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ABSTRACT
Social networks are large graphs that require multiple graph
database servers to store and manage them. Each database
server hosts a graph partition with the objectives of bal-
ancing server loads, reducing remote traversals (edge-cuts),
and adapting the partitioning to changes in the structure
of the graph in the face of changing workloads. To achieve
these objectives, a dynamic repartitioning algorithm is re-
quired to modify an existing partitioning to maintain good
quality partitions while not imposing a significant overhead
to the system. In this paper, we introduce a lightweight
repartitioner, which dynamically modifies a partitioning us-
ing a small amount of resources. In contrast to the exist-
ing repartitioning algorithms, our lightweight repartitioner
is e�cient, making it suitable for use in a real system. We
integrated our lightweight repartitioner into Hermes, which
we designed as an extension of the open source Neo4j graph
database system, to support workloads over partitioned graph
data distributed over multiple servers. Using real-world
social network data, we show that Hermes leverages the
lightweight repartitioner to maintain high quality partitions
and provides a 2 to 3 times performance improvement over
the de-facto standard random hash-based partitioning.

1. INTRODUCTION
Large scale graphs, in particular social networks, perme-

ate our lives. The scale of these networks, often in millions
of vertices or more, means that it is often infeasible to store,
query and manage them on a single graph database server.
Thus, there is a need to partition, or shard, the graph across
multiple database servers, allowing the load and concurrent
processing to be distributed over these servers to provide
good performance and increase availability. Social networks
exhibit a high degree of correlation for accesses of certain
groups of records, for example through frictionless sharing
[15]. Also, these networks have a heavy-tailed distribution
for popularity of vertices. To achieve a good partitioning
which improves the overall performance, the following ob-
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jectives need to be met:

• The partitioning should be balanced. Each vertex of the
graph has a weight that indicates the popularity of the
vertex (e.g., in terms of the frequency of queries to that
vertex). In social networks, a small number of users (e.g.,
celebrities, politicians) are extremely popular while a large
number of users are much less popular. This discrepancy
reveals the importance of achieving a balanced partitioning
in which all partitions have almost equal aggregate weight
defined as the total weight of vertices in the partition.

• The partitioning should minimize the number of edge-cuts.
An edge-cut is defined by an edge connecting vertices in
two di↵erent partitions and involves queries that need to
transition from a partition on one server to a partition
on another server. This results in shifting local traversal
to remote traversal, thereby incurring significant network
latency. In social networks, it is critical to minimize edge-
cuts since most operations are done on the node that rep-
resents a user and its immediate neighbors. Since these 1-
hop traversal operations are so prevalent in these networks,
minimizing edge-cuts is analogous to keeping communities
intact. This leads to highly local queries similar to those
in SPAR [27] and minimizes the network load, allowing for
better scalability by reducing network IO.

• The partitioning should be incremental. Social networks
are dynamic in the sense that users and their relations
are always changing, e.g., a new user might be added, two
users might get connected, or an ordinary user might be-
come popular. Although the changes in the social graph
can be much slower when compared to the read tra�c [8],
a good partitioning solution should dynamically adapt its
partitioning to these changes. Considering the size of the
graph, it is infeasible to create a partitioning from scratch;
hence, a repartitioning solution, a repartitioner, is needed
to improve on an existing partitioning. This usually in-
volves migrating some vertices from one partition to an-
other.

• The repartitioning algorithm should perform well in terms
of time and memory requirements. To achieve this e�-
ciency, it is desirable to perform repartitioning locally by
accessing a small amount of information about the struc-
ture of the graph. From a practical point of view, this
requirement is critical and prevents us from applying ex-
isting approaches, e.g., [18, 30, 31, 6] for the repartitioning
problem.

The focus of this paper is on the design and provision of
a practical partitioned social graph data management sys-
tem that can support remote traversals while providing an
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e↵ective method to dynamically repartition the graph using
only local views. The distributed partitioning aims to co-
locate vertices of the graph on-the-fly so as to satisfy the
above requirements. The fundamental contribution of this
paper is a dynamic partitioning algorithm, referred to as
lightweight repartitioner, that can identify which parts of
graph data can benefit from co-location. The algorithm aims
to incrementally improve an existing partitioning by decreas-
ing edge-cuts while maintaining almost balanced partitions.
The main advantage of the algorithm is that it relies on only
a small amount of knowledge on the graph structure referred
to as auxiliary data. Since the auxiliary data is small and
easy to update, our repartitioning algorithm is performant
in terms of time and memory while maintaining high-quality
partitionings in terms of edge-cut and load balance.

We built Hermes as an extension of the Neo4j1 open source
graph database system by incorporating into it our algo-
rithm to provide the functionality to move data on-the-fly
to achieve data locality and reduce the cost of remote traver-
sals for graph data. Our experimental evaluation of Hermes
using real-world social network graphs shows that our tech-
niques are e↵ective in producing performance gains and work
almost as well as the popular Metis partitioning algorithms
[18, 30, 6] that performs static o✏ine partitioning by relying
on a global view of the graph.

The rest of the paper is structured as follows. Section 2
describes the problem addressed in the paper and reviews
classical approaches and their shortcomings. Section 3 in-
troduces and analyzes the lightweight repartitioner. Section
4 presents an overview of the Hermes system. Section 5
presents performance evaluation of the system. Section 6
covers related work, and Section 7 concludes the paper.

2. PROBLEM DEFINITION
In this section we formally define the partitioning problem

and review some of the related results. In what follows, the
term ‘graph’ refers to an undirected graph with weights on
vertices.

2.1 Graph Partitioning
In the classical (↵, �)-graph partitioning problem [20], the

goal is to partition a given graph into ↵ vertex-disjoint sub-
graphs. The weight of a partition is the total weight of ver-
tices in that partition. In a valid solution, the weight of each
partition is at most a factor � � 1 away from the average
weight of partitions. More precisely, for a partition P of a
graph G, we need to have !(P )  � ⇥

P
v2V (G)

!(v)/↵. Here,

!(P ) and !(v) denote the weight of a partition P and vertex
v, respectively. Parameter � is called the imbalance load fac-
tor and defines how imbalanced the partitions are allowed
to be. Practically, � is in range [1, 2]. Here, � = 1 implies
that partitions are required to be completely balanced (all
have the same aggregate weights), while � = 2 allows the
weight of one partition to be up to twice the average weight
of all partitions. The goal of the minimization problem is to
achieve a valid solution in which the number of edge-cuts is
minimized.
The partitioning problem is NP-hard [13]. Moreover, there

is no approximation algorithm with a constant approxima-

1Neo4j is being used by customers such as Adobe and HP
[3].

tion ratio unless P=NP [7]. Hence, it is not possible to intro-
duce algorithms which provide worst-case guarantees on the
quality of solutions, and it makes more sense to study the
typical behavior of algorithms. Consequently, the problem
is mostly approached through heuristics [20] [12] which are
aimed to improve the average-case performance. Regardless,
the time complexity of these heuristics ⌦(n3) which makes
them unsuitable in practice.

