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ABSTRACT
Partial periodic patterns are an important class of regular-
ities that exist in a time series. A key property of these
patterns is that they can start, stop, and restart anywhere
within a series. We classify partial periodic patterns into
two types: (i) regular patterns − patterns exhibiting pe-
riodic behavior throughout a series with some exceptions
and (ii) recurring patterns − patterns exhibiting periodic
behavior only for particular time intervals within a series.
Past studies on partial periodic search have been primar-
ily focused on finding regular patterns. One cannot ignore
the knowledge pertaining to recurring patterns. This is be-
cause they provide useful information pertaining to seasonal
or temporal associations between events. Finding recurring
patterns is a non-trivial task because of two main reasons.
(i) Each recurring pattern is associated with temporal infor-
mation pertaining to its durations of periodic appearances
in a series. Obtaining this information is challenging be-
cause the information can vary within and across patterns.
(ii) Finding all recurring patterns is a computationally ex-
pensive process since they do not satisfy the anti-monotonic
property. In this paper, we propose recurring pattern model
by addressing the above issues. We also propose Recurring
Pattern growth algorithm along with an efficient pruning
technique to discover these patterns. Experimental results
show that recurring patterns can be useful and that our al-
gorithm is efficient.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications -
Data Mining.
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1. INTRODUCTION
A time series is a collection of events obtained from se-

quential measurements over time. Periodic pattern mining
involves finding all patterns that exhibit either complete or
partial cyclic repetitions in a time series. Past studies on
partial periodic search have been focused on finding reg-
ular patterns, i.e., patterns exhibiting either complete or
partial cyclic repetitions throughout a series [1, 2, 3, 4,
5, 6, 7, 8, 9]. An example regular pattern of {Bat,Ball}
states that customers have been purchasing items ‘Bat’ and
‘Ball’ almost every day throughout the year. A useful re-
lated type of partial periodic pattern is recurring patterns,
i.e., patterns exhibiting cyclic repetitions only for particular
time intervals within a series. An example recurring pat-
tern of {Jackets,Gloves} states that customers have often
purchased ‘Jackets’ and ‘Gloves’ from 10-October-2012 to
26-February-2013 and from 2-November-2013 to 2-March-
2014. The purpose of this paper is to discover recurring
patterns by addressing mining challenges.

Recurring patterns are ubiquitous in very large datasets.
In many real-world applications, they can provide useful in-
formation pertaining to seasonal or temporal associations
between items. In retail, a user may be interested in deter-
mining seasonal purchases for efficient inventory manage-
ment. Similarly, a social network data analyst may be inter-
ested in obtaining temporal information pertaining to bursts
of hashtags, such as #earthquakes, #radiation and #floods.
Also, an expert in the health-care sector may be interested
in finding seasonal diseases in a geographical location. To
improve web site design and administration, an adminis-
trator may be interested in obtaining temporal information
of heavily visited web pages. In the stock market, the set
of high stocks indices that rise periodically for a particular
time interval may be of special interest to companies and
individuals. In a computer network, an administrator may
be interested in finding high severity events (e.g. cascading
failure) against regular routine events (e.g. data backup).

Unfortunately, finding recurring patterns is a non-trivial
task because of the following reasons.

1. Each recurring pattern is associated with temporal in-
formation pertaining to its durations of periodic ap-
pearances within the data. Obtaining this information
is challenging because the information can vary within
and across patterns.

2. Most current periodic pattern mining approaches take
into account a time series as a symbolic sequence; there-
fore, they do not take into account the actual temporal
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information of events.

3. Recurring patterns do not satisfy the anti-monotonic
property. That is, all non-empty subsets of a recurring
pattern may not be recurring patterns. This increases
the search space, which in turn increases the computa-
tional cost of finding these patterns. Therefore, devel-
oping efficient pruning techniques to reduce the search
space is challenging.

4. Since regular patterns exhibit periodic behavior through-
out a series with some exceptions, regular pattern min-
ing algorithms do not obtain temporal information per-
taining to the durations of periodic appearances of a
pattern within the series. As a result, these algorithms
cannot be extended for finding recurring patterns.

5. In real-life, recurring patterns involving rare items can
be interesting to users. For example, the knowledge
pertaining to rare events, such as cascading failures,
are more important than regular events for a network
administrator. However, finding such patterns is diffi-
cult since rare items appear infrequently in the data.
Classifying items into frequent or rare is subjective and
depends on the user and/or application requirements.

In this paper, we propose a model that addresses all the
above-mentioned issues while finding recurring patterns. In
particular, our model takes into account time series as a
time-based sequence and models it as a transactional database
with transactions ordered in respect to a particular times-
tamp (without loss of generality). Our model consists of
three novel measures, periodic-support, periodic-interval and
recurrence, to determine the dynamic periodic behavior of
recurring patterns. Periodic-support determines the num-
ber of consecutive cyclic repetitions of a pattern in a subset
of data. Periodic-interval determines the time interval (or
window) pertaining to the periodic appearances of a pattern
within a series. Recurrence determines the number of in-
teresting periodic intervals of a pattern. Finally, we propose
a pattern-growth algorithm along with an efficient prun-
ing technique to discover recurring patterns effectively. We
call our algorithm recurring pattern-growth (RP-growth).
Experimental results show that RP-growth is efficient and
recurring patterns can provide useful information in many
real-life applications.
The rest of the paper is organized as follows. Section 2

describes related work on mining periodic patterns. Sec-
tion 3 introduces our model of recurring patterns. Section 4
presents RP-growth. Sections 5 reports on the experimental
results. Finally, Section 6 concludes the paper with future
research directions.

