Section 3.1. In the latter case, the
system can reason about and optimize the execution of these
predicates as will be presented in Section 4. For example, the pred-
icate (r.$.getSummaryObject(‘ClassBird2’).
getLabelValue(‘Provenance’) = 0) returns
only R’s tuples having no provenance-related anno-
tations attached to them. In contrast, the predicate
(r.$.getSummaryObject(‘TextSummary1’).contains
Single(‘Wikipedia’, ‘hormone’)) returns R’s tuples
that have at least one annotation containing both keywords. Such
predicates can be efficiently evaluated using the the summary-
based indexes presented in Section 4.

• Join Operator (Jp(R,S)): The summary-based join operator
joins two input tuples r ∈ R and s ∈ S iff the summary-based
join predicates p evaluate to True over r.$ and s.$. The algebraic
expression of the operator is as follows:

Jp(R,S) = {< r, s >,where r ∈ R & s ∈ S | p(r.$, s.$) = True}

For example, referring to Table Birds in Figure 1, assume we
have two revisions of this table, V1 (after Revision 1) and V2 (af-

ter Revision 2). Then, reporting the data tuples whose number
of provenance annotations has changed between the two revisions
would involve the following expression:

Global Parameters 
     - Recency factor ! = 1.0 
     - Amplification factor " = 1.001 
 
Input  
    - Query Q with keywords w1, w2, !, wm  
 
Algorithm 
    - ! = ! x "               //Amplify the recency factor 
    - For each keyword wi in Q 
          - If wi is not in Weighted Keyword Repository 

       - Insert wi  with weight  ! 
  Else 
       - Update wi ‘s  weight by adding ! 

            End If 
      End For 

‘‘v1.ID = v2.ID   &   
v1.$.getSummaryObject(‘ClassBird1’).getLabelValue(‘Provenance’) <> 
v2.$.getSummaryObject(‘ClassBird1’).getLabelValue (‘Provenance’)’’ 

Summary-based join 

Data-based join 

The expression combines both data- and summary-based join op-
erators. As will be discussed in Section 5 and based on the available
indexes and statistics, the query optimizer may decide to join the
tuples based on the data values and then applies a summary-based
selection operator, i.e., (S(R 1 S)). Alternatively, it may join the
tuples based on the summary objects and then applies a standard
selection operator (ρ(J (R,S))).

• Sort Operator (Of [,direction](R)): The summary-based sort op-
erator orders the data tuples in R according to the summary-based
function f(r.$). Function f must return values of a data type hav-
ing a full-ordering property, e.g., number, string, and Boolean. Us-
ing the O sort operator, the Q3 query in the case study (Figure 2)
can now be fully automated and answered in few seconds.

It is worth highlighting that these summary-based operators are
new physical operators introduced to the InsightNotes engine. They
are not implemented as UDFs within PostgreSQL DBMSs for the
following fundamental reasons: (1) If the summary-based opera-
tors are implemented as UDFs, then their execution will be carried
out and encapsulated within the standard SQL operators. As a re-
sult, none of the summary-based optimizations proposed in Sec-
tion 5 would have been possible. (2) The annotation summaries
are not like any other user-defined data types created through Post-
greSQL extensibility. They are special tuple-based metadata infor-
mation that requires extending the semantics of the core query op-
erators [22]. That is why the core operators of InsightNotes in [22]
do not manipulate the summaries through UDFs, and consequently,
the newly proposed operators cannot be implemented as UDFs.
And (3) The design choice of implementing the summary-based
operators as new physical operators does not limit the extensibility
of InsightNotes because the operators are defined at the summary-
type level, i.e., Classifier, Snippet, and Cluster types. And thus,
they apply to any driven instance under those types.

4. SUMMARY-BASED INDEX SCHEME
To enable efficient execution of the summary-based relational

operators, we need to build a summary-based indexing scheme
over the summary objects. In this paper, we will focus only on the
Classifier-Type indexing scheme. The InsightNotes system will not
automatically index all summary instances defined in the database.
Instead, this process is triggered by DB admins using the following
command:
Alter Table <tableName>
[Add [Indexable] | Drop] <InstanceName>;

This extended SQL command is used in InsightNotes to link a
Summary Instance SI to a given user’s relation R (Refer to Sec-
tion 2.1). The newly added optional clause Indexable will in-
form the system to build an index on SI’s summary objects created
over R’s tuples.

Before we investigate possible indexing scheme, we briefly ex-
plain how the summary objects are currently stored in Insight-
Notes to optimize their propagation at query time. Referring to
Figure 4(a), given a user’s relation R, each tuple in R may have
one or more summary objects attached to it according to number
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of summary instances linked to R. To optimize the propagation
of the annotation summaries at query time, R’s summary objects
are stored in a de-normalized form in a corresponding catalog ta-
ble R_SummaryStorage, as illustrated in Figure 4(b). Each tuple in
R has a corresponding unique tuple in R_SummaryStorage linked
together through unique tuple identifiers (OIDs). This scheme has
two main advantages: (1) Since the summary objects are stored in
tables separate from the data tables, there is no I/O or CPU over-
heads added to users’ relations when queried in isolation, i.e., when
the data is queried without annotation propagation, and (2) Since
the summary objects are stored in a de-normalized form, there is
no additional I/O or CPU overheads at query time to re-construct
them from their primitive components. Thus, their propagations
becomes more efficient as studied in [22].