To improve the time complexity, a class of multi-level al-
gorithms were introduced. In each level of these algorithms,
the input graph is coarsened to a representative graph of
smaller size; when the representative graph is small enough,
a partitioning algorithm like that of Kernighan-Lin [20] is
applied to it, and the resulting partitions are mapped back
(uncoarsened) to the original graph. Many algorithms fit in
this general framework of multi-level algorithms; a widely
used example is the family of Metis algorithms [19, 30, 6].
The multi-level algorithms are global in the sense that they
need to know the whole structure of the graph in the coars-
ening phase, and the coarsened graph in each stage should
be stored for the uncoarsening stage. This problem is par-
tially solved by introducing distributed versions of these al-
gorithms in which the partitioning algorithm is performed
in parallel for each partition [4]. In these algorithms, in ad-
dition to the local information (structure of the partition),
for each vertex, the list of the adjacent vertices in other par-
titions is required in the coarsening phase. The following
theorem establishes that in the worst case, acquiring this
amount of data is close to having a global knowledge of
graph (the proof can be found in [25]).

Theorem 1. Consider the (↵, �)-graph partitioning prob-
lem where � < 2. There are instances of the problem for
which the number of edge-cuts in any valid solution is asymp-
totically equal to the number of edges in the input graph.

Hence, the average amount of data required in the coars-
ening phase of multi-level algorithms can be a constant frac-
tion of all edges. The graphs used in the proof of the above
theorem belong to the family of power-law graphs which are
often used to model social networks. Consequently, even the
distributed versions of multi-level algorithms in the worst
case require almost global information on the structure of
the graph (particularly when used for partitioning social
networks). This reveals the importance of providing practi-
cal partitioning algorithms which need only a small amount
of knowledge about the structure of the graph that can be
easily maintained in memory. The lightweight repartitioner
introduced in this paper has this property, i.e., it maintains
only a small amount of data, referred to as auxiliary data,
to perform repartitioning.

2.2 Repartitioning
A variety of partitioning methods can be used to create

an initial, static, partitioning. This should be followed by
a repartitioning strategy to maintain good partitioning that
can adapt to changes in the graph. One solution is to pe-
riodically run an algorithm on the whole graph to get new
partitions. However, running an algorithm to get new par-
titions from scratch is costly in terms of time and space.
Hence, an incremental partitioning algorithm needs to adapt
the existing partitions to changes in the graph structure.

It is desirable to have a lightweight repartitioner that
maintains only a small amount of auxiliary data to perform
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repartitioning. Since such algorithm refers only to this auxil-
iary data, which is significantly smaller than the actual data
required for storing the graph, the repartitioning algorithm
is not a system performance bottleneck. The auxiliary data
maintained at each machine (partition) consists of the list of
accumulated weight of vertices in each partition, as well as
the number of neighbors of each hosted vertex in each parti-
tion. Note that maintaining the number of neighbors is far
cheaper that maintaining the list of neighbors in other parti-
tions. In what follows, the main ideas behind our lightweight
repartitioner are introduced through an example.

Example: Consider the partitioning problem on the graph
shown in Figure 1. Assume there are ↵ = 2 partitions in the
system and the imbalance factor is � = 1.1, i.e., in a valid
solution, the aggregate weight of a partition is at most 1.1
times more than the average weight of partitions. Assume
the numbers on vertices denote their weight. During nor-
mal operation in social networks, users will request di↵erent
pieces of information. In this sense, the weight of a ver-
tex is the number of read requests to that vertex. Figure
1a shows a partitioning of the graph into two partitions,
where there is only one edge-cut and the partitions are well
balanced, i.e., the weight of both partitions is equal to the
average weight. Assuming user b is a popular weblogger who
posts a post, the request tra�c for vertex b will increase as
its neighbors poll for updates, leading to an imbalance in
load on the first partition (see Figure 1b). Here, the ratio
between aggregate weight of partition 1 (i.e., 15) and the
average weight of partitions (i.e., 13) is more than �. This
means that the response time and request rates increase by
more than the acceptable skew limit, and the repartitioning
needs to be triggered to rebalance the load across partitions
(while keeping the number of edge-cuts as small as possible).
The auxiliary data of the lightweight repartitioner avail-

able to each partition includes the weight of each of the
two partitions, as well as the number of neighbors of each
vertex v hosted in the partition. Provided with this aux-
iliary data, a partition can determine whether load imbal-
ances exist and the extent of the imbalance in the system
(to compare it with �). If there is a load imbalance, a repar-
titioner needs to indicate where to migrate data to restore
load balance. Migration is an iterative process which will
identify vertices that when moved will balance loads (aggre-
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(c) Repartitioned graph

Figure 1: Graph evolution and e↵ects of repartitioning in
response to imbalances.

gate weights) while keeping the number of edge-cuts as small
as possible. For example, when the repartitioner starts from
the state in Figure 1b, on partition 1, vertices a through d
are poor candidates for migration because their neighbors
are in the same partition. Vertex e, however, has a split ac-
cess pattern between partitions 1 and 2. Since vertex e has
the fewest neighbors in partition one, it will be migrated to
partition 2. On partition 2, the same process is performed
in parallel; however, vertex f will not be migrated since par-
tition 1 has a higher aggregate weight. Once vertex e is
migrated, the load (aggregate weights) becomes balanced,
thus any remaining iterations will not result in any migra-
tions (see Figure 1c).

The above example is a simple case to illustrate how the
lightweight repartitioner works. Several issues are left out
of the example, e.g., two highly connected clusters of vertices
may repeatedly exchange their clusters to decrease edge-cut.
This results in an oscillation which is discussed in detail in
Section 3.

3. PARTITIONING ALGORITHM
Unlike Neo4j which is centralized, Hermes can apply hash-

based or Metis algorithm to partition a graph and distribute
the partitions to multiple servers. Thus, the system starts
with an initial partitioning and incrementally applies the
lightweight repartitioner to maintain partitioning with good
performance in the dynamic environment. In this section,
we introduce the lightweight repartitioner algorithm behind
Hermes. Embedding the initial partitioning algorithm and
the lightweight repartitioner into Neo4j required modifica-
tion of Neo4j components.