2. RELATED WORK
Since the introduction of partial periodic patterns [5], the

problem of finding these patterns has received a great deal
of attention [6, 8, 10, 11, 12]. The model used in all these
studies, however, remains the same. That is, it takes into
account a time series as a symbolic sequence and finds all
patterns using the following two steps:

1. Partition the symbolic sequence into distinct subsets
(or period-segments) of a fixed length (or period).

2. Discover all partial periodic patterns that satisfy the
user-defined minimum support (minSup), which con-
trols the minimum number of period-segments that a
pattern must cover though the sequence.

A major limitation of the above studies is that they do
not take into account the actual temporal information of
the events within a sequence. To address this issue, Ma
and Hellerstein [7] modeled a time series as a time-based
sequence and proposed a model to discover a class of partial
periodic patterns known as p-patterns. In this model, a
pattern is considered partial periodic if its number of peri-
odic appearances throughout the sequence satisfies the user-
defined minSup. It should be noted that the concept of
minSup is not the same in both frequent pattern mining and
partial periodic pattern mining. In frequent pattern min-
ing, minSup controls the minimum number of appearances
of a pattern throughout the data. However, in partial peri-
odic pattern mining, minSup controls the minimum number
of periodic appearances (or cyclic repetitions) of a pattern
throughout the data. Thus, the partial periodic patterns
discovered in all the above studies [6, 8, 10, 11, 12, 7] rep-
resent regular patterns. Our study, on the other hand, was
focused on discovering recurring patterns in a time-based
sequence. Moreover, Ma and Hellerstein’s model cannot be
extended for finding recurring patterns. The reasons are as
follows:

1. Their model fails to obtain the temporal information
pertaining to the durations of periodic appearances of
a pattern within the data.

2. Finding p-patterns with a single minSup leads to the
dilemma known as the “rare item problem” [13]. If
minSup is set too high, those patterns that involve
rare items will not be found. To find patterns involv-
ing both frequent and rare items, minSup has to be
set very low. However, this can lead to combinatorial
explosion producing too many patterns. In particular,
many uninteresting aperiodic patterns can be discov-
ered as partial periodic patterns. For example, if we
set a low minSup, say minSup = 5%, then we will
be discovering an uninteresting aperiodic pattern that
has only 5% of its periodically appearances throughout
the data as a partial periodic pattern.

Recently, researchers have been investigating the com-
plete cyclic behavior of the frequent patterns in a trans-
actional database to discover a class of user-interest-based
patterns known as periodic-frequent patterns [9, 14, 15, 16].
Informally, a frequent pattern satisfying minSup is said to
be periodic-frequent if and only if all its inter-arrival times
throughout the database satisfy the user-defined period thresh-
old value. Thus, these studies were focused on finding reg-
ular patterns in a transactional database. For our study,
we investigated the partial cyclic behavior of the patterns
to discover recurring patterns; thus, generalizing the cur-
rent model of periodic-frequent patterns. More importantly,
none of the approaches presented in [9, 14, 15, 16] model
time series data as a transactional database. Instead, they
are based on the implicit assumption that there are transac-
tional databases with a sequentially ordered set of transac-
tions. This paper fills the gap by describing the procedure to
model time series data as a transactional database without
loss of generality.
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Yang et al. [17] investigated the change in periodic be-
havior of patterns due to the intervention of random noise
and introduced a class of user-interest-based patterns known
as asynchronous periodic patterns. Although asynchronous-
periodic pattern mining is closely related to our work, it
cannot be extended for finding recurring patterns. The rea-
son is asynchronous periodic pattern mining models a time
series as a symbolic sequence; therefore, it does not take in
account the actual temporal information of the events within
a sequence.
The problem of finding sequential patterns [18] and fre-

quent episodes [19, 20] has received a great deal of attention.
However, it should be noted that periodicity is not consid-
ered in these studies. Ozden et al. [2] investigated the prob-
lem of finding cyclic association rules. However, that study
is quite restrictive in finding the patterns that are present
at every cycle.
Finding partial periodic patterns [4], motifs [21], and re-

curring patterns [22] has also been studied in time series;
however, the focus was on finding numerical curve patterns
rather than symbolic patterns.
Overall, the proposed model of finding recurring patterns

is novel and is distinct from current models. In the next
section, we introduce our model of recurring patterns.

3. PROPOSED MODEL
In this section, we first describe time series as defined

in [7]. Next, we represent these series as a transactional
database and introduce measures to find recurring patterns.

Definition 1. Let I be a set of items (or event types).
An event is a pair (i, ts), where i ∈ I is an item and ts ∈ R
is the timestamp of the event. Let X ⊆ I be a pattern. An
event sequence S is an ordered collection of events, i.e.,
{(i1, ts1), (i2, ts2), · · · , (iN , tsN )}, where ij ∈ I is an item
at the j-th event. The term tsj represents the occurrence
timestamp of the event, and tsh ≤ tsj for 1 ≤ h ≤ j ≤ N
[7].