4.1 Classifier-Type Indexing Scheme
Target Query: The index will speedup summary-based selection

operators in the form of "classLabel <Op> constant",
where classLabel is a classifier label within a classifier sum-
mary object, and Op is a comparison operator including {=, >, <,
≤, ≥}. The output are the data tuples whose classifier summary
objects satisfy the given predicates. The index will also speedup
summary-based join and sorting operators involving the indexed
classifier column.

Example 2: Referring to Figure 4(a), assume we want to retrieve
the data tuples having more than 5 associated questions. The SQL
query will be:
Select * From R r

Where r.$.getSummaryObject(‘ClassBird2’).
getLabelValue(‘Question’) > 5;

Baseline Indexing Scheme: A straightforward indexing strat-
egy over the Classifier-type summary objects is to normalize their
representation by replicating their components, i.e., the class labels
and their counts, and storing them in a separate table (See Fig-
ure 4(c)). And then, we can build a standard B-Tree index on each
of the columns, i.e., the ClassLabel and Cnt columns. More-
over, since most predicates over the Classifier-type objects will ref-
erence both columns, we may create a third system-maintained (de-
rived) column that concatenates these two columns, and then index
its values using the B-Tree index as illustrated in Figure 4(c).

The advantage of this scheme is that it uses the standard indexes
without modifications. However, it has two major drawbacks. First,
the storage overhead of the summary objects is doubled; one repli-
cate is for efficient propagation, and another replica is for indexing.
And second, starting from the index to reach the actual data tuples
in relation R, we will need several join operations among multi-
ple tables, which certainly degrades the query performance. The
proposed Summary-BTree indexing scheme will overcome these
limitations.

4.1.1 Summary-BTree Index Structure
The proposed Summary-BTree index is a variant of the standard

B-Tree that can be directly built over the de-normalized represen-
tation of the Classifier-type summary objects. The structure of the
index is depicted in Figure 4(d). Assume the index is built on top
of the summary instance ClassBird1 defined on Relation R. The
creation of the index involves three steps:
◦ Itemization: The Rep[] array within the object will be item-

ized by converting the array elements (String classLabel, Inte-
ger AnnotationCnt) to a sequence of text values in the form of
"classLable:ExtendedAnnotationCnt" as illustrated in
Figure 4(c) Step 1. The ExtendedAnnotationCnt will have an ini-

tial 3-character format to preserve the order among the integer val-
ues even after converting them into strings1. In Figure 4(d) Step
1, we illustrate the itemization of the ClassBird1 summary object
attached to tuple r1.
◦ Indexing: The text values generated from the Itemization step

will be inserted into the Summary-BTree index. The index fol-
lows the same structure and operations of the standard B-Tree.
And hence, the B-Tree’s maintenance algorithms, i.e., insertion and
deletion, are all leveraged in the Summary-BTree index. The in-
dexed values will appear in the leaf nodes of the index sorted alpha-
betically as depicted in the figure. The only exception compared to
the standard B-Tree will be in the heap pointers stored in the leaf
nodes, which are called backward pointers and described next.
◦ Backward Referencing: We make use of the fact that the

storage of the annotation summaries is entirely transparent from
(and not directly query-able by) the end-users. Hence, we have
the opportunity to optimize the internal structure of the proposed
tables and indexes for efficient performance. A key trick in the
Summary-BTree index is that the leaf nodes will point back to
their annotated data tuples in Relation R instead of pointing back
to the R_SummaryStorage table. For example, the index entries
"Disease:002" and "Disease:008" will point back to tu-
ple R.r2 and R.r1, respectively. These backward pointers will be
created and maintained under the different operations as described
in sequel 2.

The advantages of the Summary-BTree index are two fold: (1) It
builds on the existing storage scheme of InsightNotes without the
need to replicate or normalize the summary objects, and hence the
optimized propagation performance is not affected. And (2) As the
experimental evaluation will confirm (Section 6), the backward-
referencing mechanism achieves up to 11x speedup in query per-
formance compared to the baseline indexing scheme.

4.1.2 Summary-BTree Index Operations
To enable the backward-referencing mechanism, we developed

an internal function, called diskTupleLoc(), within the database en-
gine, which takes a tuple’s identifier (OID) and returns its heap
location. This function will be used inside the index’s maintenance
algorithms to create the correct backward pointers. Notice that this
mechanism does not break the transparency concept in database
systems since it is entirely encapsulated within the index struc-
ture and not exposed to the outside world (neither end-users nor
database developers). The index is maintained under the following
operations:
◦ Adding Annotation−Insertion: Adding a new annotation

on an un-annotated tuple in R results in inserting a new tuple in
R_SummaryStorage. The system will then retrieve the heap loca-
tion of the data tuple, itemize the indexed classifier summary ob-
ject, and insert them into the Summary-BTree index as illustrated
in Figure 4(d).
◦Adding Annotation−Update: Adding a new annotation on an

