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ABSTRACT
In this paper we propose a novel query type, termed top-k
spatio-textual preference query, that retrieves a set of spatio-
textual objects ranked by the goodness of the facilities in
their neighborhood. Consider for example, a tourist that
looks for “hotels that have nearby a highly rated Italian
restaurant that serves pizza”. The proposed query type
takes into account not only the spatial location and tex-
tual description of spatio-textual objects (such as hotels and
restaurants), but also additional information such as ratings
that describe their quality. Moreover, spatio-textual objects
(i.e., hotels) are ranked based on the features of facilities
(i.e., restaurants) in their neighborhood. Computing the
score of each data object based on the facilities in its neigh-
borhood is costly. To address this limitation, we propose
an appropriate indexing technique and develop an efficient
algorithm for processing our novel query. Moreover, we ex-
tend our algorithm for processing spatio-textual preference
queries based on alternative score definitions under a unified
framework. Last but not least, we conduct extensive exper-
iments for evaluating the performance of our methods.

1. INTRODUCTION
An increasing number of applications support location-

based queries, which retrieve the most interesting spatial
objects based on their geographic location. Recently, spatio-
textual queries have lavished much attention, as such queries
combine location-based retrieval with textual information
that describes the spatial objects. Most of the existing
queries only focus on retrieving objects that satisfy a spa-
tial constraint ranked by their spatio-textual similarity to
the query point. However, in addition users are quite of-
ten interested in spatial objects (data objects) based on the
quality of other facilities (feature objects) that are located
in their vicinity. Feature objects are typically described
by non-spatial attributes such as quality or rating, in ad-
dition to the textual description. In this paper, we propose
a novel and more expressive query type than existing spatio-
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Figure 1: Motivating example.

textual queries, called top-k spatio-textual preference query,
for ranked retrieval of data objects based the textual rele-
vance and the non-spatial score of feature objects in their
neighborhood.

Consider for example, a tourist that looks for “hotels that
have nearby a highly rated Italian restaurant that serves
pizza”. Figure 1 depicts a spatial area containing hotels
(data objects) and restaurants (feature objects). The qual-
ity of the restaurants based on existing reviews is depicted
next to the restaurant. Each restaurant also has textual in-
formation in the form of keywords extracted from its menu,
such as pizza or steak, which describes additional character-
istics of the restaurant. The tourist also specifies a spatial
constraint (in the figure depicted as a range around each
hotel) to restrict the distance of the restaurant to the hotel.
Obviously, the hotel h2 is the best option for a tourist that
poses the aforementioned query. In the general case, more
than one type of feature objects may exist in order to sup-
port queries such as “hotels that have nearby a good Italian
restaurant that serves pizza and a cheap coffeehouse that
serves muffins”. Even though spatial preference queries
have been studied before [16, 17, 14], their definition ig-
nores the available textual information. In our example, the
spatial preference query would correspond to a tourist that
searches for “hotels that are nearby a good restaurant” and
the hotel h1 would always be retrieved, irrespective of the
textual information.

In this paper, we define top-k spatio-textual preference
queries and provide efficient algorithms for processing this
novel query type. A main challenge compared to traditional
spatial preference queries [16, 17, 14] is that the score of
a data object changes depending on the query keywords,
which renders techniques that rely on materialization (such
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as [14]) not applicable. Most importantly, processing spa-
tial preference queries is costly in terms of both I/O and
execution time [16, 17]. Thus, extending spatial preference
queries for supporting also textual information is challeng-
ing, since the new query type is more demanding due to the
additional textual descriptions.
A straightforward algorithm for processing spatio-textual

preference queries is to compute the spatio-textual preference
score for each data object and then report the k data objects
with the highest score. We call this approach Spatio-Textual
Data Scan (STDS) and examine it as a baseline, while our
main focus is to reduce the cost required for computing the
spatio-textual score of a data object.
Moreover, we develop an efficient and scalable algorithm,

called Spatio-Textual Preference Search (STPS), for process-
ing spatio-textual preference queries. STPS follows a differ-
ent strategy than STDS, as it retrieves highly ranked fea-
ture objects first, and then searches data objects in their
spatial neighborhood. Intuitively, data objects located in
the neighborhood of highly ranked feature objects are good
candidates for inclusion in the top-k result set. The main
challenge tackled with STPS is determining efficiently the
best feature objects from all feature sets that do not violate
the spatial constraint.
To further improve the performance of our algorithms,

we develop an appropriate indexing technique called SRT-
index, that not only indexes the spatial location, the textual
description and the non-spatial score, but in addition takes
them equally into consideration during the index creation.
Finally, we extend our algorithm for processing spatio-textual
preference queries based on alternative score definitions un-
der a unified framework. To summarize the contribution of
this paper are:

• We propose a novel query type, called top-k spatio-
textual preference query, that ranks the data objects
based on the quality and textual relevance of facilities
(feature objects) located in their vicinity.

• A novel indexing technique called SRT-index is pre-
sented that is beneficial for processing spatio-textual
preference queries.

• We present two algorithms for processing spatio-textual
preference queries, namely Spatio-Textual Data Scan
(STDS) and Spatio-Textual Preference Search (STPS).

• We extend our algorithm STPS for processing spatio-
textual preference queries based on alternative score
definitions under a unified framework.

• We conduct an extensive experiment evaluation for
studying the performance of our proposed algorithms
and indexing technique.

The rest of this paper is organized as follows: Section 2
overviews the relevant literature. In Section 3, we define the
spatio-textual preference query. Our novel indexing tech-
nique (SRT-index) is presented in Section 4. In Section 5 we
describe our baseline algorithm, called spatio-textual data
scan (STDS). An efficient algorithm, called Spatio-Textual
Preference Search (STPS), is proposed in Section 6. More-
over, we extend our algorithms for processing spatio-textual
preference queries based on alternative scores in Section 7.
We present the experimental evaluation in Section 8 and we
conclude in Section 9.

2. RELATED WORK
Recently several approaches have been proposed for spatial-

keyword search. In [8], the problem of distance-first top-k
spatial keyword search is studied. To this end, the authors
propose an indexing structure (IR2-Tree) that is a combi-
nation of an R-Tree and signature files. The IR-Tree was
proposed in another conspicuous work [6, 11], which is a
spatio-textual indexing approach that employs a hybrid in-
dex that augments the nodes of an R-Tree with inverted
indices. The inverted index at each node refers to a pseudo-
document that represents all the objects under the node.
During query processing, the index is exploited to retrieve
the top-k data objects, defined as the k objects that have
the highest spatio-textual similarity to a given data location
and a set of keywords. Moreover, in [13] the Spatial Inverted
Index (S2I) was proposed for processing top-k spatial key-
word queries. The S2I index maps each keyword to a distinct
aggregated R-Tree or to a block file that stores the objects
with the given term. All these approaches focus on ranking
the data objects based on their spatio-textual similarity to
a query point and some keywords. This is different from our
work, which ranks the data objects based on textual rele-
vance and a non-spatial score (quality) of the facilities in
their spatial neighborhood. [5] provides an all-around eval-
uation of spatio-textual indices and reports on the findings
obtained when applying a benchmark to the indices.