Definition 2. A point sequence is an ordered collec-
tion of occurrence times. Given an event sequence S =
{(i1, ts1), (i2, ts2), · · · , (iN , tsN )}, there is an implied point

sequence, Ŝ = {ts1, ts2, · · · , tsN}. An event sequence can be
viewed as a mixture of multiple point sequences of each item.
Let TSD denote the time series data (or a set of events) be-
ing mined.

Example 1. Figure 1 shows a TSD with a set of items
I = {a, b, c, d, e, f, g}. In this figure, an item of each event
is labeled above its occurrence timestamp. It should be noted
that no item appears at the timestamps of 8 and 13. The
item ‘a’ appears at the timestamps of 1, 2, 3, 4, 7, 11, 12
and 14. Therefore, the event sequence of ‘a’ is represented as
Sa = {(a, 1), (a, 2), (a, 3), (a, 4), (a, 7), (a, 11), (a, 12), (a, 14)}.
The point sequence of ‘a’ is represented as Ŝa = {1, 2, 3, 4, 7-
, 11, 12, 14}. Similarly, the point sequences of ‘b’ and ‘ab’ are

represented as Ŝb = Ŝab = {1, 3, 4, 7, 11, 12, 14}.

The point sequence plays an important role in assessing
the periodic behavior of the patterns in a time series. We
now describe the temporally ordered transactional database
which preserves the point sequence of items in the TSD.
A transaction, tr = (ts, Y ), is a tuple, where ts repre-

sents the timestamp and Y is a pattern. A transactional
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Figure 1: Running example: time-based sequence
consisting of items from ‘a’ to ‘g’

database TDB over I is a set of transactions, TDB =
{tr1, · · · , trm}, m = |TDB|, where |TDB| is the size of
the TDB in total number of transactions. For a transac-
tion tr = (ts, Y ), such that X ⊆ Y , it is said that X oc-
curs in tr and such a timestamp is denoted as tsX . Let
TSX = {tsXk , · · · , tsXl }, where 1 ≤ k ≤ l ≤ m, denote
an ordered set of timestamps at which X has occurred
in the TDB. The TSX in the TDB is the same as the
point sequence of X in the TSD. Therefore, we do not miss
any information pertaining to the temporal appearances of
a pattern in the data.

Example 2. Table 1 shows the transactional database con-
structed by grouping the items appearing together at a par-
ticular timestamp in Figure 1. Each transaction in this
database is uniquely identifiable with a timestamp. All trans-
actions have been ordered with respect to their timestamps.
It can be observed that the constructed database does not
contain the transactions with timestamps 8 and 13. The
reason is that no item appears at these timestamps in Fig-
ure 1. In this database, the pattern ‘ab’ appears at the
timestamps of 1, 3, 4, 7, 11, 12, and 14. Therefore, TSab =
{1, 3, 4, 7, 11, 12, 14}.

Table 1: Transactional database constructed from
time-based sequence shown in Figure 1. The term
‘ts’ is an acronym for timestamp

ts Items ts Items
1 a, b, g 7 a, b, c, g
2 a, c, d 9 c, d
3 a, b, e, f 10 c, d, e ,f
4 a, b, c, d 11 a, b, e, f
5 c, d, e, f,g 12 a, b, c, d, e, f, g
6 e, f, g 14 a, b, g

Definition 3. (Support of pattern X) The number of
transactions containing X in the TDB is defined as the sup-
port of X and denoted as Sup(X). That is, Sup(X) =
|TSX |.

Example 3. The support of ‘ab’ in Table 1 is the size of
TSab. Therefore, Sup(ab) = |{1, 3, 4, 7, 11, 12, 14}| = 7.

Definition 4. (Periodic appearance of pattern X)
Let tsXj , tsXk ∈ TSX , 1 ≤ j < k ≤ m, denote any two con-
secutive timestamps in TSX . The time difference between
tsXk and tsXj is referred to as an inter-arrival time of
X, and denoted as iatX . That is, iatX = tsXk − tsXj . Let
IATX = {iatX1 , iatX2 , · · · , iatXk }, k = Sup(X) − 1, be the
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set of all inter-arrival times of X in TDB. An inter-arrival
time of pattern X is said to be periodic (or interesting) if
it is no more than the user-defined period threshold value.
That is, a iatXi ∈ IATX is said to be periodic if iatXi ≤ per,
where ‘per’ represents the period.
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timestamp (ts)
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Figure 2: Inter-arrival times of ‘ab’, IAT ab

Example 4. The pattern ‘ab’ has initially appeared at
the timestamps of 1 and 3. The difference between these
two timestamps gives an inter-arrival time of ‘ab.’ That is,
iatab1 = 2 (= 3 − 1). Similarly, other inter-arrival times
of ‘ab’ are iatab2 = 1, iatab3 = 3, iatab4 = 4, iatab5 = 1 and
iatab6 = 2. Therefore, the resultant IAT ab = {2, 1, 3, 4, 1, 2}.
If the user-defined per = 2, then iatab1 , iatab2 , iatab5 and iatab6
are considered the periodic occurrences of ‘ab’ in the data.
On the other hand, iatab3 and iatab4 are considered the ape-
riodic occurrences of ‘ab’ as iatab3 ̸≤ per and iatab4 ̸≤ per.
Figure 2 shows the set of all inter-arrival times for pattern
‘ab’, i.e., IAT ab. The thick lines represent the inter-arrival
times that satisfy the period, while the dotted lines represent
the inter-arrival times that fail to satisfy the period.