already-annotated tuple inR will result in updating the correspond-
ing summary objects in R_SummaryStorage. For example, if a new
annotation highlighting a disease is added to R.r1, then the Class-
Bird1’s summary object will be updated by incrementing the count
1If the number of annotations assigned to a single classifier’s label
exceeds 999, then InsightNotes automatically increments the num-
ber of allocated characters and re-builds the index. However, it is a
very rare operation.
2The SummaryStorage tables are still directly accessible using
SQL queries, but for administrative tasks only. Such administra-
tive queries use table-scan plans instead of index-scan plans.
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(Other, 16)] 
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(Question, 8),  
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[“Experiment E … ”,  
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r1 Behavior 33 Behavior-033 
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… … … … 

(c) Baseline indexing scheme 
(on ClassBird1 column) 

1- Create a normalized table for the classifier’s primitives 

2- Build a standard B-Tree 
index on the derived column  

Figure 4: Summary-Btree Index For Indexing The Classifier Type Summary Objects.

of the Disease class label to be 9. To update the index, the system
will trigger a deletion and then re-insertion only for the modified
class label—The other class labels within the object will remain
untouched. For example, a deletion of key "Disease:008" and
insertion of key "Disease:009" will take place.
◦ Deleting Annotation or Tuple: The deletion of an an-

notation will result in updating the corresponding summary ob-
jects in R_SummaryStorage. Therefore, the same procedure de-
scribed above will be applied. Similarly, the deletion of a data
tuple from R will result in deleting the corresponding tuple in
R_SummaryStorage, and all its index entries will be deleted.
◦ Summary-BTree Querying: To answer an equality

query over the index, e.g., "classLabel = constant"
, a probing key will be formed by concatenating the two
operands, i.e., "classLabel:Extended_constant",
where Extended_constant is the 3-character for-
mat of the constant value. In the case of a range query,
e.g., "constant1 > classLabel > constant2",
two probing keys will be formed; a starting key as
"classLabel:Extended_constant1", and a stop-
ping key as "classLabel:Extended_constant2". All the
keys in between will lead to the qualifying data tuples. If either of
the starting or stopping keys is missing, then it will be replaced by
"classLabel:000", or "classLabel:999", respectively.

4.1.3 Summary-BTree Theoretical Bounds
The Summary-BTree inherits the efficient logarithmic perfor-

mance from the B-Tree index since they have similar structure. The
following Theorem states the theoretical bounds of the index.

Theorem: Assuming that the number of data tuples in the user’s
relation R is M , the number of Classifier-type summary objects
is N , the number of class labels per summary object is k, and the
disk page size in records isB, then the following theoretical bounds
hold for a Summary-BTree index:
◦ Adding Annotation−Insertion is O(kLogBkN + LogBM )

◦ Adding Annotation−Update is O(2LogBkN + LogBM )
◦ Deleting data tuple is O(kLogBkN + LogBM )
◦ Equality search is O(LogBkN ) 2

Proof: Assuming N summary objects and each object has k
class labels, then the number of indexed keys is O(kN ). There-
fore, any single search, insertion or deletion will be bounded by
O(LogBkN ). When adding a new annotation that triggers a new
insertion in the SummaryStorage table, the k class labels will be
inserted into the index which will cost O(kLogBkN ). In contrast,
if the added annotation will trigger an update of an existing class
label, then only that label is deleted and then re-inserted, which will
cost O(2LogBkN ). Finally, when inserting into or deleting from
the index tree, the system needs to retrieve the heap location of the
data tuple. This operation uses a B-Tree index on the OID column
in R with the cost of O(LogBM ).

5. SUMMARY-BASED QUERY OPTI-
MIZATION

When a query involves both the summary-based and the standard
SQL operators, then the traditional transformation and equivalence
rules alone will be of a very limited use. This is because the seman-
tics of the new operators are unknown to current optimizers. For
example, the current optimizer may not be able to use the standard
selection-pushdown rule to push a selection operator below a join
operator because there is a summary-based operator in-between.
Another example is illustrated in Figure 5(a), where the query plan
involves a summary-based sort O and selection S operators on top
of a traditional join operator ./. In this case the current optimizers
cannot apply any of the known transformation rules to create equiv-
alent query plans. In this section, we introduce several important
equivalence rules involving the summary-based operators, and ex-
tend the query optimizer to leverage them and create a larger pool
of possible query plans.