To increase query locality and decrease query response
times, the initial partitioning needs to be optimized in terms
of having almost balanced distributions (valid solutions) with
small number of edge-cuts. We use Metis to obtain the ini-
tial data partitioning, which is a static, o✏ine, process that
is orthogonal to the dynamic, on-the-fly, partitioning that
Hermes performs.

3.1 Lightweight Repartitioner
When new nodes join the network or the tra�c patterns

(weights) of nodes change, the lightweight repartitioner is
triggered to rebalance vertex weights while decreasing edge-
cut through an iterative process. The algorithm makes use
of aggregate vertex weight information as its auxiliary data.
Assuming there are ↵ partitions, for each vertex v, the auxil-
iary data includes ↵ integers indicating the number of neigh-
bors of v in each of the ↵ partitions. This auxiliary data is
insignificant compared to the physical data associated with
the vertex which include adjacency list and other informa-
tion referred to as properties of the vertex (e.g., pictures
posted by a user in a social network). The repartitioning
auxiliary data is collected and updated based on execution
of user requests, e.g., when a new edge is added, the aux-
iliary data of the partitioning(s) including the endpoints of
the edge get updated (two integers are incremented). Hence,
the cost involved in maintenance of auxiliary data is propor-
tional to the rate of changes in the graph. As mentioned ear-
lier, social networks change quite slowly (when compared to
the read tra�c); hence, the maintenance of auxiliary data is
not a system bottleneck. Each partition collects and stores
aggregate vertex information relevant to only the local ver-
tices. Moreover, the auxiliary data includes the total weight
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of all partitions, i.e., in doing repartitioning, each server
knows the total weight of all other partitions.

The repartitioning process has two phases. In each iter-
ation of the first phase, each server runs the repartitioner
algorithm using the auxiliary data to indicate some vertices
in its partition that should be migrated to other partitions.
Before the next iteration, these vertices are logically moved
to their target partitions. Logical movement of a vertex
means that only the auxiliary data associated with the ver-
tex is sent to the other partition. This process continues up
to a point (iteration) in which no further vertices are chosen
for migration. At this point the second phase is performed in
which the physical data is moved based on the result of first
phase. The algorithm is split into two phases because bor-
der vertices are likely to change partitions more than once
(this will be discussed later) and auxiliary data records are
lightweight compared to the physical data records, allowing
the algorithm to finish faster. In what follows, we describe
how vertices are selected for migration in an iteration of the
repartitioner.

Consider a partition P
s

(source partition) is running the
repartitioner algorithm. Let v be a vertex in partition P

s

.
The gain of moving v from P

s

to another partition P
t

(target
partition) is defined as the di↵erence between the number
of neighbors of v in P

t

and P
s

, respectively, i.e., gain(v) =
d
v

(t) � d
v

(s) (d
v

(k) denotes the number of neighbors of v
in partition k). Intuitively, the gain represents the decrease
of the number of edge-cuts when migrating v from P

s

to P
t

(assuming that no other vertex migrates). Note that the
gain can be negative, meaning that it is better, in terms of
edge-cuts, to keep v in P

s

rather than moving it to P
t

. In
each iteration and on each partition, the repartitioner selects
for migration candidate vertices that will give the maximum
gain when moved from the partition. However, to avoid os-
cillation and ensure a valid packing in term of load balance,
the algorithm enforces a set of rules in migrating vertices.
First, it defines two stages in each iteration. In the first
stage, the migration of vertices is allowed only from par-
titions with lower ID to higher ID, while the second stage
allows the migration only in the opposite direction, i.e., from
partitions with higher ID to those with lower ID. Here, par-
tition ID defines a fixed ordering of partitions (and can be
replaced by any other fixed ordering). Migrating vertices in
one-direction in two stages prevent the algorithm from oscil-
lation. Oscillation happens when there is a large number of
edges between two group of vertices hosted in two di↵erent
partitions (see Figure 2). If the algorithm allows two-way
migration of vertices, the vertices in each group migrate to
the partition of the other group, while the edge-cut does not
improve (Figure 2b). In one-way migration, however, the
vertices in one group remain in their partitions while the
other group joins them in that partition (Figure 2d).
In addition to preventing oscillation, the repartitioner al-

gorithm minimizes load imbalance as follows. A vertex v on
a partition P

s

is a candidate for migration to partition P
t

if
the following conditions hold:

• P
s

and P
t

fulfill the above one-way migration rule.
• Moving v from P

s

to P
t

does not cause P
t

to be overloaded
nor P

s

to be underloaded. Recall from Section 2.1 that
the imbalance ratio of a partition is the ratio between the
weight of the partition (the total weight of vertices it is
hosting) and the average weight of all the partitions. A
partition is overloaded if its imbalance load is more than

� and underloaded if its weight is less than 2 � � times
the average partition weight. Here, � is the maximum
allowed imbalance factor (1 < � < 2); the default value
of � in Hermes is set to be 1.1, i.e., a partition’s load is
required to be in range (0.9, 1.1) of the average partition
weight. This is so that imbalances do not get too high
before repartitioning triggers.

• Either P
s

is overloaded OR there is a positive gain in
moving v from P

s

to P
t

. When a partition is overloaded, it
is good to consider all vertices as candidates for migration
to any other partition as long as they do not cause an
overload on the target partition. When the partition is
not overloaded, it is good to move only vertices which
have positive weight so as to improve the edge-cut.

When a vertex v is a candidate for migration to more than
one partition, the partition with maximum gain is selected
as the target partition of the vertex. This is illustrated in
Algorithm 1. Note that detecting whether a vertex v is
a candidate for migration and selecting its target partition
is performed using only the auxiliary data. Precisely, for
detecting underloaded and overloaded partitions (Lines 2,
5 and 11), the algorithm uses the weight of the vertex and
the accumulated weights of all partitions; these are included
in the auxiliary data. Similarly, for calculating the gain of
moving v from partition P

s

to partition P
t

(Line 10), it uses
the number of neighbors of v in any of the partitions, which
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Figure 2: An unsupervised repartitioning might result in
oscillation. Consider the partitioning depicted in (a). The
repartitioner on partition 1 detects that migrating d, e, f to
partition 2 improves edge-cut; similarly, the repartitioner on
partition 2 tends to migrate g, h, i to partition 1. When the
vertices move accordingly, as depicted in (b), the edge-cut
does not improve and the repartitioner needs to move d, e, f
and h, i again. To resolve this issue, in the first stage of
repartitioning of (a), the vertices d, e, f are migrated from
partition 1 (lower ID) to partition 2 (higher ID). After this,
as depicted in (c), the only vertex to migrate in the second
stage is vertex g which moves from partition 2 (higher ID)
to migration 1 (d).
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Algorithm 1 Choosing target partition for migration

1: procedure get target part(vertex v currently
hosted in partition P

s

, the current stage of the
iteration.)