Most current partial periodic pattern mining approaches
use minSup to assess the periodic interestingness of a pat-
tern [5]. This measure cannot be used for finding recurring
patterns because it controls the minimum number of cyclic
repetitions a pattern must have in all the data. Therefore,
we introduce the following measures to determine the partial
periodic behavior of recurring patterns.

Definition 5. (Periodic-interval of pattern X) Let
TSX

j = {tsXp , · · · , tsXq } ⊆ TSX , p ≤ q, be a set of times-
tamps such that ∀tsXk ∈ TSX

j , p ≤ k < q, tsXk+1 − tsXk ≤
per. The TSX

j is a maximal set if there exists no superset
in which an inter-arrival time between the two consecutive
timestamps is no more than the period. The range of times-
tamps in TSX

j represents a periodic-interval of X and is
denoted as piXj . That is, piXj = [tsXp , tsXq ].

Example 5. The maximal sets of timestamps in which
‘ab’ has appeared within the user-defined per = 2 are: TSab

1 =
{1, 3, 4}, TSab

2 = {7}, and TSab
3 = {11, 12, 14}. Therefore,

the corresponding periodic-intervals for ‘ab’ are piab1 = [1, 4],
piab2 = [7, 7], and piab3 = [11, 14].

The periodic-interval, as defined above, obtains informa-
tion pertaining to the duration (or window) of periodic ap-
pearances of a pattern in a database. Most importantly,
it can effectively determine the periodic durations that can
vary within and across patterns. In very large databases,
a pattern may have too many periodic-intervals. An ef-
ficient technique to reduce this number is to select only
those periodic-intervals in which the number of cyclic repeti-
tions of the corresponding pattern satisfies the user-defined

threshold value. Thus, we introduce the following two defi-
nitions.

Definition 6. (Periodic-support of pattern X) The
size of TSX

j is defined as the periodic-support of X, and
denoted as psXj . That is, psXj = |TSX

j |.

Example 6. The periodic-support of ‘ab’ in piab1 is the
size of |TSab

1 |. Therefore, psab1 = |TSab
1 | = 3. Similarly,

the periodic-supports of ‘ab’ in piab2 and piab3 are 1 and 3,
respectively.

In the real-world applications, some items appear very
frequently in the data, while others rarely appear. We have
observed that some rare items also exhibit periodic behav-
ior in a portion of the data. The periodic-support, as de-
fined above, facilitates the user to discover the knowledge
pertaining to those frequent and rare items that have exhib-
ited sufficient number of cyclic repetitions in a portion of
database. Each periodic-interval of a pattern will have only
one periodic-support and vice-versa. In other words, there
is one-to-one relationship between the periodic-intervals and
periodic-supports of a pattern.

Definition 7. (Interesting periodic-interval of pat-
tern X) Let PIX = {piX1 , · · · , piXk } and PSX = {psX1 ,-
· · · , psXk }, 1 ≤ k, be the complete set of periodic-intervals
and periodic-supports of pattern X in the TDB, respectively.
A piXk ∈ PIX is said to be an interesting periodic-interval
if its corresponding psXk ∈ PSX has psXk ≥ minPS. The
minPS represents the user-defined minimum periodic-support.

Example 7. If the user-defined minPS = 3, then piab1
and piab3 are considered the interesting periodic-intervals of
‘ab’. This is because psab1 ≥ minPS and psab3 ≥ minPS.
The piab2 is considered an uninteresting periodic-interval of
‘ab’ as psab2 ̸≥ minPS.

Since very large databases are generally composed over a
very long time frame, it has been observed that some users
may specify a constraint on the minimum number of inter-
esting periodic-intervals. Thus, we introduce the following
definitions.

Definition 8. (Recurrence of pattern X) The recur-
rence count of a pattern represents its number of interesting
periodic-intervals in a database. Let IPIX ⊆ PIX be the set
of periodic-intervals of X such that for every piXk ∈ IPIX ,
its corresponding psXk ≥ minPS. The recurrence of pattern
X is denoted as Rec(X) = |IPIX |.

Example 8. Continuing with the previous example,
IPIab = {[1, 4], [11, 14]}. The recurrence of ‘ab’ is the size
of IPIab. That is, Rec(ab) = |IPIab| = 2.

Definition 9. (Recurring pattern X) Pattern X is
a recurring pattern if Rec(X) ≥ minRec, where minRec
is the user-specified minimum recurrence count. Recurring
pattern X is expressed as follows:

X [Sup(X), Rec(X), {{piXk : psXk }|∀piXk ∈ IPIX}]. (1)

Example 9. If the user-defined minRec = 2, then ‘ab’ is
a recurring pattern and is expressed as follows:

ab [support = 7, recurrence = 2, {{[1, 4] : 3}, {[11, 14] : 3}}].
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The above pattern informs that ‘ab’ has occurred in 7 trans-
actions and its periodic occurrence behavior of once in every
two transactions consecutively for at least three times has
been observed at two distinct subsets of a database whose
timestamps are in the range [1, 4] and [11, 14]. Table 2
shows the complete set of recurring patterns discovered from
Table 1.