Spatio-textual similarity joins were studied in [1]. Given
two data sets, the query retrieves all pairs of objects that
have spatial distance smaller than a given value and at the
same time a textual similarity that is larger than a given
value. This differs from the top-k spatio-textual preferences
query, because the spatio-textual similarity join does not
rank the data objects and some data objects may appear
more than once in the result set. Prestige-based spatio-
textual retrieval was studied in [2]. The proposed query
takes into account both location proximity and prestige-
based text relevance.

The m-closest keywords query [18] aims to find the spa-
tially closest data objects that match with the query key-
words. The authors in [3] study the spatial group keyword
query that retrieves a group of data objects such that all
query keywords appear in at least one data object textual
description and such that objects are nearest to the query
location and have the lowest inter-object distances. These
approaches focus on finding a set of data objects that are
close to each other and relevant to a given query, whereas in
this paper we rank the data objects based on the facilities
in their spatial neighborhood. In [4], the length-constrained
maximum-sum region (LCMSR) query is proposed that re-
turns a spatial-network region of constrained size that is
located within a general region of interest and that best
matches query keywords.

Ranking of data objects based on their spatial neighbor-
hood without supporting keywords has been studied in [15,
7, 16, 17, 14]. Xia et al. studied the problem of retriev-
ing the top-k most influential spatial objects [15], where the
score of a data object p is defined as the sum of the scores
of all feature objects that have p as their nearest neighbor.
Yang et al. studied the problem of finding an optimal lo-
cation [7], which does not use candidate data objects but
instead searches the space. Yiu et al. first considered com-
puting the score of a data object p based on feature objects
in its spatial neighborhood from multiple feature sets [16, 17]
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and defined top-k spatial preference queries. In another line
of work, a materialization technique for top-k spatial prefer-
ence queries was proposed in [14] which leads to significant
savings in both computational and I/O cost during query
processing. The main difference is that our novel query is
defined in addition by a set of keywords that express desir-
able characteristics of the feature objects (like “pizza” for a
feature object that represents a restaurant).

3. PROBLEM STATEMENT
Given an object dataset O and a set of c feature datasets

{Fi | i ∈ [1, c]}, in this paper, we address the problem of
finding k data objects that have in their spatial proximity
highly ranked feature objects that are relevant to the given
query keywords. Each data object p ∈ O has a spatial loca-
tion. Similarly, each feature object t ∈ Fi is associated with
a spatial location but also with a non-spatial score t.s that
indicates the goodness (quality) of t and its domain of values
is the range [0, 1]. Moreover, t is described by set of keywords
t.W that capture the textual description of the feature ob-
ject t. Figure 2 depicts an example of a set of feature objects
that represent restaurants and shows the non-spatial score
and the textual description. Table 1 provides an overview
of the symbols used in this paper.

Symbol Description
O Set of data objects
p Data object, p ∈ O
c Number of feature sets
Fi Feature sets, i ∈ [1, c]
t Feature object, t ∈ Fi

t.s Non-spatial score of t
t.W Set of keywords of t

dist(p, t) Distance between p and t
sim(t,W) Textual similarity between t and W

s(t) Preference score of t
τi(p) Preference score of p based on Fi

τ(p) Spatio-textual preference score of p

Table 1: Overview of symbols.

The goal is to find data objects that have in their vicin-
ity feature objects that (i) are of high quality and (ii) are
relevant to the query keywords posed by the user. Thus,
the score of the feature object t captures not only the non-
spatial score of the feature, but its textual similarity to a
user specified set of query keywords.

Definition 1. The preference score s(t) of feature
object t based on a user-specified set of keywords W is de-
fined as s(t) = (1 − λ) · t.s + λ · sim(t,W), where λ ∈ [0, 1]
and sim() is a textual similarity function.

The textual similarity between the keywords of the feature
and the set W is measured by sim(t,W) and its domain of
values is the range [0, 1]. The parameter λ is the smooth-
ing parameter that determines how much the score of the
feature objects should be influenced by the textual informa-
tion. For the rest of the paper, we assume that the textual
similarity is equal to the Jaccard similarity between the key-
words of the feature objects and the user-specified keywords:
sim(t,W) = |t.W

⋂
W|

|t.W
⋃

W| .
For example, consider the restaurants depicted in Fig-

ure 2. Given a set of keywords W = {italian, pizza} and

λ = 0.5 the restaurant with the highest preference score is
Ontario’s Pizza with a preference score s(r6) = 0.9, while
the score of Beijing Restaurant is s(r1) = 0.3, since none of
the given keywords are included in the description of Beijing
Restaurant.

Given a spatio-textual preference query Q defined by an
integer k, a range r and c-sets of keywordsWi, the preference
score of a data object p ∈ O based on a feature set Fi is
defined by the scores of feature objects t ∈ Fi in its spatial
neighborhood, whereas the overall spatio-textual score of p is
defined by taking into account all feature sets Fi, 1 ≤ i ≤ c.

Definition 2. The preference score τi(p) of data ob-
ject p based on the feature set Fi is defined as: τi(p) =
max{s(t) | t ∈ Fi : dist(p, t) ≤ r and sim(t,Wi) > 0}.

The dist(p, t) denotes the spatial distance between data
object p and feature object t and we employ the Euclidean
distance function. Continuing the previous example, Fig-
ure 4 shows the spatial location of the restaurants in Figure 2
and a data point p that represents a hotel. The preference
score of p based on the restaurants in its neighborhood (as-
suming r = 3.5 and W = {italian, pizza}) is equal to the
score of r6 (τi(p) = s(r6) = 0.9), which is the best restaurant
in the neighborhood of p.

Definition 3. The overall spatio-textual preference score
τ(p) of data object p is defined as: τ(p) =

∑
i∈[1,c] τi(p).

Figure 3 shows a second set of feature objects that repre-
sents coffeehouses. For a tourist that looks for a good hotel
that has nearby a good Italian restaurant that serves pizza
and a good coffeehouse that serves espresso and muffins, the
score of p would be τ(p) = s(r6) + s(c5) = 0.9 + 0.78233 =
1.6833.

Problem 1. Top-k Spatio-Textual Preference Queries (STPQ):
Given a query Q, defined by an integer k, a radius r and c-
sets of keywords Wi, find the k data objects p ∈ O with the
highest spatio-textual score τ(p).

4. INDEXING
The main difference of top-k spatio-textual preference queries

to traditional spatio-textual search is that the ranking of a
data object does not depend only on spatial location and
textual information, but also on the non-spatial score of the
feature object. In particular, the preference score s(t) of
feature object t is defined by its textual description and its
non-spatial score, while the spatial location is used as a fil-
ter for computing the preference score τi(p) of data object
p. Thus, efficient indexing of the textual description and the
non-spatial score of feature objects is a significant factor for
designing efficient algorithms for the STPQ query.