2: if imbalance factor(P
s

� {v}) < 2� � then
3: return (null, 0)

4: target = null; maxGain = 0;
5: if imbalance factor(P

s

) > � then
6: maxGain = �1
7: for partition P

t

2 partitionSet do
8: if (stage = 1 and P

t

.ID > P
s

.ID) or
9: . (stage = 2 and P

t

.ID < P
s

.ID) then
10: gain Gain(v, P

s

, P
t

)
11: if imbalance factor(P

t

[ {v}) < � and
12: . gain > maxGain then
13: target P

t

; maxGain = gain

14: return (target,maxGain)

is also included in the auxiliary data.

Recall that the repartitioning algorithm runs on each par-
tition independently, a property that supports scalability.
For each partition P

s

, after selecting the candidate ver-
tices for migration and their target partitions, the algo-
rithm selects k candidate vertices which have the highest
gains among all vertices and proceeds by (logically) migrat-
ing these top-k vertices to their target partitions. Here, mi-
grating a vertex means sending (and updating) the auxil-
iary data associated with the vertex to its target destina-
tion and updating the auxiliary data associated with parti-
tion weights accordingly. The algorithm restricts the num-
ber of migrated vertices in each iteration (to k) to avoid
imbalanced partitionings. Note that when selecting the tar-
get partition for a migrating vertex, the algorithm does not
know the target partition of other vertices; hence, there is a
chance that a large number of vertices migrate to the same
partition to improve edge-cut. Selecting only k vertices en-
ables the algorithm to control the accumulative weight of
partitions by restricting the number of migrating vertices.
We discuss later how the value of k is selected. In general,
taking k as a small, fixed fraction of n (size of the graph)
gives satisfactory results.

Algorithm 2 shows the details of one iteration of the repar-
titioner algorithm performed on a partition P

s

. The algo-
rithm detects the candidate vertices (Lines 4-8), selects the
top-k candidates (Line 9), and moves them to their respec-
tive target partitions. Note that the migration in Line 11 is
logical. After each phase of each iteration, the auxiliary data
associated with each migrated vertex v is updated. This is
because the neighbors of v may also be migrated, which
would mean that the degree of v in each partition, i.e., aux-
iliary data associated with v, has changed. The algorithm
continues moving vertices until there is no candidate vertex
for migration, i.e., further movement of vertices does not
improve edge-cut.

Example: To demonstrate the workings of the lightweight
repartitioner, we show two iterations of the repartitioning al-
gorithm on the graph of Figure 3 in which there are ↵ = 3
partitions and the average weight of partitions is 10/3. As-
sume the value of � is 1.3̄. Hence, the aggregate weight of a
partition needs to be in range [2.2̄, 4.4̄]; otherwise the par-
titioning is overloaded or underloaded. Figure 3a shows the

Algorithm 2 Lightweight Repartitioner

1: procedure repartitioning iteration(partition P
s

)
2: for stage 2 {1, 2} do
3: candidates  {}
4: for Vertex v 2 VertexSet(P

s

) do
5: target(v)  get target part(v,stage)
6: . setting target(v) and gain(v)
7: if target(v) 6= null then
8: candidates.add (v)

9: top-k  k candidates with maximum gains
10: for Vertex v 2 top-k do
11: migrate(v, P

S

, target(v))

12: P
s

.update auxiliary data

initial state of the graph. The partitions are sub-optimal as
6 of the 11 edges shown are edge-cuts. Consider the first
stage of the first iteration of the lightweight repartitioner.
Since the first stage restricts vertex migrations from lower
ID partitions to higher ID only, vertices a and e are the
migration candidates since they are the only ones that can
improve edge-cut. Note that if the algorithm was performed
in one stage, vertices h and d would be migrated to partition
1 causing the oscillating behavior discussed previously. At
the end of the first stage of the first iteration, the state of
the graph is as presented in Figure 3b. In the second stage,
the algorithm migrates only vertex g. While vertex c could
be migrated to improve edge-cut, the migration direction
does not allow this (Figure 3c). In addition, such migration
would cause partition 1 to be underloaded (its load will be
2 which is less than 2.2̄). In the second iteration, vertex
c is migrated to partition 2. The result of the first stage
of iteration 2 is presented in Figure 3d. At this point, the
graph reaches an optimal grouping, thus the second stage
of the second iteration will not perform any migrations. In
fact further iterations would not migrate anything since the
graph has an optimal partitioning.

3.2 Physical Data Migration
Physical data migration is the final step of the reparti-

tioner. Vertices and relationships that were marked for mi-
gration by the repartitioner are moved to the target parti-
tions using a two step process: (1) Copy marked vertices
and relationships (copy step) (2) Remove marked vertices
and relationships from the host partitions (remove step).

In the first step, a list of all vertices selected for migration
to a partition are received by that partition, which will re-
quest these vertices and add them to its own local database.
At the end of the first step, all moved vertices are replicated.
Because of the insertion-only operations, the complexity of
the operations is lower as all operations can be performed
locally in each partition, meaning less network contention
and locks held for shorter periods.

Between the two steps there is a synchronization process
between all partitions to ensure that partitions have com-
pleted the copy process before removing marked vertices
from their original partitions. The synchronization itself
is not expensive as no locks or system resources are held,
though partitions may need to wait until an occasional strag-
gler finishes copying. In the remove step, all marked vertices
will enter an unavailable state in which all queries referenc-
ing the vertex will be executed as if the vertex is not part
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Figure 3: Two iterations of the lightweight repartitioner.
Two metrics are attached to every partition: ! representing
the weight of the partition and ec representing the edge-cut.

of the local vertex set. This allows performing the transac-
tional operations much faster as locks on unavailable vertices
cannot be acquired by any standard queries.

3.3 Lightweight Repartitioner Analysis

3.3.1 Memory and Time Analysis

Recall that the main advantage of the lightweight reparti-
tioner over multilevel algorithms is that it makes use of only
auxiliary data to perform repartitioning. Auxiliary data has
a small size compared to the size of the graph. This is for-
malized in the following two theorems, the proofs of which
can be found in the extended version of the paper [25].

Theorem 2. The amortized size of auxiliary data stored
on each partition to perform repartitioning is n + ⇥(↵) on
average. Here, n denotes the number of vertices in the input
graph and ↵ is the number of partitions.

When compared to the multilevel algorithms, the memory
requirement of the lightweight repartitioner is far less and
can be easily maintained without hardly any impact on
performance of the system. This is experimentally verified
in Section 5.3.

Theorem 3. Each iteration of the repartitioning algo-
rithm takes O(↵n

s

) time to complete. Here, ↵ denotes the
number of partitions and n

s

is the number of vertices in the
partition which runs the repartitioning algorithm.