Table 2: Recurring patterns in Table 1. Terms
‘Sup,’ ‘Rec’ and ‘IPI’ respectively denote support,
recurrence, and interesting periodic-intervals along
with their periodic-supports

Pattern Sup Rec IPI
a 8 2 {{[1,4]:4}, {[11,14]:3}}
b 7 2 {{[1,4]:3}, {[11,14]:3}}
d 6 2 {{[2,5]:3}, {[9,12]:3}}
e 6 2 {{[3,6]:3}, {[10,12]:3}}
f 6 2 {{[3,6]:3}, {[10,12]:3}}
ab 7 2 {{[1,4]:3}, {[11,14]:3}}
cd 6 2 {{[2,5]:3}, {[9,12]:3}}
ef 6 2 {{[3,6]:3}, {[10,12]:3}}

Definition 10. (Problem Definition:) Given a time-
based sequence (i.e., a TSD), the problem of finding recur-
ring patterns involve discovering all those patterns that sat-
isfy the user-defined per, minPS and minRec constraints.

The measures, support, period and periodic-support, can
also be expressed in percentage of |TDB|. However, we use
the former definitions for ease of explanation. Table 3 lists
the nomenclature of different terms used in our model.

Table 3: Nomenclature of various terms used in our
model
Terminology Notation
The timestamp of a transaction containing X tsXi
The set of all timestamps containing X TSX

The support of X Sup(X)
An inter-arrival time of X iatXi
The set of all inter-arrival times of X IATX

The user-defined period per
A periodic-support of X psXi
The set of all periodic-supports of X PSX

A periodic-interval of X piXi
The set of all periodic-intervals of X PIX

The set of interesting periodic-intervals of X IPIX

The recurrence of X Rec(X)

The construction of a transactional database from a time
series involves grouping the items appearing together at a
particular timestamp and storing them in a linked hash ta-
ble. As this process is simple and straight forward, we do
not discuss it in this paper. Instead, we focus on finding the
recurring patterns from the constructed database.

4. PROPOSED ALGORITHM
In this section, we first introduce our pruning technique to

reduce the computational cost of finding recurring patterns.
Next, we present our algorithm to mine the complete set of
recurring patterns from the constructed database.

4.1 Basic Idea: Candidate patterns
The space of items in a database gives rise to a subset

lattice. An itemset lattice is a conceptualization of search
space while finding user-interest-based patterns. The anti-
monotonic property has been widely used to reduce the
search space [23]. Unfortunately, recurring patterns do not
satisfy this property. This increases the search space, which
in turn increases the computational cost of mining recurring
patterns.

Example 10. Consider the patterns ‘c’ and ‘cd’ in Ta-
ble 1. Given the user-defined per = 2, minPS = 3 and
minRec = 2, the interesting periodic-intervals of ‘c’ and ‘cd’
are {[2, 12]} and {[2, 5], [9, 12]}, respectively. Therefore, the
Rec(c) = |{[2, 12]}| = 1 and Rec(cd) = |{[2, 5], [9, 12]}| =
2. As the Rec(c) ! minRec, ‘c’ is not a recurring pat-
tern. However, its superset ‘cd’ is a recurring pattern be-
cause Rec(cd) ≥ minRec.Thus, the recurring patterns do
not satisfy the anti-monotonic property. The same can be
observed in Table 2.

We introduce the following pruning technique to reduce
the computational cost of finding recurring patterns.

“Let Erec(X) =

|PSX |∑

i=1

⌊
psXi

minPS

⌋
. If Erec(X) <

minRec, then neither X nor its supersets will
be recurring patterns”

The Erec(X) denotes the upper bound of recurrence that
a superset of X can have in the database. Thus, we call
Erec(X) the estimated maximum recurrence of a su-
perset of X. The correctness of our pruning technique
is straight forward to prove from Properties 1 and 2, and
illustrated in Example 11.

Property 1. For the pattern X, Erec(X) ≥ Rec(X).

Property 2. If X ⊂ Y , then TSX ⊇ TSY and Erec(X) ≥
Erec(Y ).

Example 11. In Table 1, the item ‘g’ occurs in times-
tamps of 1, 5, 6, 7, 12 and 14. Therefore, TSg = {1, 5, 6, 7,-
12, 14} and S(g) = 6. If per = 2, minPS = 3 and minRec =
2, then TSg

1 = {1}, TSg
2 = {5, 6, 7}, TSg

3 = {12, 14}, psg1 =
|TSg

1 | = 1, psg2 = |TSg
2 | = 3 and psg3 = |TSg

3 | = 2. For this

item, Erec(g) = 1

(
=

3∑

i=1

⌊
psgi
3

⌋
=

⌊
1
3

⌋
+

⌊
3
3

⌋
+

⌊
2
3

⌋)
.

That is, any superset of ‘g’ can at most have recurrence
value equal to 1, which is less than the user-defined minRec.
Henceforth, pruning ‘g’ will not result in missing of any re-
curring pattern.

Based on our proposed pruning technique, we introduce
the following definition.

Definition 11. (Candidate pattern X.) Pattern X is
a candidate pattern if Erec(X) ≥ minRec.