4.1 Index Characteristics
In this paper, we assume that the data objects O are in-

dexed by an R-Tree, denoted as rtree. However, for the
feature objects, it is important that the non-spatial score
and the textual description are indexed additionally. Each
dataset Fi can be indexed by any spatio-textual index that
relies on a spatial hierarchical index (such as the R-Tree).
However, each entry e of the index must in addition main-
tain: (i) the maximum value of t.s of any feature object t in
the sub-tree, denoted as e.s, and (ii) a summary (e.W) of
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name rating x y textual description
r1 Beijing Restaurant 0.6 1 2 Chinese, Asian
r2 Daphne’s Restaurant 0.5 4 1 Greek, Mediterranean
r3 Espanol Restaurant 0.8 5 8 Italian, Spanish, European
r4 Golden Wok 0.8 2 3 Chinese, Buffet
r5 John’s Pizza Plaza 0.9 8 4 Pizza, Sandwiches, Subs
r6 Ontario’s Pizza 0.8 7 6 Pizza, Italian
r7 Oyster House 0.8 6 10 Seafood, Mediterranean
r8 Small Bistro 1.0 3 7 American, Coffee, Tea, Bistro

Figure 2: Feature objects (Restaurants)
name rating x y textual description

c1 Bakery & Cafe 0.6 4 1 Cake, Bread, Pastries
c2 Coffee House 0.5 4 7 Cappuccino,Toast, Decaf
c3 Coffe Time 0.8 3 10 Cake, Toast, Donuts
c4 Cafe Ole 0.6 6 2 Cappuccino, Iced Coffee, Tea
c5 Royal Coffe Shop 0.9 5 5 Muffins, Croissants,Espresso
c6 Mocha Coffe House 1.0 10 3 Macchiato, Espresso, Decaf
c7 The Terrace 0.7 6 9 Muffins, Pastries, Espresso
c8 Espresso Bar 0.4 7 6 Croissants, Decaf, Tea

Figure 3: Feature objects (Coffeehouses)
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Figure 4: An example of a STPQ query.
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Figure 5: Hilbert-based keyword ordering.

all keywords of any feature t in the sub-tree. To ensure cor-
rectness of our algorithms, there must exist an upper bound
ŝ(e) such that for any t stored in the sub-tree rooted by the
entry e it holds:

ŝ(e) ≥ s(t)

The above property guarantees that the preference score s(t)
of a feature object t is bounded by the bound ŝ(e) of its
ancestor node e. The efficiency of the algorithms directly
depends on the tightness of this bound. In turn, this depends
on the similarity between the textual description and the
non-spatial score of the features objects that are indexed in
the same node.
In the following, we propose an indexing technique that

leads to tight bounds since objects with similar textual in-
formation and non-spatial score are stored in the same node
of the index.

4.2 Indexing based on Hilbert Mapping
Our indexing approach maps the textual description of

feature objects to a value based on the Hilbert curve. Let w
denote the number of distinct keywords in the vocabulary,
then for each feature t the keywords t.W can be represented
as a binary vector of length w. For instance, assuming a
vocabulary {pizza, burger, spaghetti}, we can use an active
bit to declare the existence of the “pizza” keyword at the
first place, “burger” at the second, and “spaghetti” at the
last. Moreover, we suggest a mapping of the binary vector
to a Hilbert value, denoted as H(t.W). For the above w=3
keywords, the defined order is 000,010,011,001,101,111,110
and 100. Figure 5 shows the ordering of the keywords based
on the Hilbert values. The benefit of this order is that it
ensures us that vectors with distance 1 have only one differ-
ent keyword, while if the distance is w′, then the maximum
number of different keywords is bound by w′. This means
that consecutive vectors in the afore-described order have
only few different keywords, which means that objects with
sequential H-values are highly similar also based on the Jac-
card similarity function.
Using the Hilbert mapping of the textual information,

each feature object t can be represented as a point in the
4-dimensional space {t.x, t.y, t.s, H(t.W)}. Our index-

ing technique, called SRT-index, uses a spatial index, such
as a traditional R-Tree, that is built on the mapped 4-
dimensional space. In terms of structure, the SRT-index
resembles a traditional R-Tree that it is built on the spa-
tial location, the non-spatial score (rating), and the Hilbert
value of the keywords of the feature objects altogether. The
only modification needed during the index construction is
the method used for updating the Hilbert values of a node.
When the Hilbert value of a node is updated because a
new object is added, then the previous Hilbert value as well
the Hilbert value of the new object are mapped to binary
vectors, the disjunction of the binary vectors is computed,
mapped to a new Hilbert value and stored in the node. No-
tably, the exact spatial index used for indexing the mapped
space does not affect the correctness of our algorithms, but
only their performance. In our experimental evaluation, we
use bulk insertion [9] on our novel indexing technique.

During query processing the bound ŝ(e) of a node e can
be set as:

ŝ(e) = (1− λ) · e.s+ λ · |e.W
⋂

W|
|W|

where W is the set of query keywords, while e.W is the set
of all keywords of all feature objects t indexed by the node
e. The set e.W is computed based on the Hilbert mapping
and the aggregated Hilbert value H(e.W) stored in the node
entry e of the SRT-tree. It holds that ŝ(e) ≥ s(t).

To summarize, the SRT-index overcomes the difficulty
that other indexing approaches face, being unable to iden-
tify in advance what are the branches of the index that store
highly ranked and relevant feature objects to the query. The
reason is that this indexing mechanism can identify effec-
tively the promising parts of the hierarchical structure at a
low cost, since during the index construction the similarity
of the spatial location, the non-spatial score, as well as the
textual description are taken into account.

5. SPATIO-TEXTUAL DATA SCAN (STDS)
Our baseline approach, called spatio-textual data scan

(STDS), computes the spatio-textual score τ(p) of each data
object p ∈ O and then reports the k data objects with the
highest score. Algorithm 1 shows the pseudocode of STDS.

436



In more detail, for a data object p, its score τi(p) for ev-
ery feature set Fi is computed (lines 3-5). The details on
this computation for range queries are described in Algo-
rithm 2 that will be presented in the sequel. Interestingly,
for some data objects p we can avoid computing τi(p) for
some feature sets. This is feasible because we can deter-
mine early that some data objects cannot be in the result
set R. To achieve this goal, we define a threshold τ which
is the k-th highest score of any data object processed so far.
In addition, we define an upper bound τ̂(p) for the spatio-
textual preference score τ(p) of p, which does not require
knowledge of the preference scores τi(p) for all feature sets

Fi: τ̂(p) =
∑

i∈[1,c]

{τi(p), if τi(p) is known
1, otherwise

. The algorithm

tests the upper bound τ̂ based on the already computed
τi(p) against the current threshold (line 6). If τ̂ is smaller
than the current threshold, the remaining score computa-
tions are avoided. After computing the score of p, we test
whether it belongs to R (line 6). If this is case, the result
set R is updated (line 7), by adding p to it and removing
the data object with the lowest score (in case that |R| > k).
Finally, if at least k data objects have already been added to
R, we update the threshold based on the k-th highest score
(line 9).