5.1 Extended Equivalence Rules
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• Rules for Summary-Based Selection (Sp(R)): Few important
rules involving the S operator include:

Sp(σc(R)) = σc(Sp(R)) (1)

Sp(R ./c S) = Sp(R) ./c S, iff p is on instances in R not in S. (2)

Proof: Rule 1 is correct since neither the σ operator changes
the summaries’ content nor the S operator changes the data’s con-
tent. And thus, the commutativity property between the two op-
erators apply. This rule enables the system to switch the order
of predicates and use the available indexes—either on the data or
the summaries—as needed. Rule 2 enables pushing the summary-
based selection operator before the join operator. Rule 2 is correct
since predicates p are on instances linked only to one of the two
relations, say R. Therefore, when the ./ operator merges the sum-
mary objects attached to the joined tuples, the summary objects
related to p are guaranteed not to change since they have no coun-
terparts on S. And hence, the rule applies.
• Rules for Summary-Based Sort (Of [,direction](R)): We focus
on an important case where an existing Summary-BTree index can
provide R’s tuples in an interesting order to the query, and hence
the sort operator can be eliminated. The following rules state that
the order of R’s tuples is preserved under certain transformations.
We use notationR

L
to indicate thatR has an interesting order w.r.t

a classifier instance L.

σc(R
L
) = σc(R)

L
(3)

Sp(R
L
) = Sp(R)

L
(4)

R
L
./ S = R ./ S

L
, iff ./ preserves R’s order, and L is not on S. (5)

J (RL
, S) = J (R,S)

L
, iff J preserves R’s order, and L is not

defined on S. (6)

Proof: Rules 3 and 4 indicate that the selection operators (σ and
S) do not change the interesting order of R and preserve it in the
output. This is guaranteed since these operators do not change the
content of their summaries. For the join operators (Rules 5 and 6),
the order w.r.t L is preserved only if two conditions are met: (1) The
join algorithm preserves R’s order, e.g., R is the outer relation of
the join, and (2) Relation S does not have the summary instance L
defined on it. If the 2nd condition is not met, then the join operators
(./ orJ ) would merge the summary objects of L, and thus the order
may not be preserved. Otherwise, Rules 5 and 6 also applies.

Example 4: Assume a query Q that joins Relation R depicted
in Figure 4 with another relation S(c1, c2) based on data at-
tributes R.c1 = S.c1. Then, Q selects only the tuples with more
than five disease annotations, i.e., ClassBird1.disease >
5, and produces the output sorted by the count of these disease
annotations. An initial query plan based on the sequence presented
above is illustrated in the following figure (Figure 5(a)). Then, con-
sider the following two cases:
Case I: Relation S has the ClassBird1 summary instance defined
on it. In this case, the summary-based selection operator cannot be
pushed below the join operator, and the system will use the initial
plan in Figure 5(a).
Case II: Relation S does not have the ClassBird1 summary in-
stance defined on it. In this case, the system will use Rule 2 to push
the summary-based selection operator before the join. And assum-
ing that ClassBird1 summary instance on R is indexed, then the
index can be used to retrieve the tuples with more than five disease
annotations (in a sorted order). Then, based on Rule 5, the join
operator preserves the order of the tuples, and hence the summary-
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S 

…disease 

DataAbased&
join&
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Figure 5: Rule-Based Equivalent Plans in InsightNotes.

based sort operator can be removed as illustrated in Figure 5(b).
•Rules for Summary-Based Filter (Fp(R)): Few important rules
involving the F operator include:

Fp(R ./c S) = Fp(R) ./c S, iff p is on instances in R not in S. (7)

Fp(R ./c S) = Fp(R) ./c Fp(S), iff p is structural predicate. (8)

Proof: Rules 7 and 8 address pushing the filter operator be-
fore the join. Both rules aim for eliminating unnecessary summary
objects—and hence their processing cost in the query pipeline—
as early as possible. Rule 7 can be proved in similar way to Rule
2, i.e., the ./ operator is guaranteed not to alter the summary ob-
jects related to predicate p since they are attached to only relation
R. Similarly, the F operator does not change the data’s content,
and hence the join predicates c are not affected. Therefore Rule 7
applies.

Rule 8 indicates that if the predicate is structural—A structural
predicate is defined as a predicate on the InstanceID or the Sum-
maryType of the summary object—then p can be pushed to both
sides before the join operation. For example, referring to Figure 4,
if a query is interested only in the summary objects of instance
ClassBird1, then all other summaries of instances ClassBird2 and
TextSummary1 can be dropped as early as possible. Rule 8 can be
proved in the same way as Rule 7.
• Rules for Summary-Based Join (Jp(R,S)): Few important
rules involving the J operator include:

σc(Jp(R,S)) = Jp(σc(R), S), iff c is on R’s attributes. (9)

Sp1(Jp2(R,S)) = Jp2(Sp1(R), S), iff p1 is on instances in
R not in S. (10)

T ./c Jp(R,S) = Jp((T ./c R), S), iff p is on instances not in T

and c does not involve S’s attributes. (11)

Proof: Rules 9 and 10 address pushing the selection operators (σ
or S) before the summary-based join operator whenever possible. It
is always a valid transformation in the case of the σ operator as long
as the predicates c are on one of the two relations (Rule 9). This
is because the σ and the J operate on disjoint pieces of the tuple,
i.e., the data values, and the summaries, respectively. Rule 10 is
correct since the summary objects related to p1 are only attached to
relation R. And thus, the J is guaranteed not to alter these objects
after the join. Rule 11 states the conditions for switching the order
between summary- and data-based join operators. The order can be
switched iff the summary-based join predicates p involve instances
not defined on T . And thus, joining early with T (T ./c R) is
guaranteed not to affect the evaluation of p.
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OID ClassBird1 ClassBird2 TextSummary1  

r1 &
&
&

…& …& …& …&

ClassBird1 
[(Behavior, 33),  
(Disease, 8),  
(Anatomy, 25), 
(Other, 16)] 

[(Provenance, 10),  
(Question, 8),  
(Other, 5)] 

ClassBird2 
TextSummary1 

[“Experiment E … ”,  
“Wikipedia article …“] 

AvgObjectSize = 50 
Behavior Label:  
     {Min = 3, Max = 43,  NumDistinct = 27,                  } .&.&.&.&.&.&

Figure 6: Example of Classifier-Type Maintained Statistics.