A candidate pattern containing only one item is called a
candidate item. The candidate patterns satisfy the anti-
monotonic property (Property 2). Therefore, we use candi-
date k-patterns to discover recurring (k + 1)-patterns.
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4.2 RP-growth: Structure, Construction and
Mining

Traditional Frequent Pattern-growth algorithm [24] can-
not be used for finding recurring patterns. This is because
the structure of FP-tree captures only the frequency and dis-
regards the periodic behavior of the patterns in a database.
To address this issue, RP-growth introduces an alternative
tree structure known as an Recurring Pattern-tree (RP-tree).
Our RP-growth algorithm involves the following two steps:

(i) construction of an RP-tree and (ii) recursive mining of
the RP-tree to discover the complete set of recurring pat-
terns. Before we describe the above two steps, we introduce
the structure of an RP-tree.

4.2.1 Structure of RP-tree
The structure of an RP-tree includes a prefix-tree and a

candidate item list, called the RP-list. The RP-list consists
of each distinct item (i) with support (s), estimated maxi-
mum recurrence (Erec), and a pointer pointing to the first
node in the prefix-tree carrying the item.
The prefix-tree in an RP-tree resembles the prefix-tree in

FP-tree. However, to obtain both frequency and periodic
behavior of the patterns, the nodes in an RP-tree explicitly
maintain the occurrence information for each transaction by
keeping an occurrence timestamp list, called a ts-list. To
achieve memory efficiency, only the last node of every trans-
action maintains the ts-list. Hence, two types of nodes are
maintained in a RP-tree: ordinary node and tail-node.
The former is a type of node similar to that used in an
FP-tree, whereas the latter represents the last item of any
sorted transaction. Therefore, the structure of a tail-node
is i[tsp, tsq, ..., tsr], 1 ≤ p ≤ q ≤ r ≤ m, where i is the
node’s item name and tsi, i ∈ [1,m], is the timestamp of a
transaction containing the items from root up to the node i.
The conceptual structure of an RP-tree is shown in Figure
3. Like an FP-tree, each node in an RP-tree maintains par-
ent, children, and node traversal pointers. Please note that
no node in an RP-tree maintains the support count as in an
FP-tree. To facilitate a high degree of compactness, items
in the prefix-tree are arranged in support-descending order.

{}

tsi, tsj, ...

Figure 3: Conceptual structure of prefix-tree in RP-
tree. Dotted ellipse represents ordinary node, while
other ellipse represents tail-node of sorted transac-
tions with timestamps tsi, tsj ∈ R

One can assume that the structure of the prefix-tree in
an RP-tree may not be memory efficient since it explic-
itly maintains timestamps of each transaction. However,
it has been argued that such a tree can achieve memory ef-
ficiency by keeping transaction information only at the tail-
nodes and avoiding the support count field at each node
[9]. Furthermore, an RP-tree avoids the complicated com-
binatorial explosion problem of candidate generation as in
Apriori-like algorithms [23]. Keeping the information per-
taining to transactional-identifiers in a tree can also be found
in efficient frequent pattern mining [25].

Algorithm 1 RP-List(TDB: Transactional database, I:
Set of items, per: period, minPS: minimum periodic-
support, minRec: minimum recurrence)

1: Let idl be a temporary array that records the timestamp
of the last appearance of each item in the TDB. Let ps
be another temporary array that records the periodic-
support of an item in a subset of a database. Let t =
{tscur, X} denote the current transaction with tscur and
X representing the timestamp of the current transaction
and pattern, respectively.

2: for each transaction t ∈ TDB do
3: if an item i occurs for the first time then
4: Add i to the RP-list.
5: Set si = 1, eirec = 0, idil = tscur and psi = 1.
6: else
7: if (tscur − idil) ≤ per then
8: Set si ++, psi ++ and idil = tscur.
9: else

10: eirec+ =

⌊
psi

minPS

⌋
.

11: Set si + +, psi = 1 and idil = tscur. {Beginning
of a new subset of a database.}

12: end if
13: end if
14: end for
15: To reflect the correct estimated recurrence value for each

item in the RP-list, perform eirec+ =

⌊
psi

minPS

⌋
.

Algorithm 2 RP-Tree(TDB, RF-list)

1: Create the root of an RP-tree, T , and label it “null”.
2: for each transaction t ∈ TDB do
3: Set the timestamp of the corresponding transaction as

tcur.
4: Select and sort the candidate items in t according to

the order of CI. Let the sorted candidate item list
in t be [p|P ], where p is the first item and P is the
remaining list.

5: Call insert tree([p|P ], tcur, T ).
6: end for
7: call RP-growth (Tree, null);

4.2.2 Construction of RP-tree
Since recurring patterns do not satisfy the anti-monotonic

property, candidate 1-patterns (or items) will play an im-
portant role in effective mining of these patterns. The set of
candidate items CI in a database for the user-defined per,
minPS, and minRec can be discovered by populating the
RP-list with a scan on the database. Figure 4 shows the
construction of an RP-list using Algorithm 1. Due to page
limitation, we only present the key steps in the construc-
tion of the RP-list. Please note that the per, minPS, and
minRec values have been set to 2, 3 and 2, respectively.