The above theorem implies that each iteration of the algo-
rithm runs in linear time. Moreover, the algorithm converges
to a stable partitioning after a small number of iterations rel-
ative to the number of vertices, e.g., in our experiments, it

converges after less than 50 iterations, while there are mil-
lions of vertices in the graph data sets.

The lightweight repartitioner is designed for scalability
and with little overhead to the database engine. The sim-
plicity of the algorithm supports parallelization of operations
and maximizes scalability. In the first phase, each iteration
is performed in parallel on each server. The auxiliary data
information is fully local to each server, thus lines 4 through
9 of Algorithm 2 are executed independently on each server.
In the second phase of the repartitioning algorithm, physi-
cal data migration is performed. As mentioned in Section
2.2, this part has been decomposed into two steps for sim-
plicity and performance. Because information is only copied
in the first step (in which vertices are replicated), it allows
for maximum parallelization with little need to synchronize
between servers.

3.3.2 Algorithm Convergence

When the lightweight repartitioner triggers, the algorithm
starts by migrating vertices from overloaded partitions. Note
that no vertex is a candidate for migration to an overloaded
partition. Hence, after a bounded number of iterations, the
partitioning becomes valid in term of load balance. When
there is no overloaded partition, the algorithm moves a ver-
tex only if there is a positive gain in moving it from the
source to the target partition. This is the main idea behind
the following proof for the convergence of the algorithm.

Theorem 4. After a bounded number of iterations, the
lightweight repartitioner algorithm converges to a stable par-
titioning in which further migration of vertices (as done by
the algorithm) does not result in better partitionings.

Proof. We show that the algorithm constantly decreases
the number of edge-cuts. For each vertex v, let d

ex

(v) denote
the number of external neighbors of v, i.e., number of neigh-
bors of v in partitions other than that of v. With this defi-
nition, the number of edge-cuts in a partition is �/2 where

� =
nP

v=1
d
ex

(v). Recall that the algorithm works in stages so

that if in a stage migration of vertices is allowed from one
partition to another, in the subsequent stage the migration is
allowed in the opposite direction. We show that the value of
� decreases in every two subsequent stages; more precisely,
we show that when a vertex v migrates in a stage t, the value
of d

ex

(v) either decreases at the end of the stage t or at the
end of the subsequent stage t+1 (compared to when v does
not migrate). Let dt

k

(v) denote the number of neighbors of
vertex v in partition k before stage t. Assume that vertex
v is migrated from partition i to partition j at stage t (see
Figure 4). This implies that the number of neighbors of v in
partition j is more than partition i. Hence, when v moves
to partition j, the value of d

ex

(v) is expected to decrease.
However, in a worst-case scenario, some neighbors of v in
partition j also move to other partitions at the same stage
(Figure 4b). Let x(v) denote the number of neighbors of v
in the target partition j which migrate at stage t; hence,
at the end of the stage, the value of d

ex

(v) decreases by at
least dt

j

(v)� x(v) units. Moreover, d
ex

(v) is increased by at
most dt

i

(v); this is because the previous internal neighbors
(those which remain at partition i) will become external af-
ter the migration of v. If dt

j

(v)� x(v) > dt
i

(v), the value of
d
ex

(v) decreases at the end of the stage and we are done.
Otherwise, we say a bad migration occurred. In these cases,
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Figure 4: The number of edge-cuts might increase in the first stage (in the worst case), but it decreases after the second stage.
In this example, the number of edge-cuts is initially 18 (a); this increases to 21 after the first stage (b), and decreases to 15
at the end of the second stage (c).

assuming k is su�ciently large, in the subsequent stage t+1,
v migrates back to partition i since there is a positive gain
in such a migration (Figure 4c), and this results in a de-
crease of dt+2

i

(v) and an increase of at most dt
j

(v) � x(v)
in d

ex

(v). Consequently, the net increase in d
ex

after two
stages is (dt

i

(v)� (dt
j

(v)�x(v)))+(dt
j

(v)�x(v)�dt+2
i

(v)) =
dt
i

(v) � dt+2
i

(v). Note that if v does not move at all, d
ex

increases dt
i

(v) � dt+2
i

(v) units after two stages. Hence, in
the worst case, the net decrease in d

ex

(v) is at least 0 for all
migrated vertices (compared to when they do not move). In-
deed, we show that there are vertices for which the decrease
in d

ex

is strictly more than 0 after two consecutive stages.
Assuming there are ↵ partitions, these are the vertices which
migrate to partition ↵ [in stages where vertices move from
lower ID to higher ID partitions] or partition 1 [in stages
where vertices move from higher ID to lower ID partitions].
In these cases, no vertex can move from the target partition
to another partition; so the actual decrease in d

ex

(v) is the
same as the calculated gain when moving the vertex and
is more than 0. To summarize, for all vertices, the value
of d

ex

(v) does not increase after every two stages, and for
some vertices, it decreases. For smaller values of k, after a
bad migration, vertex v might not return from partition j to
its initial partitioning i in the subsequent stage (since there
might be more gain in moving other vertices); however, since
there is a positive gain in moving v back to partition i, in
subsequent stages, the algorithm moves v from partition j
to another partition (i or another partition which results in
more gain). The only exception is when many neighbors of
v move to partition j so that there is no positive gain in
moving v. In both cases, the value of d

ex

(v) decreases with
the same argument as above. To conclude, as the algorithm
runs, the accumulated values of d

ex

(v) (i.e., �), and conse-
quently the number of edge-cuts, constantly decrease.

The graph structure in social networks does not evolve quickly
and its evolution is towards community formation. Hence, as
our experiments confirm, after a small number of iterations,
the lightweight repartitioner converges to a stable partition-
ing. The speed of convergence depends on the value of k (the
number of migrated vertices from a partition in each itera-
tion). Larger values of k result in faster improvement on the
number of edge-cuts and subsequently achieve partitioning
with almost an optimal number of edge-cuts. However, as
mentioned earlier, large values of k can degrade the balance
factor of partitioning. Finding the right of value of k requires

considering a few parameters which include the number of
partitions, the structure of the graph (e.g., the average size
of the clusters formed by vertices), and the nature of chang-
ing workload (whether the changes are mostly on the weight
or on the degree of vertices). In practice, we observed that a
sub-optimal value of k does not degrade convergence rate by
more than a few iterations; consequently the algorithm does
not require fine tuning for finding the best value of k. In our
experiments, we set k as a small fraction of the number of
vertices.