Algorithm 1: Spatio-Textual Data Scan (STDS)

Input: Query Q = (k, r, {Wi})
Output: Result set R sorted based on τ(p)

1 R = ∅; τ = −1;
2 foreach p ∈ O do
3 for i = 1 . . . c do
4 if τ̂(p) > τ then
5 τi(p) = Fi.computeScore(Q, p) ;

6 if τ(p) > τ then
7 update(R) ;
8 if |R| ≥ k then
9 τ = kth score ;

10 return R ;

The remaining challenge is to compute efficiently the score
based on the spatio-textual information of the feature ob-
jects. The goal is to reduce the number of disk accesses
for retrieving feature objects that are necessary for comput-
ing the score of each element p ∈ O. Algorithm 2 shows
the computation of preference score τi(p) for feature set Fi.
First, the root entry is retrieved and inserted in a heap (line
1). The heap maintains the entries e sorted based on their
values ŝ(e). In each iteration (lines 2-11), the entry e with
the highest value ŝ(e) is processed, following a best-first ap-
proach. If e is a data point and within distance r from p
(line 5), then the score τi(p) of p has been found and is re-
turned (line 7). If e is not a data point, then we expand it
only if it satisfies the query constraints (line 9). More de-
tailed, if the minimum distance of e to p is smaller or equal
to r and its textual similarity is larger than 0, e is expanded
and its child entries are added to the heap (line 11). Other-
wise, the entire sub-tree rooted at e can be safely pruned.
Correctness and Efficiency: Algorithm 2 always reports
the correct score τi(p). The sorted access of the entries,
combined with the property that the value ŝ(e) of the entry
is an upper bound ensure its correctness. Moreover, it can
be shown that Algorithm 2 expands the minimum number of

Algorithm 2: Spatio-Textual Score Computation on Fi

(computeScore(Q, p))

Input: Query Q, data object p
Output: Score τi(p)

1 heap.push(Fi.root);
2 while (not heap.isEmpty()) do
3 e ← heap.pop() ;
4 if e is a data object then
5 if (dist(p, e) ≤ r) then
6 τi(p) = s(e) ;
7 return τi(p) ;

8 else
9 if (mindist(p, e) ≤ r) and (sim(e,Wi) > 0) then

10 for childEntry in e.childNodes do
11 heap.push(childEntry) ;

entries, in the sense that if an entry that is expanded was not
expanded, it could lead to computing a wrong score. This
is because only entries with score higher than any processed
feature object are expanded, and such entries may contain in
their sub-tree a feature object with score equal to the score
of the entry.
Performance improvements: The performance of STDS
can be improved by processing the score computations in a
batch. Instead of a single data object p, a set of data objects
P can be given as input to Algorithm 2. Then, an entry is
expanded if the distance for at least one p in P is smaller
than r. When a feature object is retrieved, for any p for
which the distance is smaller than r the score is computed
and those data objects p are removed from P. The same
procedure is followed until either the heap or P is empty.
Algorithm 1 can be easily modified to invoke Algorithm 2
for all data objects in the same leaf entry of the R-tree (rtree)
that indexes the data objects O. For sake of simplicity, we
omit the implementation details, even though we use this
improved modification in our experimental evaluation.

6. SPATIO-TEXTUAL PREFERENCE SEARCH
(STPS)

In this section we propose a novel and efficient algorithm,
called Spatio-Textual Preference Search (STPS), for pro-
cessing spatio-textual preference queries. STPS follows a
different strategy than STDS, as it involves two major steps,
namely finding highly ranked feature objects first, and then,
retrieving data objects in their spatial neighborhood. In-
tuitively, if we find a neighborhood in which highly ranked
feature objects exist, then the neighboring data objects are
naturally highly ranked as well.

6.1 Valid Combination of Feature Objects
In a nutshell, the goal is to find sets of feature objects

C = {t1, t2, . . . , tc} where ti ∈ Fi (1 ≤ i ≤ c), such that the
spatio-textual preference score of each ti is as high as possi-
ble and the feature objects are located in nearby locations.

In the general case, a data object may be highly ranked
even in the case where a certain kind of feature object does
not exist in its neighborhood, though feature objects of other
kinds might compensate for this. For example, consider the
extreme case where all data objects have only one type of
feature object in their spatial neighborhood. For ease of pre-
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Algorithm 3: Spatio-Textual Preference Search (STPS)

Input: Query Q
Output: Result set R sorted based on τ(p)

1 while (|R| ≤ k) do
2 C = nextCombination(Q) ;
3 R = R∪ getDataObjects(C) ;
4 return R ;

sentation, we denote as ∅ a virtual feature object for which
it holds that dist(p, ∅) = 0, dist(ti, ∅) = 0 and s(∅) = 0
∀ti, p. This virtual feature object is used for presenting uni-
fied definitions for the case where the spatio-textual score of
the top-k data objects is defined based on less than c feature
objects. More formally put, we define the concept of valid
combination of feature objects as:

Definition 4. A valid combination of feature objects is a
set C = {t1, t2, . . . , tc} such that (i) ∀i ti ∈ Fi or ti = ∅, and
(ii) dist(ti, tj) ≤ 2r ∀i, j. The score of the valid combination
C is defined as s(C) =

∑
1≤i≤c s(ti).

The following lemma proves that it is sufficient to examine
only the valid combinations C of feature objects in order to
retrieve the result set of a top-k spatio-textual preference
query.

Lemma 1. The score of any data object p ∈ O is defined
by a valid combination of feature objects C = {t1, t2, . . . , tc},
i.e., ∀p : ∃C = {t1, t2, . . . , tc} such that τ(p) = s(C)

Proof. Let us assume that there exists p such that: τ(p) =∑
i∈[1,c] τi(p) with τi(p) = {s(ti) | ti ∈ Fi : dist(p, ti) ≤

r and sim(ti,Wi) > 0} and C = {t1, t2, . . . , tc} is not a valid
combination of feature objects. Since C = {t1, t2, . . . , tc} is
not a valid combination of feature objects, there exists 1 ≤
i ̸= j ≤ c such that dist(ti, tj) > 2r but also dist(p, ti) ≤ r
and dist(p, tj) ≤ r. Based on the triangular inequality it
holds: dist(ti, tj) ≤ dist(p, ti) + dist(p, tj) ≤ r + r ≤ 2r,
which is a contradiction.

6.2 STPS Overview
Algorithm 3 provides an insight to STPS algorithm. At

each iteration, the following steps are followed: (i) a special
iterator (line 2) returns successively the valid combinations
of feature objects sorted based on their score (we discuss the
details on the implementation of the iterator in the following
subsection), (ii) up to k data points in the spatial neighbor-
hood of these features are retrieved (line 3). Data objects
that have already been previously retrieved are discarded,
while the remaining data objects p have a score τ(p) = s(C)
and can be returned to the user incrementally. If k data ob-
jects have been returned to the user (line 1), the algorithm
terminates without retrieving the remaining combinations of
feature objects. Differently to the STDS algorithm, STPS
retrieves only the data objects that most certainly belong to
the result set.