The scan on the first transaction, “1 : a, b, g”, with tscur =
1 initializes items ‘a’, ‘b’, and ‘g’ in the RP-list and sets their
s, erec, idl, and ps values to 1, 0, 1, and 1, respectively (lines
1 to 5 in Algorithm 1). Figure 4(a) shows the RP-list gen-
erated after scanning the first transaction. The scan on the
second transaction “2 : a, c, d” with tscur = 2 initializes the
items ‘c’ and ‘d’ in the RP-list by setting their s, erec, idl,
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Algorithm 3 insert tree([p|P ], tcur, T )

1: while P is non-empty do
2: if T has a child N such that p.itemName ̸=

N.itemName then
3: Create a new node N . Let its parent link be linked

to T . Let its node-link be linked to nodes with the
same itemName via the node-link structure. Re-
move p from P .

4: end if
5: end while
6: Add tcur to the leaf node.

Algorithm 4 RP-growth(Tree, α)

1: for each ai in the header of Tree do
2: Generate pattern β = ai ∪α. Collect all of the a′

is ts-
lists into a temporary array, TSβ , and calculate Eβ

rec.
3: if Eβ

rec ≥ minRec then
4: Construct β’s conditional pattern base then β’s

conditional RP-tree Treeβ . Call getRecurrence(β,
TSβ).

5: if Treeβ ̸= ∅ then
6: call RP-growth(Treeβ , β);
7: end if
8: end if
9: Remove ai from the Tree and push the ai’s ts-list to

its parent nodes.
10: end for

and ps values to 1, 0, 2, and 1, respectively. In addition,
the s, erec, idl, and ps values of an already existing item ‘a’
are updated to 2, 0, 2, and 2, respectively (lines 7 to 9 in
Algorithm 1). Figure 4(b) shows the RP-list generated af-
ter scanning the second transaction. Figure 4(c) shows the
RP-list constructed after scanning the seventh transaction.
It can be observed that the ‘erec’ of ‘a’ and ‘b’ have been

updated from 0 to 1. This is because their

⌊
ps

minPS

⌋
= 1

(line 10 in Algorithm 1). The ps value of ‘a’ and ‘b’ is set
to 1 because they appeared periodically once again in the
database (line 11 in Algorithm 1). Figure 4(d) shows the
RP-list constructed after scanning every transaction in the
database. The estimated recurrence (erec) value for all the
items in the RP-list is once again computed to reflect the
correctness (line 15 in Algorithm 1). Figure 4(e) shows the
updated erec value for all items in the RP-list. Using our
pruning technique, ‘g’ is removed from the RP-list as its
ecur < minRec. The remaining items are sorted in descend-
ing order of their support values (line 16 in Algorithm 1).
Figure 4(f) shows the sorted list of candidate items in the
RP-list.
After finding candidate items, we conduct another scan

on the database and construct the prefix-tree of the RP-
tree, as in Algorithms 2 and 3. These procedures are the
same as those for constructing an FP-tree [24]. However,
the major difference is that no node in an RF-tree maintains
the support count, as in an FP-tree. The first transaction
{1 : a, b, g} is scanned and a branch is constructed in the RP-
tree with only the candidate items ‘b’ and ‘a.’ The tail node
‘b : 1’ carries the timestamp of the transaction. The RP-tree
generated after scanning the first transaction is shown in
Figure 5(a). A similar process is repeated for the remaining
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Figure 4: Construction of RP-list: (a) after scanning
first transaction, (b) after scanning second transac-
tion, (c) after scanning seventh transaction, (d) af-
ter scanning every transaction, (e) after calculating
actual ‘erec’ values, and (f) sorted list of candidate
items

transactions and the tree is updated accordingly. Figure
5(b) shows the RP-tree constructed after scanning the entire
database. For simplicity, we do not show the node traversal
pointers in trees; however, they are maintained like an FP-
tree does.
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Figure 5: Construction of RP-tree: (a) after scan-
ning first transaction and (b) after scanning entire
transactional database

The RP-tree maintains the complete information of all
recurring patterns in a database. The correctness is based
on Property 3 and shown in Lemmas 1 and 2. For each
transaction t ∈ theTDB, CI(t) is the set of all candidate
items in t, i.e., CI(t) = item(t) ∩ CI, and is called the
candidate item projection of t.

Property 3. An RP-tree maintains a complete set of
candidate item projections for each transaction in a database
only once.

Lemma 1. Given a TDB and user-defined per, (minPS),
and minRec values, the complete set of all recurring item
projections of all transactions in the TDB can be derived
from the RP-tree.

Proof. Based on Property 3, each transaction t ∈ TDB
is mapped to only one path in the tree, and any path from
the root up to a tail node maintains the complete projection
for exactly n transactions (where n is the total number of
entries in the ts-list of the tail node).
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Lemma 2. The size of the RP-tree (without the root node)
on a TDB for user-defined per, minPS, and minRec is

bounded by
∑

t∈TDB

|CI(t)|.

Proof. According to the RP-tree construction process
and Lemma 1, each transaction t contributes at most one
path of size |CI(t)| to an RP-tree. Therefore, the total size

contribution of all transactions can be
∑

t∈TDB

|CI(t)| at best.

However, since there are usually many common prefix pat-
terns among the transactions, the size of an RP-tree is nor-

mally much smaller than
∑

t∈TDB

|CI(t)|.