4. HERMES SYSTEM OVERVIEW
In this section, we provide an overview of Hermes, which

we designed as an extension of Neo4j Version 1.7.3 to han-
dle distribution of graph data and dynamic repartitioning.
Neo4j is an open source centralized graph database system
which provides a disk-based, transactional persistence en-
gine (ACID compliant). The main querying interface to
Neo4j is traversal based. Traversals use the graph structure
and relationships between records to answer user queries.

To enable distribution, changes to several components of
Neo4j were required as well as addition of new functionality.
The modifications and extensions were done such that exist-
ing Neo4j features are preserved. Figure 5 shows the com-
ponents of Hermes with the components of Neo4j that were
modified to enable distribution in light blue shading while
the components in dark blue shading are newly added. De-
tailed descriptions of the remaining changes are omitted as
they pose technical challenges which were overcome using
existing techniques. For example, as the centralized loop
detection algorithm used by Neo4j for deadlock detection
does not scale well, it was replaced using a timeout-based
detection scheme as described in [10].

Internally, Neo4j stores information in three main stores:
node store, relationship store and property store. Splitting
data into three stores allows Neo4j to keep only basic infor-
mation on nodes and relationships in the first two stores.
Further, this allows Neo4j to have fixed size node and rela-
tionship records. Neo4j combines this feature with a mono-
tonically increasing ID generator such that a) record o↵sets
are computed in O(1) time using their ID and b) contiguous
ID allocation allows records to be as tightly packed as pos-
sible. The property store allows for dynamic length records.
To store the o↵sets, Neo4j uses a two layer architecture
where a fixed size record store is used to store the o↵sets and
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a dynamic size record store is used to hold the properties.
To shard data across multiple instances of Hermes, changes
were made to allow local nodes and relationships to connect
with remote ones. Hermes uses a doubly-linked list record
model when keeping track of relationships. Such a node in
the graph needs to know only the first relationship in the list
since the rest can be retrieved by following the links from
the first. Due to tight coupling between relationship records,
referencing a remote node means that each partition would
need to hold a copy of the relationship. Since replicating and
maintaining all information related to a relationship would
incur significant overhead, the relationship in one partition
has a ghost flag attached to it to connect it with its remote
counterpart. Relationships tagged by the ghost flag do not
hold any information related to the properties of the rela-
tionship but are maintained to keep the graph structure
valid. One advantage of this is the complete locality in find-
ing the adjacency list of a graph node. This is important
since traversal operations build on top of adjacency list.

The storage was also modified to use a tree-based index-
ing scheme (B+Tree) rather than an o↵set-based indexing
scheme since record IDs can no longer be allocated in small
increments. In addition, data migration would make o↵set
based indexing impossible as records would need to be both
compacted and still keep an o↵set based on their ID.

In Hermes, servers are connected in a peer-to-peer fash-
ion similar to the one presented in Figure 6. A client can
connect to any server and perform a query. Generally, user
queries are in the form of a traversal. To submit a query the
client would first lookup the vertex for the starting point of
the query, then send the traversal query to the server host-
ing the initial vertex. The query is forwarded to the server
containing the vertex such that data locality is maximized.
On the server side, the traversal query will be processed by
traversing the vertex’s relationships. If the information is
not local to the server, remote traversals are executed using
the links between servers. When the traversal completes,
the query results will be returned to the client.

5. PERFORMANCE EVALUATION
In this section, we present the evaluation of the lightweight

repartitioner implemented into Hermes.

5.1 Experimental Setup
All experiments were executed on a cluster with 16 server
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Figure 6: Overview of how Hermes servers interact with
clients and with each other.

machines. Each server has the following hardware config-
uration: 2 AMD Opteron 252 (2 cores), 8 GB RAM and
160GB SATA HDD. The servers are connected using 1Gb
ethernet. In each experiment, one Hermes instance runs on
its own server.

The experiments are focused on typical social network
tra�c patterns, which based on previous work [8, 21], are
1-hop traversals and single record queries. We also consider
2-hop queries which are used for analytical queries such as
ads and recommendations. Given the small diameters of
social graphs (Table 1), queries with more than 2-hops are
more typical of batch processing frameworks rather than so-
cial graphs where querying most or all of the graph data is
required. The submission of traversal queries was described
in Section 4.

5.2 Datasets
Three real-world datasets, namely Orkut, DBLP, and Twit-

ter, are used to evaluate the performance of the lightweight
repartitioner. We consider average path length, clustering
coe�cient, and power law coe�cient of these graphs to char-
acterize the datasets (Table 1). Average path length is the
average length of the shortest path between all pairs of ver-
tices. The clustering coe�cient (a value between 0 and 1)
measures how tightly clustered vertices are in the graph. A
high coe�cient means strong (or well connected) communi-
ties exist within the network. Finally, power law coe�cient
shows how the number of relationships increases as user pop-
ularity increases.

5.3 Experimental Results
The lightweight repartitioner is compared with two di↵er-

ent partitioning algorithms. For an upper bound, we use a
member of Metis family of repartitioners that is specifically
designed for partitioning graphs whose degree distribution
follows a power-law curve [6]. These graphs include social
networks which are the focus of this paper.

Several previous partitioning approaches (e.g.[26, 28]) are

Twitter Orkut DBLP
Number of nodes 11.3 million 3 million 317 thousand
Number of edges 85.3 million 223.5 million 1 million
Number of symmetric links 22.1% 100% 100%
Average path length 4.12 4.25 9.2
Clustering coe�cient unpublished 0.167 0.6324
Power law coe�cient 2.276 1.18 3.64

Table 1: Summary description of datasets
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compared against Metis as it is considered the “gold stan-
dard” for the quality of partitionings. It is also flexible
enough to allow custom weights to be specified and used
as a secondary goal for partitioning. We also compare the
lightweight repartitioner against random hash-based parti-
tioning, which is a de-facto standard in many data stores
due to its decentralized nature and good load balance prop-
erties. Note that Metis is an o✏ine, static partitioning al-
gorithm that requires a very large amount of memory for
execution. This means that either additional resources need
to be allocated to partition and reload the graph every time
the partitioner is executed, or the system has to be taken
o✏ine to load data on the servers. When the servers were
taken o✏ine, it took 2 hours to load each of the Orkut and
Twitter graphs separately. This long period of time is unac-
ceptable for production systems. Alternatively, if Hermes is
augmented to run Metis on graphs, the resource overhead for
running Metis would be much higher than the lightweight
repartitioner. Metis’ memory requirements scale with the
number of relationships and coarsening stages, while the
lightweight repartitioner scales with the number of vertices
and partitions. Since the number of relationships dominates
by orders of magnitude, Metis will require significantly more
resources. For example, we found that Metis requires around
23GB and 17GB of memory to partition the Orkut and Twit-
ter datasets, respectively; however, the lightweight reparti-
tioner only requires 2GB and 3GB for these datasets. While
Metis has been extended to support distributed computa-
tion (ParMetis [4]), the memory requirements for each server
would still be higher than the lightweight repartitioner.