5.2 Cost Model and Cardinality Estimation
Statistics Collection: The equivalence rules presented in Sec-

tion 5.1 enable the query optimizer to generate a larger pool of
equivalent query plans. The next step is to estimate the cost of the
new summary-based operators in order to select the cheapest plan.
Towards this goal, InsightNotes maintains several statistics over the
summary objects attached to a given relationR. These statistics are
similar to those maintained by traditional DBMSs except that they
capture the internal semantics of the summary objects.

Demonstrating over an example, assume relation R has three
summary instances linked to it as illustrated in Figure 6. Then,
for each summary instance (one column in Figure 6), InsightNotes
maintains the average object size (AvgObjectSize). In the case
of Classifier-type objects, e.g., ClassBird1 and ClassBird2, the size
is fixed for all objects within one instance. In contrast, for the
Snippet-type and Cluster-type objects, the size may differ from one
object to another. Moreover, the system maintains several statis-
tics for each classifier label within the Classifier-type objects. For
example, for ClassBird1, four data structures are maintained−one
for each class label. Each data structure holds some statistics on
the count field associated with that label, which include {Min,
Max, NumDistinct, Equi-Width Histogram} as de-
picted in Figure 6. These statistics are maintained whenever a sum-
mary object is updated.

Cardinality and Cost Estimation: To avoid re-inventing
the wheel, the new summary-based operators leverage the same
heuristics that the standard SQL operators use to estimate their
cardinalities and costs. For example, the filter operator F
uses the same heuristics as the standard projection operator π,
e.g., based on the AvgObjectSize statistics, the F operator es-
timates the size of the new tuples and the number of needed
disk blocks. Similarly, the summary-based selection operator
S uses the same heuristics as the standard selection operator
σ, e.g., referring to the S operator in Example 4, the system
uses the maintained statistics ({Min, Max, NumDistinct,
Equi-Width Histogram}) over the ClassBird1.Disease label
to estimate the number of output tuples having more than 5 disease-
related annotations. Moreover, if a Summary-BTree index is used
to answer this predicate, then the number of performed I/Os can be
estimated based on the index’s theoretical bounds.

The summary-based join operator J also follows the same
heuristics as the standard join operator ./, e.g., the size of
joining two relations R and S based on an equality join
on ClassBird2.Provenance can be estimated by mul-
tiplying the size of both relations, and then dividing by
the largest value between the NumDistinct statistics on
ClassBird2.Provenance from both sides. Currently, In-
sightNotes supports only two implementation choices for the J
operator, which are either a block nested-loop join, or an index-
based join.

6. EXPERIMENTS
The proposed extensions are implemented within the Insight-

Notes prototype engine [22], which is based on the open-source
PostgreSQL DBMS. The experiments are conducted using an
AMD Opteron Quadputer compute server with two 16-core AMD
CPUs, 128GB memory, and 2 TBs SATA hard drive.

Application Datasets: We use annotated database that stores
information related to 10s of thousands of birds worldwide. The
largest annotated table in the database is the Birds table that stores
the birds’ basic information. The table consists of 45,000 tuples,
each consisting of 12 attributes, e.g., scientific name, Ids across dif-
ferent systems, description, genus, family, and habit. The table size
in the database is approximately 450MBs. The collected number of
annotations is approximately 9x106 annotations describing a wide
range of bird related information, e.g., color, body shape or weight,
certain behavior or sound, eating habits, geographic location, or
observed diseases. The size of each annotation varies between 150
and 8,000 characters. The total size of the raw annotations table
(the 9x106 annotations) is around 5GBs.

Summarization Techniques: InsightNotes has several inte-
grated data mining techniques for annotation summarization, e.g.,
the Naive Bayes [10] technique for annotation classification, the
CluStream technique [2] for incremental clustering of annotations,
and the LSA (Latent Semantic Analysis) technique [18] for text
summarization and snippet creation. For the purpose of our ex-
periments, we link the Birds table with two summary instances:
(1) A Classifier summary instance ClassBird1 that classifies each
annotation to one of the labels: {‘Disease’, ‘Anatomy’, ‘Behav-
ior’, ‘Other’}, and (2) A Snippet summary instance TextSummary1
that summarizes each annotation larger than 1,000 characters and
creates a snippet that has a maximum of 400 characters. We then
create a Summary-BTree index over ClassBird1.