6.3 Spatio-Textual Feature Objects Retrieval
Algorithm 4 shows the pseudocode for retrieving the valid

combinations C = {t1, t2, . . . , tc} of feature objects sorted
based on their spatio-textual preference score s(C). We first
give a scketch of our algorithm and then we will elaborate

Algorithm 4: Spatio-Textual Feature Objects Retrieval
(nextCombination(Q))

Input: Query Q
heapi: heap maintaining entries of Fi

heap: heap maintaining valid combinations of feature
objects
Di: set of feature objects of Fi

Output: C: valid combination with highest score
1 while (∃i : not heapi.isEmpty()) do
2 i← nextFeatureSet() ;
3 ei ← heapi.pop() ;
4 while (not ei is a data object) do
5 for childEntry in ei.childNodes do
6 heapi.push(childEntry) ;

7 ei ← heapi.pop() ;

8 Di = Di ∪ ei ;
9 heap.push(validCombinations(D1, · · · ,ei ,· · · , Dc)) ;

10 mini = s(ei) ;
11 τ = max1≤j≤c(max1 + · · ·+minj + · · ·+maxc) ;
12 C ← heap.top() ;
13 if (score(C) ≥ τ) then
14 heap.pop() ;
15 return C;

further on the details in the following of this section. In
each iteration, a feature set Fi is selected (line 2) based on
a pulling strategy implemented by nextFeatureSet(). The
spatio-textual index that stores the feature objects of the
feature set Fi is accessed and the feature objects ti are re-
trieved based on their score s(ti) that aggregates their non-
spatial score, but also their textual similarity to the query
keywords (lines 3-7). The retrieved feature objects are main-
tained in a list Di (line 8) and are used to produce valid com-
binations C of feature objects (line 9). Moreover, a thresh-
olding scheme is employed to decide when the combination
with the highest score has been retrieved (lines 11-15).

We denote as maxi the maximum score of Di and mini

the minimum score of Di. Thus, mini represents the best
potential score of any feature object of Fi that has not been
processed yet. Moreover, in Algorithm 4 the variables heapi,
Di, maxi, mini, and heap are global variables. They are
initialized as following heapi: the root of Fi, Di = ∅ and
heap = ∅, mini = ∞. Variable maxi is the score of the
highest ranked feature object of Fi and is set the first time
the Fi index is accessed.
Accessing Fi: In each iteration, Algorithm 4 accesses one
spatio-textual index that stores the set Fi (lines 3-7). The
entries of the spatio-textual index responsible for the fea-
ture objects of Fi are maintained in heapi, which keeps the
entries e sorted based on ŝ(e). Moreover, for sake of simplic-
ity, we assume that heapi.pop() will return a virtual feature
object ti = ∅ (with score equal to 0) as final object. In each
iteration an entry ei of the spatio-textual index is retrieved
from heapi (line 3). If the entry ei corresponds to a node
of the index, the entry is expanded and its child nodes are
added to the heapi (lines 5-6). Algorithm 4 continues re-
trieving from heapi entries, until an entry that is a feature
object is retrieved (line 4). When an entry ei is retrieved
that corresponds to a feature object, ei is inserted in the list
Di (line 8).
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Creation of C: After retrieving a new feature object ei,
new valid combinations C are created by combining ei with
the previously retrieved feature objects tj maintained in the
lists Dj (line 9). For this, the method validCombinations is
called, which returns all combinations of the objects in Dj

and ei, by discarding combinations for which the condition
dist(ti, tj) ≤ 2r ∀i, j does not hold. The new valid combi-
nations are inserted in the heap (line 9) that maintains the
valid combinations sorted based on their score s(C).
Thresholding scheme: Algorithm 4 employs a threshold-
ing scheme to determine if the current best valid combi-
nation can be returned as the valid combination with the
highest score. The threshold τ represents the best score of
any valid combination of feature objects that has not been
examined yet. The best score of the next feature object tj
retrieved from Fj is equal to minj , since the feature objects
are accessed sorted based on s(tj). Obviously, for the re-
maining feature sets we assume that the new feature object
tj is combined with the feature objects that have the highest
score. Thus, τ = max1≤j≤c(max1+ · · ·+minj+ · · ·+maxc)
(line 11) is an upper bound of the score for any valid com-
bination that has not been examined yet. In line 13, we test
whether the best combination of feature objects in the heap
has a score higher or equal to the threshold τ . If so, the
best combination in the heap is the next valid combination
with the best score. Otherwise, additional feature objects
from feature sets Fi have to be retrieved until it holds that
the top element of the heap achieves a score which is higher
than τ .
Pulling strategy: In the following, we proposed an ad-
vanced pulling strategy that prioritizes retrieval from fea-
ture sets that have higher potential to produce the next valid
combination C. A simple alternative would be to access the
different feature sets in a round robin fashion.
The order in which the feature objects of different fea-

ture sets are retrieved is defined by a pulling strategy, i.e.,
nextFeatureSet() returns an integer between 1 and c and
defines the pulling strategy. In addition, nextFeatureSet()
never returns i if heapi is empty.

Definition 5. Given c sets of feature objects Di, the pri-
oritized pulling strategy returns m as the next feature set
such that τ = max1 + · · ·+minm + · · ·+maxc.

The main idea of the prioritized pulling strategy is that in
each iteration the feature set Fm that is responsible for the
threshold value τ is accessed. It is obvious that the only way
to reduce τ is to reduce the minm, since retrieval from the
remaining feature sets cannot reduce τ . Thus, retrieving the
next tuple from the feature set Fm may reduce the threshold
τ and may produce new valid combinations that have a score
equal to the current threshold.

6.4 Retrieval of Qualified Data Objects
In the following, we study the reciprocal actions taken

upon the formation of a highly ranked combination of feature
objects.
In Algorithm 3 (line 3) getObjects(C) is invoked to re-

trieve from rtree all data objects in the neighborhood of the
feature objects in C. This method starts from the root of
the rtree and processes its entries recursively. Entries e for
which ∃i such that ti ∈ C with dist(e, ti) > r are discarded.
The remaining entries are expanded until all objects p for
which it holds that dist(p, ti) ≤ r are retrieved.
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Figure 6: Data objects within qualifying distance
from C = {r6, c5}.

Example. Consider for example the feature sets depicted
in Figure 2 and in Figure 3. Given a query with r = 3.5,
W1 = {italian, pizza} and W2 = {espresso, muffins},
the restaurant and the coffeehouse with the highest scores are
r6 and c5 respectively. Since it holds that dist(r6, c5) ≤ 2r,
the set C = {r6, c5} is a valid combination of feature objects.
Assume that the set of data objects is O = {p1, p2, . . . , p10}
as depicted in Figure 6. For the data objects p6, p9 and p10
it holds that dist(pi, c5) ≤ r and dist(pi, r6) ≤ r, and their
spatial-textual score is τ(p6) = τ(p9) = τ(p10) = 1.6833.
These data objects are guaranteed to be the highest ranked
data objects and can be immediately returned to the user.
For k ≤ 3, our algorithm terminates without examining
other feature combinations.

7. VARIANTS OF TOP-K SPATIO-TEXTUAL
PREFERENCE QUERIES

In this section, we extend our algorithms for processing
spatio-textual preference queries based on alternative score
definitions under a unified framework. We provide formal
definitions for the alternative score definitions, namely influ-
ence preference score and nearest neighbor preference score.
Moreover, we discuss for all query types the necessary mod-
ifications to our query processing algorithms.

7.1 Influence-Based STPQ Queries
In contrast to the preference score defined in Definition 1

(in the following referred to as range score), in this section
we define an alternative score that does not pose a hard
constraint on the distance, but instead gradually reduces the
score based on the distance. We call this variant influence
preference score.

Definition 6. The influence preference score τi(p) of
data object p based on the feature set Fi is defined as: τi(p) =

max{s(t) · 2
−dist(p,t)

r | t ∈ Fi : sim(t,Wi) > 0}.

The overall spatio-textual score τ(p) of data object p is
defined as in the case of the range score, and the query
returns the k objects with the highest score.