5.3.1 Lightweight Repartitioner Performance

Our experiments are derived from real world workloads
[21, 8] and are similar to the ones in related papers [27,
24]. We first study 1-hop traversals on partitions with a
randomly selected starting vertex. At the start of the ex-
periments, the workload shifts such that the repartitioner is
triggered, showing the performance impact of the reparti-
tioner and the associated improvements. This shift in work-
load is caused by a skewed tra�c trace where the users on
one partition are randomly selected as starting points for
traversals twice as many times as before, creating multiple
hotspots on a partition. This workload skew is applied for
the full duration of the experiments that follow.

Figure 7 presents the percentage of edge-cuts among all
edges for both lightweight repartitioner and Metis on the
skewed data. As the figure shows, the di↵erence in edge-
cut is too small (1% or less) to be significant, and we ex-
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Figure 7: The number of edge-cuts in partitionings of the
lightweight repartitioner (as a component of Hermes) versus
Metis. Results are presented as a percentage of edge-cuts
among the total number of edges.

0%

20%

40%

60%

80%

100%

Orkut Twitter DBLP

Pe
rc

en
t V

er
tic

es

Metis
Hermes

(a) Migrated vertices.

0%

20%

40%

60%

80%

100%

Orkut Twitter DBLP

Pe
rc

en
t R

el
at

io
ns

hi
ps Metis

Hermes

(b) Changed or migrated relationships.

Figure 8: The number of vertices (a) and relationships (b)
changed or migrated as a result of the lightweight reparti-
tioner (Hermes) versus running Metis.

pect that this very small di↵erence could shift in the other
direction depending on factors such as query patterns and
number of partitions. However, Figure 7 demonstrates that
the lightweight repartitioner generates partitionings that are
almost as good as those of Metis.

A repartitioner’s performance is a↵ected by the amount
of data that it needs to migrate. To quantify the impact
of migration on performance, the partitions resulting from
the lightweight repartitioner and Metis are compared with
the initial partitioning. Figure 8a shows the number of
vertices migrated due to the skew based on the two par-
titioning algorithms. The results show a much lower count
for the lightweight repartitioner. Figure 8b shows that the
lightweight repartitioner requires, on average, significantly
fewer changes to relationships compared to Metis. This dif-
ference is more extensive in the case of DBLP. The lightweight
repartitioner is able to rebalance workload by moving 2% of
the vertices and about 5% of the relationships, while Metis
migrates an order of magnitude more data.

Overall, both the numbers of vertices and relationships
migrated are important as they directly relate to the perfor-
mance of the system. We note that, however, the relation-
ship count has a higher impact on performance as this num-
ber will generally be much higher and relationship records
are larger, and thus more expensive to migrate.

Figure 9 presents the aggregate throughput performance
(i.e., the number of visited vertices) of 16 machines (par-
titions) using the three datasets. In these experiments, 32
clients concurrently submit 1-hop traversal requests using
the previously described skew. Before the experiments start,
Metis is applied to form an initial partitioning which has
a trace with no skew so as to remove partitioning bias by
starting out with a good partitioning. Once the experiment
starts, the mentioned skew is applied; this skew triggers the
repartitioning algorithm, whose performance is compared
with running Metis after the skew. For Orkut, results show
that by introducing the skew and triggering the lightweight
repartitioner, a 1.7 times improvement in performance can
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Figure 9: Aggregate throughput for the three datasets.

be obtained over random partitioning while Metis shows a
6% improvement over the lightweight repartitioner. Fig-
ure 9b shows the aggregated throughput while running the
Twitter dataset. The results show very similar performance
for the lightweight repartitioner and Metis. Finally, Fig-
ure 9c shows the results related to the DBLP experiments
that indicate there is no performance degradation due to the
lightweight repartitioner, which benefits from the relatively
small changes required by the algorithm. In fact, based on
results from Figure 9c, the performance di↵erence is not sig-
nificant. Interestingly, the DBLP dataset is the only dataset
for which the performance di↵erences are not noticeable due
to the highly clustered and well partitioned dataset. Given
an edge-cut of l5%, the high query locality means that par-
tition skews have little e↵ect on performance as they do not
shift workloads towards partition borders.

5.3.2 2-hop Performance

The previous section focused on 1-hop traversals . In this
section, we conduct 2-hop experiments since they are repre-
sentative operations used for recommendations, e.g., friend,
events or ad recommendations in social networks. Figure
9 shows the aggregated performance of the system running
with the three data-sets. The 2-hop experimental results
are similar to 1-hop except for the decrease in performance.
To analyze why this decrease occurs in the 2-hop case, we
observe that the ratio between the number of vertices in
the query response versus the number of vertices processed
is 1 for both Metis and Random partitioners in case of 1-
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Figure 10: Throughput while varying the write rate.

hop traversal queries, while these ratios degrade to 0.39 and
0.28, respectively, for 2-hop traversal queries. The reason
2-hop traversals return less vertices than what it processes
is because some vertices are visited multiple times during a
traversal while the query response contains only one copy
of the queried vertices. Since social networks exhibit high
clustering, a high fraction of processed vertices are accessed
multiple times within the same traversal.

5.3.3 Mixed Read/Write Experiments

The following experiments test how the system handles
mixed tra�c workload and evolving social network graphs.
The experiments insert data through random write traf-
fic. The lightweight repartitioner in Hermes is then run
to improve the quality of partitioning after records are in-
serted. Results of these experiments are shown in Figure 10
and indicate little performance degradation with increasing
write tra�c. A 10% write mix (with 90% reads) show a
3% decrease in performance, while 20% writes (80% reads)
and 30% writes (70% reads) show 5% and 7% decreases in
throughput (vertices per second) performance. The small
performance impact of writes is attributed to how B+Trees
store information and the monotonically increasing ID gen-
erator in Hermes. Since each new record will get the next,
highest ID, insertions in the B+Tree always happen in the
last page in a sequential manner. This translates to sequen-
tial writes to disk and the B+Tree requires caching only the
last page to perform insertions. To verify that the qual-
ity of the graph is high after the insertions finish, we ran
100% read tra�c and compared the throughput with the
results for Metis. Results showed that Hermes was able to
keep partition quality and system performance within 2% of
Metis, which demonstrates the e↵ectiveness and e�ciency of
Hermes’s lightweight repartitioner.