Index Creation Overhead: The first set of experiments study
the overheads associated with the creation of the summary-based
index (Figures 7, 8, and 9). In the experiments, we vary the number
of annotations (over the x-axis) between 450x103 (corresponding
to 10 annotations per tuple on average), to 9x106 (corresponding to
200 annotations per tuple on average). Figure 7 illustrates the stor-
age overhead of both the Baseline and Summary-BTree schemes
discussed in Section 4.1. In the former scheme, the summary ob-
jects are replicated and stored in a normalized form, and then a
standard B-Tree index is created over them. In contrast, in the latter
scheme, a Summary-BTree index is created over the de-normalized
representation of the summary objects. As the results show, the in-
dex size in both cases is almost the same. However, the proposed
Summary-BTree scheme saves up to 65% of the storage overhead
as it requires no replication of the data. The results also show that
the storage overhead is almost fixed under the different sizes of
the raw annotations. The reason is that once each data tuple has
an attached classifier summary object, then the number and size of
the summary objects becomes fixed and will not change. The in-
crease in the number of annotations only changes the integer value
assigned to the class labels, which does not affect the size.

In Figures 8 and 9, we measure the time overhead of creating
the indexes in bulk and incremental modes, respectively. In the
bulk mode (Figure 8), the raw annotations and the summary ob-
jects will be first created, and then the indexes will be built. This
is the recommended mode for initial uploading of large datasets
into the database. We measured, over the y-axis, the relative time
of creating the index to the time of uploading the raw annotations
and creating the summary objects. The indexing time under the
Summary-BTree scheme involves the time for itemization, insertion
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Figure 9: Incremental Indexing.

of indexed keys, and computing the backward references. For the
Baseline scheme, the indexing time includes the de-normalization
and storage in other tables, and the insertion of the indexed keys.
The figure illustrates that the creation of the Summary-BTree index
is more efficient than the baseline index by up to 35%.

The performance of the incremental indexing is studied in Fig-
ure 9. We considered the cases of inserting annotations with:
(1) No indexes, (2) A Summary-BTree index, and (3) A Baseline
B-Tree index. For each data point in the figure, we insert 100 an-
notations, measure the insertion time of each annotation under the
three cases, and then report the average over the 100 insertions. As
the figure shows, the indexing overhead using the Summary-BTree
index is approximately 10% to 15% of the insertion time, while the
baseline indexing scheme has around 20% to 37% overhead due to
the de-normalization step.

Query Performance: The next set of experiments study
the effect of utilizing the Summary-BTree index to speedup
queries involving summary-based predicates (Figures 10, 11, 12,
and 13). The results in Figure 10 illustrate the performance
gain from the Summary-BTree index using a Select-Project
(SP) query, where the selection predicate is in the form
of: "r.$.getSummaryObject(‘ClassBird1’).
getLabelValue(‘Disease’) = constant". The
query’s response time is presented in the y-axis (in Log scale)
under three cases: (1) using no indexes, (2) using the Baseline
standard B-Tree index, and (3) using the Summary-BTree index.
We experimented with different query selectivities, i.e., 0.1%, 1%,
and 5%, and the differences were minor in each case. Therefore, in
Figure 10 we report the results of only the 1% selectivity (around
450 data tuples). The figure illustrates that the Summary-BTree
index has approximately 3x speedup over the baseline index. This
is because the latter index involves more levels of indirection,
and hence requires more join operations to reach the desired data
tuples. As expected both indexes achieve around two orders of
magnitude speedup compared to the NoIndex case.

The experiment in Figure 11 studies the performance of
a Select-Project (SP) query involving two conjunctive pred-
icates: (1) A range predicate selecting the tuples having a
number of anatomy-related annotations within a given range,
i.e., "r.$.getSummaryObject(‘ClassBird1’).
getLabelValue(‘Anatomy’) in [x,y]", and (2) A
keyword search predicate over the text summarization instance,
i.e., "r.$.getSummaryObject(‘TextSummary1’).
containsUnion(kw1, ...)". When the index scan over
ClassBird1 is disabled (the NoIndex case), InsightNotes uses a
table scan followed by a summary-based selection operator S to
apply both predicates. In contrast, when the index scan is enabled,
InsightNotes uses the index to evaluate the range predicate and on
top of that a S operator to apply the keyword search predicate. The

results illustrate that the Summary-BTree index is around 2x faster
than the baseline index.

It is worth noting that in the previous experiments, the Base-
line indexing scheme is used only to evaluate the selection predi-
cates involved in the query. Yet, the for the summary propagation
purpose to end-users, InsightNotes still reads the summary objects
from its de-normalized storage, i.e., R_SummaryStorage (Refer to
Figure 4). And hence, both indexes do not pay the cost of building
the summary objects from their primitive components. To confirm
that depending only on the Baseline scheme (the normalized stor-
age of summary objects) can significantly slowdown the summary
propagation, we performed the experiment in Figure 12. In the ex-
periment, we used the same query as in Figure 11 and compared
between the two indexing schemes. The only difference is that the
Baseline scheme in this experiment will not only evaluate the pred-
icates, but also form the summary objects for propagation. In this
case, the Baseline scheme showed around 7x slower performance
compared to the Summary-BTree indexing scheme.