The STDS algorithm, as defined in Algorithm 1 can be
easily adapted for the case of influence score. Only the func-
tion computeScore(Q, p) must be modified according to the
definition of the score variant. Thus, in Algorithm 2 each
entry in line 11 will be prioritized according to the influ-
ence preference score. In addition, the range restriction is
removed in line 5 and line 9. No further modifications are
needed, thus in the following we focus on the modifications
and optimizations needed for STPS algorithm.
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Algorithm 5: STPS for influence score

Input: Query Q
Output: Result set R sorted based on τ(p)

1 τ = 0 ;
2 score = −1 ;
3 while (|R| ≤ k) or (best > τ) do
4 C = nextCombination(Q) ;
5 best = s(C) ;
6 R = R∪ getDataObjects(C) ;
7 τ = k-th score in R ;

8 return R ;

STPQ queries based on the influence preference score can
be efficiently supported by the STPS algorithm with few
modifications. Algorithm 5 shows the modified STPS for
influence preference score. The algorithm continues until at
least k data object have been retrieved and until we are sure
that none of the remaining data objects can have a better
score. We use the score of the k-th data object of the cur-
rent top-k result (line 7) to set a threshold τ . Hence, if
the best score of any unseen combination is smaller or equal
to τ , the algorithm naturally terminates. In more details,
C = nextCombination(Q) is the same with Algorithm 4
and returns the best combination based on score s(C), but
without discarding combinations whose distance is greater
than 2r. Thus, in each iteration the combination C with the
highest τ(p) =

∑
i∈[1,c] τi(p) is retrieved. Recall that for the

case of the range preference score, all data objects that were
located in distance smaller than r from all feature objects
of C had a score equal to s(C). Instead in the case of the
influence preference score, s(C) is an upper bound for the
score of all data objects based on C. This is because, the
computed score is the influence score only for the objects
with distance 0, while all other objects have a smaller influ-
ence score. Therefore, getDataObjects(C) must be modified
accordingly.
In more details, getDataObjects() retrieves the k points

that have the highest influence score, by starting a top-k
query on the R-Tree (rtree) of the data objects. The root
is inserted in a heap sorted by the influence score (τ(p) =
∑

i∈[1,c] τi(p)2̇
−dist(p,ti)

r ). For non-leaf entries e the influence
score is computed based on the mindist. Then, the influence
score of an entry is an upper bound of any object in the
subtree. After retrieving k data objects, we have retrieved
the k data objects with the highest influence score for this
combination of feature objects. Further improvement can be
achieved if getDataObjects() stops retrieving data objects
based on τ , which reduces the I/Os on rtree. If τ is given to
getDataObjects() then it will return at most k data objects
that have a score smaller than τ . Line 6 merges the results
while it removes objects that have been retrieved before.
Thus, if an object that is already in the heap is retrieved
again the score with the highest value is kept.
After retrieving k data objects with the highest τ(p) in

line 6 (Algorithm 5), the score of the k-th data object in
R is used as a threshold τ (line 7). The best score of any
unseen combination is best = s(C), which is also an upper
bound for the score of any unseen data object, since this is
the score for distance 0. Hence, if the best score is greater
than τ , we have to retrieve additional objects. If the score

s(C) of the next combination is smaller than or equal to the
threshold we stop retrieving other combinations.

7.2 Nearest Neighbor STPQ Queries
In the next score variant, each data object takes as a score

the goodness of the feature objects that are its nearest neigh-
bors. In particular, for each feature set the score of the near-
est feature object is considered for computing the score of a
data object.

Definition 7. The nearest neighbor preference score
τi(p) of data object p based on the feature set Fi is defined
as: τi(p) = {s(t) | t ∈ Fi : dist(p, t) ≤ dist(p, t′) ∀t′ ∈
Fi and sim(t,Wi) > 0}

The overall spatio-textual score τ(p) of data object p is
defined as in the case of the range score, and the query
returns the k objects with the highest score. Again, STDS
treats nearest neighbor queries similarly as in Algorithm 2
with subtle changes. The range predicate is removed in line
5 and line 9, while the child entries are prioritized in the
heap according to their minimum distance from the data
object p.

Regarding STPS, Algorithm 3 is directly applicable for the
nearest neighbor score by modifying nextCombination(Q)
of Algorithm 4 to return the best combination based on
score s(), but without discarding combinations that have a
distance > 2r, as also in the case of the influence score. The
remaining challenge is given a combination C to retrieve the
data objects that satisfy the nearest neighbor requirement.

Generally, it is more difficult compared to the other score
variants to retrieve the data objects for a given combination
C. We need to retrieve all data objects for which the near-
est neighbor ti based on Fi belongs to C. For each feature
object ti of C, there exists a region in which all data points
that fall into that region have ti as their nearest neighbor.
This region corresponds to the Voronoi cell [12] and this
problem has been studied for finding reverse nearest neigh-
bors [10]. Only the data objects in the intersection of all
regions need to be retrieved. In fact, we compute incremen-
tally the Voronoi cell for each feature object ti of C, which
allows us to discard early combinations for which the inter-
section becomes empty. We omit further implementation
details due to space limitations.

8. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of our algo-

rithms STDS and STPS, presented previously in Section 5
and Section 6 respectively, for processing spatio-textual pref-
erence queries over large disk-resident data. Moreover, we
study the gains in performance of our algorithms caused by
the SRT index proposed in Section 4 compared to an existing
indexing technique (IR2-Tree [8]). In order to ensure a fair
comparison, we modify the IR2-Tree to support score val-
ues of feature objects. To this end, we add to the leaf nodes
of IR2-Tree the scoring values for the feature objects, and
maintain in ancestor (internal) nodes the maximum score of
all enclosed feature objects. All experiments run on an Intel
2.2GHz processor equipped with 2GB RAM.

8.1 Experimental Setup
Methodology. In our experimental evaluation, we vary
four important parameters of the datasets in order to study
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the scalability of the proposed techniques (Section 8.2). These
parameters are: (i) the cardinality of the feature sets |Fi|,
(ii) the cardinality of the set of data objects |O|, (iii) the
number of feature sets c, and (iv) number of distinct key-
words indexed. Moreover, we study four different query pa-
rameters to study how the characteristics of the query in-
fluence the performance of the algorithms (Section 8.3). In
more details, we vary (i) the query radius r, (ii) the number
k of retrieved data objects, (iii) the smoothing parameter
λ between textual similarity and non-spatial score, and (iv)
the number of keywords of the query for each feature set.
Finally, we evaluate the performance of STPS for the in-
fluence score variant (Section 8.4) as well as for the nearest
neighbor variant (Section 8.5).
Tested ranges for all parameters are shown in Table 2.

The default values are denoted as bold. When we vary one
parameter, all others are set to their default values.

Parameter Range
Cardinality of dataset 50K,100K, 500K, 1M
Cardinality of features sets 50K,100K, 500K, 1M
Number of feature sets c 2, 3, 4, 5
Indexed keywords 64,128, 192, 256
Radius r (norm. in [0, 1]) .005, .01, .02, .04, .08
k 5,10, 20, 40, 80
Smoothing parameter .1, .3, .5, .7, .9
Queried keywords 1,3, 5, 7, 9

Table 2: Experimental parameters.