5.3.4 Sensitivity of Repartitioner Parameters

Recall from Section 3 that in each iteration of the algo-
rithm, the lightweight repartitioner moves at most k vertices
from each partition. Here, we examine how the value of k
a↵ects the outcome of the algorithm. We run the lightweight
repartitioner with three di↵erent values of k (500, 1000, and
2000). The first observation is that the load-balance factor
slightly degrades from 1.05 for k = 500 to 1.16 for k = 2000.
This is because, as mentioned earlier, larger values of k re-
sult in simultaneous migration of many vertices to partitions
which have recently become popular (due to hosting popu-
lar vertices). Consequently, we excluded values of k large
than 2000 from the experiment as they result in imbalance
factor more than the maximum allowed value of � = 1.1
(the default value of � in the system). Next, we verified how
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Figure 11: The number of edge-cuts for di↵erent values of
k. The numbers are scaled by 10�2 for Orkut dataset.

many iterations are required for the algorithms to converge.
Table 2 shows the number of required iterations for di↵er-
ent values of k. As expected, larger values of k result in
slightly faster convergence since they move more vertices per
iteration. Finally, we considered the quality of partitioning
when di↵erent values of k are used. As Figure 11 shows, the
number of edge-cuts in the final partitioning is almost the
same for di↵erent values of k, indicating that the quality of
partitioning does not depend on this value. To summarize,
larger values of k result in faster convergence while increas-
ing the load imbalance; at the same time, the value of k does
not have a significant e↵ect on the number of edge-cuts.

6. RELATED WORK
Previous work on graph databases focused on a central-

ized approach [17, 23, 1]. Some of these systems, e.g., Neo4j,
have a high availability mode but this provides limited scal-
ability [2]. HypergraphDB [17] provides a message passing
API between server instances, however there is no partition
management system and no support for distribution-aware
querying. In addition, the focus of each of these systems
is di↵erent. For example HyperGraphDB focuses more on
the flexibility of its storage system, allowing users to store
di↵erent types of objects. None of these graph databases
support data partitioning or distributed graph querying.

SPAR [27] and Titan [5] are middleware that run on top of
key-value stores or relational databases to provide on-the-fly
partitioning and replication of data. However, SPAR is re-
stricted to keeping only one-hop neighbours local while Her-
mes can support general remote traversals. Titan uses only
static hash-based, random partitioning scheme supported by
the underlying key-value store. This is in contrast to the
dynamic repartitioning that the lightweight repartitioner in
Hermes uses.

Unlike our system, SEDGE [36] focuses on partition repli-
cation in which a coarsening stage aggregates nodes which
are then matched with nodes in another partition. SEDGE
is not designed to handle dynamic workload changes that
Hermes is designed for. An approach that performs dy-

Twitter Orkut DBLP
k = 500 30 30 40
k = 1000 17 17 13
k = 2000 10 10 11

Table 2: The number of iterations after which the
lightweight repartitioner converges.

namic replication is described in [24] but it does not involve
a system that does on-the-fly partitioning. Horton [29] is
a query execution engine built for distributed in-memory
graphs. However it only provides a user abstraction, leaving
partitioning to existing o✏ine algorithms.

A streaming algorithm using simple heuristics has been
proposed in [32] but focuses on improving initial data place-
ment unlike the dynamic repartitioning in Hermes. In [33]
an improved heuristic for better partitioning quality is pro-
posed; however, the partition imbalance in the resulting so-
lutions can be significantly impacted. While this approach
extends the concept by saving state and allowing future data
loads to reuse state from previous runs, the algorithm needs
to parse the full dataset again, which can lead to expensive
operations and large migrations.

Several Pregel-like [22] systems, e.g., [11, 16], have been
proposed. These systems are quite di↵erent from Hermes in
that they address only in-memory batch processing of graph
analytics queries rather than the persistent management of
graph data that Hermes is designed to support. In [35],
a weighted multi-level partitioning algorithm is proposed
which is based on label propagation (community detection
technique). The edge-cut decrease in this approach can be
small while communities might be detected improperly be-
cause of the weighted approach. Their multi-level algorithm
does not guarantee communities are preserved over multi-
ple calls of the algorithm and can lead to large migrations
similar to Metis.

Some graph partitioning algorithms are experimentally
compared in [9]. Among these, DiDiC [14] is the only dis-
tributed algorithm that tends to minimize the number of
edge-cuts, but the resulting partitions of this approach may
not be well-balanced [28, 9].

Ja-Be-Ja [28] embeds a distributed algorithm for balanced
partitioning without global knowledge. In this algorithm,
the initial partition of each node is selected uniformly at
random; this ensures a balanced partitioning. In order to
decrease the number of edge-cuts, vertices are swapped be-
tween partitions. This will ensure maintaining a balanced
partitioning if vertices have fixed, uniform weights; however,
this is usually not the case for social networks.

An adaptive algorithm for repartitioning large-scale graphs
has the objective of minimizing the number of edge-cuts
with respect to certain capacities for partitions [34]. The
resulting partitionings might not be balanced if the capac-
ity constraints are maintained. Moreover, it is assumed that
vertices have fixed and uniform weights, which is usually
not the case for social networks. Additionally, their work is
targeted for graph analytics rather than the persistent man-
agement of graph data that Hermes is designed to support.

7. CONCLUSION
We presented an online, iterative, lightweight repartitioner

designed to increase query locality, thereby decreasing net-
work load and maintaining load balance across partitions.
The lightweight repartitioner e↵ectively adapts a partition-
ing to varying query workloads and the continuous evolution
of the graph structure using only a small amount of auxiliary
data. We implemented our lightweight repartitioner into
Hermes, which we built to extend the open source Neo4j
database system to support the partitioning of social net-
work data across multiple database servers. The experimen-
tal evaluation of the algorithm on real-world datasets shows
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that the repartitioner is able to handle changes in query
workloads while maintaining good performance. The over-
head of the repartitioner is minimal, producing sustained
performance comparable to that of static, o✏ine, partition-
ing using Metis. Our evaluation shows sizable performance
gains over random, hash-based partitioning, which is widely
used for database partitioning.

8. REFERENCES
[1] Neo4j. http://www.neo4j.org/.
[2] Neo4j - chapter 26. high availability.

http://docs.neo4j.org/chunked/stable/ha.html.
[3] Neotechnology.

http://www.neotechnology.com/customers/.
[4] Parmetis.

http://glaros.dtc.umn.edu/gkhome/metis/parmetis
/overview.

[5] Titan. http://thinkaurelius.github.com/titan/.
[6] Abou-Rjeili, A., and Karypis, G. Multilevel

algorithms for partitioning power-law graphs. In proc.
IPDPS (2006), pp. 124–124.

[7] Andreev, K., and Räcke, H. Balanced graph
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