In Figure 13, we study the effectiveness of augmenting the
Summary-BTree index with backward pointers that point directly
to the annotated data tuples instead of the conventional pointers
that point to the indexed objects. We use the same SP query used
in Figures 10. In the experiments, we consider four cases. The
first case is that the index uses the backward pointers, and the
annotation summaries are propagated along with the query’s re-
sult (labeled Backward-Propagation). The second case is
that the index uses the backward pointers, and the annotation sum-
maries are not propagated along with the query’s result (labeled
Backward-NoPropagation). The other two cases are the
same of the above except that the index uses the conventional point-
ers instead of the backward pointers, i.e., the Summary-BTree in-
dex pointers will point to the ClassBird1 summary objects. The re-
sults in Figure 13 show that propagating the annotation summaries
has almost the same cost under both the backward and conventional
pointers. The reason is that the join operation between the data ta-
ble and its SummaryStorage table has a 1-1 cardinality, and hence
the performance is very similar regardless of which table is used as
the outer table in the join. In contrast, if the summary propagation is
not required, then the backward pointers will save unnecessary join
with the SummaryStorage table, which achieves up to 4x speedup
in query execution.

Effectiveness of Query Optimization and Transformation
Rules: In Figures 14 and 15, we study the effect of some of the
new transformation rules and query optimizations proposed in Sec-
tion 5. The first experiment (Figure 14) measures the performance
of the query demonstrated in Example 4 in Section 5. Relations R
and S in the rules correspond to the Birds and Synonyms tables, re-
spectively. The Synonyms table consists of approximately 225,000
tuples and linked to the Birds table in a many-to-one relationship.
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Figure 10: Index vs. No Index (SP Query)

Baseline"Index20.1%"

Baseline"Index25%"

NoIndex(0.1%-

Baseline-Index(0.1%-

Baseline-Index(5%-

x"
Summary)BTree)0.1%"

Summary)BTree)5%"

Number"of"Annota<ons"

Ti
m
e"
(m

se
c)
"in
"Lo

gs
ca
le
"

1"

10"

100"

1000"

10000"

100000"

450K" 1.125M" 2.25M" 4.5M" 9M"

x"
NoIndex"

Summary2BTree"

Baseline"Index"

1"

10"

100"

1000"

10000"

100000"

450K" 1.125M" 2.25M" 4.5M" 9M"

x"
NoIndex"

Summary2BTree"

Baseline"Index"

Number"of"Annota<ons"

Ti
m
e"
(m

se
c)
"in
"Lo

gs
ca
le
"

Figure 11: Two-Predicates SP Query
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Figure 12: De-Normalized Propagation.
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Figure 13: Effectiveness of Backward Ptrs.
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Figure 14: Optimization Rules {2, 5}.
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Figure 15: Optimization Rule {11}.

Only the TextSummary1 instance is linked to the Synonyms table,
and hence Optimization Rules 2 and 5 can be applied. The exper-
iment compares the response time of the default query plan (Fig-
ure 5(a)) against that of the optimized query plan (Figure 5(b)). We
set the dataset size to 9x106 annotations, and we consider two cases
for each of the join and sort operators as illustrated in the x-axis.
The join operator either uses an index-based algorithm with an in-
dex on the join column in S (labeled Index), or a block nested-
loop join algorithm (labeled NLoop), and the sort operator either
uses a memory-based (labeled Mem) or disk-based (labeled Disk)
sort algorithms. The figure illustrates the effectiveness of the trans-
formation and optimization rules in all of the four cases to speedup
the query’s response time by a factor of 15x.

In Figure 15, we study the effectiveness of Optimization Rule
11, where the order between data- and summary-based join oper-
ators can be switched. Relations R and S correspond to the same
tables as in the previous experiment, and the summary-based join
between them involves a summary-based keyword search on their
combined TextSummary1 summary objects—No summary-based
index can be used in this case. Relation T is a replica to rela-
tion R, and hence they have a 1-1 relationship through an indexed
column for the birds’ unique identifiers. With no optimizations,
the default plan performs the J (R,S) operation first using a block
nested-loop join, and then performs the data-based join (./) with
T . In contrast, the optimized plan switches the join order to make
use of the available index on the birds’ identifiers in T . Thus, the
join operation R ./ T is performed first using an index-based
join, and then the results is summary-based joined (J ) with S. The
performance results in Figure 15 indicate that the optimized plan
achieves around 3.5x speedup compared to the default plan.