Datasets. For evaluating our algorithms, we use both real
and synthetic datasets. The real dataset, which was ob-
tained from factual.com, describes hotels (≈ 25K objects)
and restaurants (≈ 79K objects). In more details we col-
lected restaurant and hotels that are annotated with their lo-
cation. Moreover, for the collected restaurants we extracted
their rating and their textual description of the served food,
mentioned as “cuisine”. The number of distinct values of
keywords for the cuisine is around 130 and each restaurant
description may contain one or more keywords. Our datasets
contain collected hotels and restaurants for 13 US states
that are the states for which factual.com lists sufficient
data. In addition, we created synthetic clustered datasets
of varying size, number of keywords and number of feature
sets. Approximately 10, 000 clusters constitute each syn-
thetic dataset. The number of distinct keywords is set to
256 as a default value and each feature object is charac-
terized by one or more keywords that are picked randomly.
The spatial constituent of all datasets has been normalized
in [0, 1]× [0, 1]. Every reported value is the average of 1, 000
random queries, which are generated in a similar way as the
synthetic data and follow the same data distribution.
Metrics. The efficiency of all schemes is evaluated accord-
ing to the average execution time required by a query (time
consumed in the CPU and to read disk-pages). In our figures
we break down the execution time into the time consumed
due to the disk accesses (dark part of the bars) and the time
needed for processing the query (CPU time) which is the
white part of the bars. The time consumed due to the disk
accesses relates to the number of the required I/Os.

8.2 Scalability Analysis
In this section, we evaluate the impact of varying differ-

Feature objects |Fi| 50000 100000 500000 1000000
IR2-tree 13427.3 13854.6 25223.1 31434.6
SRT 12301.7 13187.9 18725.1 23046.3

Data objects |O| 50000 100000 500000 1000000
IR2-tree 13073.2 13854.6 21074.2 27846.0
SRT 11718.1 13187.9 18267.4 23444.9

Number c of Fi 2 3 4 5
IR2-tree 13854.6 27842.6 33625.0 40188.4
SRT 13187.9 14104.9 32071.1 38340.7

Indexed keywords 1 2 3 4
IR2-tree 13698.7 13854.6 15655.6 16209.6
SRT 13121.4 13187.9 13207.9 13887.8

Table 3: STDS execution time (in msec) for syn-
thetic dataset.

ent parameters on the efficiency of our algorithms. In order
to perform a scalability analysis, we employ the synthetic
dataset for this set of experiments. First, we show the scal-
ability limitations of STDS for large datasets (Table 3), and
then we explore in more detail the significantly superior per-
formance of STPS.

Table 3 shows the results for STDS when varying dif-
ferent parameters of the dataset. For the default setting,
STDS requires over 13 seconds for range queries. Evidently,
when a large number of data objects is involved STDS does
not scale well and the absolute time required is high. The
main reason is that STDS associates all data objects with c
feature objects, which is particularly time-consuming. This
experiment demonstrates that a plain algorithm for solving
the problem can lead to prohibitive processing cost. Since
STDS performs badly for all experimental setups, we omit
STDS for the rest of experimental evaluation, and study the
performance of STPS coupled with two different indexing
techniques.

Figure 7 illustrates the results for the same experiment as
above, but for the STPS algorithm. We implemented STPS
over two different indexes: (i) our SRT index (proposed in
Section 4), and (ii) the modified IR2-Tree [8] whose nodes
are enhanced with the maximum score of enclosed feature
objects. In summary, the results clearly demonstrate that
STPS scales with all parameters and that SRT indexing al-
ways outperforms IR2-tree. Moreover, in both cases, the
STPS algorithm exhibits high performance, as witnessed
by the low execution time, which stems from its ability
to quickly identify qualified feature combinations. Conse-
quently, the significant gains in processing time (orders of
magnitude compared to STDS) are mostly due to the effec-
tive design of the algorithm. The SRT index additionally
offers a speedup of x2 compared to the IR2-Tree, which fur-
ther improves the overall performance.

Figure 7(a) shows the execution time when increasing the
cardinality of the feature sets. STPS scales well since the
execution time increases only by a factor of at most x3, when
increasing the dataset by one order of magnitude. This in-
crease is due to the increased size of the data structures and
the additional processing required to traverse a bigger data
structure and find valid combinations of high score. When
comparing the index structures, the SRT index is faster, due
to the clustering of all score constituents (distance, textual
similarity, and non-spatial score) in the 4-dimensional space.

Figure 7(b) shows the obtained results when increasing
the number of data objects. Again, STPS scales well, and,
in fact, even better than in the previous experiment. Ob-
viously, a larger dataset of data objects does not affect the
performance so much as larger feature sets. Again, the use
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Figure 8: Range query parameters for real dataset.

of SRT indexing consistently outperforms the IR2-Tree.
In Figure 7(c), we increase the number of feature cate-

gories c. As expected, this has a stronger effect on perfor-
mance, since the cost required to retrieve the highest ranked
combinations increases with the number of possible combi-
nations, which, in turn, increases exponentially with c. Still,
the performance of STPS is not severely affected, especially
in the case of the SRT index which scales gracefully with c.
In Figure 7(d), we illustrate how the performance is af-

fected by the number of distinct keywords in the dataset.
Apparently, a higher number of keywords causes higher ex-
ecution times. The reason is twofold. First, as the number
of distinct keywords increases, it is less probable to find fea-
ture objects that are described by all queried keywords, thus
more feature objects need to be retrieved in order to ensure
that no other combination has a higher score. Secondly, the
node capacity of the index structures drops, thus the height
of the index structures may increase, thus causing more IOs.
In any case, the increase in the absolute value of execution
time is relatively small (20 msec), even when we increase the
vocabulary by a factor of 4 (from 64 to 256 keywords).

8.3 Varying Query Parameters
In Figure 8, we study the effect of varying query parame-

ters for the real dataset. First, in Figure 8(a), we evaluate
the impact of increasing the query radius r on the perfor-
mance of STPS. We notice that for smaller values of r the
execution time increases and the gain of SRT indexing com-
pared to IR2-tree drops. For small radius, access to more
qualified combinations of feature objects is required, since
only few data objects are located in their neighborhood.
Therefore, for both indexing approaches the execution time
increases mainly due to the increase of the IOs. Since a high
percentage of the feature objects need to be retrieved for
each feature set, the gain of SRT indexing is small. How-
ever, difference in performance becomes obvious for greater
values of r, and hence, finding relevant feature objects in
terms of textual description and good non-spatial score be-

comes most important for accessing only few feature objects.
Figure 8(b) illustrates the execution time when varying

the size of result set k. Overall, the execution time increases
as k increases. Specifically, with higher values of k more
combinations of feature objects are retrieved to compose the
result set, which again lead to more IOs to retrieve the qual-
ifying feature objects that constitute valid combinations.