Usability Case Study: Similar to the motivating example pre-
sented in Section 1.1, we performed a usability case study to show
direct impact of the newly added features on users’ experience. We
formed a team of 20 students divided into two groups, where one
group uses the basic InsightNotes engine while the other group uses
the extended system (called InsightNotes+). Each student will an-

Query Semantics # Qualifying 
data tuples 

InsightNotes 
Group 

InsightNotes+ 
Group 

Q1: Report the data tuples sorted based on 
the number of attached disease-related 
annotations  

100 Time: 5.2 min 
Accuracy: 100% 

Time: 40 sec 
Accuracy: 100% 
 

Q2: Join version 1 of the data (V1) with 
version (V2) and report the same objects, 
i.e., V1.ID = V2.ID, having different number 
of provenance-related annotations 

5 Time: 8.1 min 
Accuracy: 100% 
(Reports 450 
Tuples) 

Time: 54 sec 
Accuracy: 100% 

Q3: Select the birds’ records having more 
than 3 question-related annotations  

10  ---  
(Reports 45K 
Tuples) 

Time: 52 sec 
Accuracy: 100% 

Figure 16: Usability Case Study.

swer each of the three queries highlighted in Figure 16. In the
figure, we report the average time taken by each group (including
the time of writing the query), and the results’ accuracy.

As the results show, both groups are able to answer Q1 and Q2
queries with 100% accuracy. However, the InsightNotes group
took significantly longer time to produce the results—which may
not be acceptable in many applications. The reason is that Insight-
Notes cannot fully answer any of these queries, and thus a manual
effort is needed to post-process the answer produced from Insight-
Notes. For example, in Q1 the students need to manually sort the
100 data tuples based on the number of their disease-related annota-
tions (summary-based sorting), while inQ2, they needed to go over
the joined tuples (based on the ID data columns)—which are 450
tuples—and manually check the second join predicate (based on the
number of provenance-related annotations) and report the 5 quali-
fying tuples. For Q3, since InsightNotes cannot apply a summary-
based selection operation, all the data tuples (45,000) will be re-
ported, and it is impractical to manually select the desired tuples
from them. On the other hand, the InsightNotes+ group is able to
answer the three queries in few seconds.

7. RELATED WORK
Annotation management has been extensively studied in the con-

text of relational DBMSs [4, 9, 14, 15, 21]. Several of these sys-
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tems focus on extending the relational algebra and query semantics
for propagating the annotations along with the queries’ answers [4,
9, 14, 21]. The Mondrian system [14] has proposed extensions to
treat the annotations as first-class citizens, where users can query
and manipulate the annotations through newly defined operators.
Other systems address the annotation propagation in the context of
containment queries [21], logical views [7], or automated copying
to newly inserted data [11, 17]. The systems proposed in [8, 13]
support special types of annotations, e.g., treating annotations as
data and annotating them [8], and capturing users’ beliefs as an-
notations [13]. All of these systems share a common limitation,
which is that they all manipulate the raw annotations. Therefore,
they do not provide any support for summarizing, extracting use-
ful knowledge, or applying analytics over the raw annotations. The
InsightNotes system and its extensions proposed in this paper ad-
dress such limitations, and enable end-users to query the annotation
summaries in novel ways, which otherwise were not possible.

In the domains of e-commerce, social networks, and entertain-
ment systems, e.g., [12, 19], the annotations are usually referred
to as tags. These systems deploy advanced mining and summa-
rization techniques for extracting the best insight possible from the
annotations to enhance users’ experience. They use such extracted
knowledge to take actions, e.g., providing recommendations and
targeted advertisements. However, unlike relational DBs, the re-
trieval mechanisms in these systems are typically straightforward
and do not involve complex processing or transformations, i.e., no
advanced query processing is required over the annotations sum-
maries once created. Therefore, these techniques do not address
the complex query processing and optimization challenges preva-
lent to scientific relational DBs that are addressed in this paper.

Scientific systems and workflows have also leveraged the con-
cept of semantic and ontology-based annotations, e.g., [3, 6]. These
systems use semantic annotations to either summarize complex
workflows [3], or help in building and verifying workflows [6].
These systems are based on process-centric annotations, e.g., an-
notations capturing the semantics of each function in a workflow,
the structure of their input and output arguments, etc. In contrast,
InsightNotes manages data-centric annotations that are indepen-
dent from how the data is processed. Nevertheless, the proposed
summary-based query operators, access methods, and optimiza-
tions are all new and have not beed addressed in current systems.

8. CONCLUSION
The large volume, increasing complexity, and hidden seman-

tics of the emerging annotation repositories in modern applica-
tions create unprecedented challenges to annotation management
techniques. In this paper, we proposed extensions to the Insight-
Notes system for elevating the annotation summaries from being
“propagate-only” objects to be “first-class” citizens. Hence, it be-
comes feasible for applications to express complex queries over
both the data and their attached annotation summaries, which oth-
erwise is not possible. The key contributions include: (1) Propos-
ing manipulation functions and query operators to seamlessly op-
erate on the summary objects at query time, (2) Developing spe-
cialized summary-based indexing scheme and access methods for
efficient predicate evaluation and retrieval of the summary ob-
jects, and (3) Introducing an extended query optimizer that enables
advanced optimizations for queries involving both the summary-
based and the standard query operators. The extensions are imple-
mented within the InsightNotes prototype engine, and the results
have demonstrated the practicality and efficiency of the proposed
extensions and techniques w.r.t both the system’s performance, and
users’ experience.

As part of future work, we plan to enrich the system with more
implementation choices for the summary-based operators, enable
multi-level (hierarchical) summarization, and extend the querying
mechanisms over the multi-level model.
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