In Figure 8(c), we vary the smoothing parameter λ. In
general, both approaches exhibit relatively stable perfor-
mance for varying values of λ. The performance of IR2-tree
is not affected by the smoothing parameter, since the feature
objects are not grouped into blocks based on the non-spatial
score nor based on their textual similarity. We note for the
IR2-tree that objects with similar textual descriptions are
stored throughout the index, regardless of their non-spatial
score; unlike the SRT index where they are clustered to-
gether in the same block. As a result, a significant overhead
is evident when searching for relevant objects all over the
IR2-tree. On the other hand, the SRT index is built by tak-
ing into account non-spatial score, the textual information
and the spatial location. Thus, STPS that uses SRT index
is consistently more efficient regardless of the value of the
smoothing parameter.
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Figure 9: Query parameters for synthetic dataset.

In Figure 8(d), we vary the number of queried keywords
per feature set from 1 to 9. The number of queried keywords

442



 50
 60
 70
 80
 90

 100
 110
 120
 130
 140

50K 100K 500K 1M

tim
e 

(m
se

c)

cardinality of Fi

IR2-tree SRT

(a) Cardinality of Fi

 70
 80
 90

 100
 110
 120
 130
 140
 150

50K 100K 500K 1M

tim
e 

(m
se

c)

cardinality of O

IR2-tree SRT

(b) Cardinality of O

 50
 100
 150
 200
 250
 300
 350
 400

 1.5  2  2.5  3  3.5  4  4.5  5  5.5

tim
e 

(m
se

c)

number of feature sets c

IR2-tree SRT

(c) Varying c

 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160
 170

64 128 192 256

tim
e 

(m
se

c)

number of distinct keywords

IR2-tree SRT

(d) Distinct keywords

Figure 10: Scalability for synthetic dataset and infuence queries.
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Figure 11: Influence query for real dataset.

has little impact on performance, except for the special case
where one keyword is queried for each feature set. This is
because both of the indexing techniques aggregate in the
non-leaf nodes the textual information of the leaf nodes,
which makes it much easier to find objects that contain one
keyword, rather than finding objects that are described with
more keywords. Nevertheless, the gain in execution time of
SRT indexing compared to the IR2-tree is obvious.
Figure 9 depicts results obtained from the synthetic dataset,

when varying different query parameters. We notice the
same tendency as in the case of the real dataset. In gen-
eral, we observed that range queries are costlier for the
real dataset. This is due to the data distribution: our real
dataset, which was extracted from factual.com, consists of
restaurants and hotels in the US forming just a few clusters.
On the other hand, our synthetic dataset is substantially
larger and contains a few thousands of clusters. Hence, the
data from the latter dataset are more dispersed compared
to the former. Last but not least, the SRT indexing consis-
tently outperforms the IR2-tree.

8.4 Influence-based Preference Score
In this section, we study the performance of STPS for the

influence-based score variant of the spatio-textual preference
queries. Figure 10 shows the scalability analysis of STPS for
this query variant. By comparing the results to Figure 7,
which studies the execution time of the range score vari-
ant for the same parameters, we conclude that the required
execution time is comparable and in some cases slightly in-
creased. This is because more data object for each combi-
nation must be retrieved (for the influence-based score vari-
ant), since data objects that are further away than r may
also have a non-zero score. Nevertheless, the additional cost
is not significant in our experiments, and we notice the same
tendency in execution time as in the case of range score, thus
similar conclusions can be drawn. Moreover, the SRT index-
ing technique is beneficial in all setups.
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Figure 12: Influence query for synthetic dataset.

Figure 11 shows the execution time of STPS for the real
dataset when varying query parameters. In Figure 11(a),
time decreases for large k values compared to the range score
(Figure 8(b)), because combinations with high score are as-
sociated with all data objects. Even though the score of the
object is reduced based on the distance, still their score is
high enough to retrieve fewer combinations. For smaller k
values the execution time is not affected significantly. In
Figure 11(b), we evaluate the performance of STPS when
varying the number of queried keywords. We notice that the
execution time is similar to Figure 8(d), which depicts the
results of the same experiment for range score.

Finally, in Figure 12, we study the performance of STPS
for the synthetic dataset when varying query parameters.
The execution time is similar and slightly higher to the ex-
ecution time needed for the range score (Figure 9), while
the behavior of STPS when varying query parameters is the
same. Again, the SRT indexing technique improves the per-
formance of STPS consistently.

8.5 Nearest Neighbor Preference Score
In this section, we evaluate the performance of STPS for

the nearest neighbor score variant. In general, we noticed
that the execution time is higher compared to the other
score variants, which is due to the Voronoi cell computa-
tions required for retrieving the data objects. In the charts,
we illustrate separately with a striped pattern the IO (lower
striped part) and the CPU-time (upper striped part) re-
quired to compute the respective Voronoi cells. Moreover,
it is expected that for a given combination, few data objects
satisfy the nearest neighbor constraint, which leads to re-
trieval of more combinations compared to the other variants.
Therefore, we notice in the charts that the execution time is
high even if the Voronoi cell computations is not considered
(without stripped parts). We note that for static data the
Voronoi cells can be pre-computed in a special structure,
and therefore significantly reduce the execution time.
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Figure 13: Scalability of nearest neighbor variant.
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Figure 14: Varying k for nearest neighbor variant.

Figure 13 depicts the execution time for STPS for the syn-
thetic dataset, while varying the size of the feature and ob-
ject datasets. In Figure 13(a) we notice that for large feature
sets the dominant cost is finding the data objects for a given
combination (i.e., computing the Voronoi cells), rather than
retrieving the combination with the highest score. Com-
puting the Voronoi cells requires retrieval of feature objects
from the spatio-textual index of Fi to define the borders of
the cell. This cost is higher for the SRT indexing method
compared to the IR2-tree, since the IR2-tree is built based
on spatial information only and nearby feature objects are
stored in the same node. Nevertheless, SRT indexing is still
beneficial for STPS, but the gain is smaller than for the other
variants. Similar conclusions can be drawn when varying the
cardinality of the dataset O, as depicted in Figure 13(b).
In Figure 14, we vary the parameter k both for real (Fig-

ure 14(a)) and synthetic datasets (Figure 14(b)). We notice
that the execution time does not increase significantly when
increasing k for the real dataset. This is because there exist
some combinations for which their feature objects are the
nearest neighbor for many data objects. Thus, the same ef-
fort is needed for retrieving few or many data objects. This is
not the case for the synthetic dataset (Figure 14(b)), where
the execution time increases for higher values of k.

9. CONCLUSIONS
Recently, the database research community has lavished

attention on spatio-textual queries that retrieve the objects
with the highest spatio-textual similarity to a given query.
Differently, in this paper, we address the problem of ranking
data objects based on the facilities (feature objects) that are
located in their vicinity. A spatio-textual preference score
is defined for each feature object that takes into account a
non-spatial score and the textual similarity to user-specified
keywords, while the score of a data object is defined based
on the scores of feature objects located in its neighborhood.
Towards this end, we proposed a novel query type called
top-k spatio-textual preference query and present two query
processing algorithms. Spatio-Textual Data Scan (STDS)
first retrieves a data object and then computes its score,

whereas Spatio-Textual Preference Search (STPS) first re-
trieves highly ranked feature objects and then searches for
data objects nearby those feature objects. Moreover, we
proposed an indexing technique that improves the perfor-
mance of our algorithms. Furthermore, we show how our al-
gorithms can support different score variants. Finally, in our
experimental evaluation, we put all methods under scrutiny
to verify the efficiency and the scalability of our method for
processing top-k spatio-textual preference queries.
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