Algorithm 5 getRecurrence(X: pattern, TSX :ts-list of
pattern X)

1: Let idl be a variable that records the timestamp of the
last transaction containing X. Let subDB be a list of
pairs of the form (startTS, endTS), where startTS and
endTS respectively represent the starting and ending
timestamps of periodic appearances of a pattern in a
subset of data. It is used to record the periodic-intervals
of a pattern. Let currentPS be a variable to measure
the periodic-support of X in a periodic-interval.

2: for each timestamp tscur ∈ TSX do
3: if (tscur is X’s first occurrence) then
4: currentPS = 1, startTS = tscur;
5: else
6: if (tscur − idl ≤ per) then
7: currentPS ++;
8: else
9: if (currentPS ≥ minPS) then
10: subDB.insert(startTS, idl);
11: end if
12: currentPS = 1, startTS = tscur;
13: end if
14: end if
15: idl = tscur;
16: end for
17: // To reflect correct recurrence of X.
18: if (currentPS ≥ minPS) then
19: subDB.insert(startTS, idl);
20: end if
21: return ((subDB.size() ≥ minRec)?true:false);

4.2.3 Mining Recurring Patterns
Although an RP-tree and FP-tree arrange items in support-

descending order, we cannot directly apply FP-growth min-
ing on an RP-tree. The reasons are as follows: (i) an RP-
tree does not maintain the support count at each node, and
it handles the ts-lists at the tail nodes and (ii) recurring
patterns do not satisfy the anti-monotonic property. We de-
vised another pattern growth-based bottom-up mining tech-
nique to mine the patterns. The basic operations in mining
an RP-tree includes: (i) counting length-1 candidate items,
(ii) constructing the prefix tree from each candidate pattern,
and (iii) constructing the conditional tree from each prefix-
tree. The RP-list provides the length-1 candidate items.
Before we discuss the prefix-tree construction process, we
explore the following important property and lemma of an
RP-tree.

Property 4. A tail node in an RP-tree maintains the
occurrence information for all the nodes in the path (from
the tail node to the root) at least in the transactions in its
ts-list.

Lemma 3. Let Z = {a1, a2, · · · , an} be a path in an RP-
tree where node an is the tail node carrying the ts-list of
the path. If the ts-list is pushed-up to node an−1, then
an−1 maintains the occurrence information of the path Z′ =
{a1, a2, · · · , an−1} for the same set of transactions in the
ts-list without any loss.

Proof. Based on Property 4, an maintains the occur-
rence information of path Z′ at least in the transactions in
its ts-list. Therefore, the same ts-list at node an−1 main-
tains the same transaction information for Z′ without any
loss.

The procedure to discover recurring patterns from RP-tree
is shown in Algorithm 4. The working of this algorithm is
as follows. We proceed to construct the prefix tree for each
candidate item in the RP-list, starting from the bottom-
most item, say i. To construct the prefix-tree for i, the prefix
sub-paths of nodes i are accumulated in a tree-structure,
PTi. Since i is the bottom-most item in the RP-list, each
node labeled i in the RP-tree must be a tail node. While
constructing PTi, based on Property 4, we map the ts-list of
every node of i to all items in the respective path explicitly
in the temporary array (one for each item). This temporary
array facilitates the calculation of support and erec of each
item in PTi (line 2 in Algorithm 4). If an item j in PTi has
support ≥ minSup and erec ≥ minRec, then we construct
its conditional tree and mine it recursively to discover the
recurring patterns (lines 3 to 8 in Algorithm 4). Moreover,
to enable the construction of the prefix-tree for the next item
in the RP-list, based on Lemma 3, the ts-lists are pushed-
up to the respective parent nodes in the original RP-tree
and in PTi as well. All nodes of i in the original RP-tree
and i’s entry in the RP-list are deleted thereafter (line 9 in
Algorithm 4).

Using Properties 1 and 2, the conditional tree CTi for PTi

is constructed by removing all those items from PTi that
have erec < minRec. If the deleted node is a tail node, its
ts-list is pushed-up to its parent node. The contents of the
temporary array for the bottom item j in the RP-list of CTi

represent TSij (i.e., the set of all timestamps where items i
and j have appeared together in the database). Therefore,
using Algorithm 5, the recurrence of “ij” is computed and
it is determined whether “ij” is a recurring pattern. The
same process of creating a prefix-tree and its corresponding
conditional tree is repeated for further extensions of “ij”.
The whole process of mining for each item is repeated until
RP -list ̸= ∅.

Consider item ‘f ’, which is the last item in the RP-list
in Figure 4(e). The prefix-tree for ‘f ’, PTf , is constructed
from the RP-tree, as shown in Figure 6(a). There are five
items, ‘a, b, c, d’, and ‘e’ in PTf . Only item ‘e’ satisfies the
condition Erec(e) ≥ minRec. Therefore, the conditional
tree CTf from PTf is constructed with only one item ‘e’, as
shown in 6(b). The ts-list of ‘e’ in CTf ’ generates TS

ef . The
“recurrence” of ‘ef ’ is measured using Algorithm 5. Since
Rec(ef) ≥ minRec, ‘ef ’ will be generated as a recurring
pattern. A similar process is repeated for the other items in
the RP-list. Next, ‘f ’ is pruned from the original RP-tree
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Table 4: User-defined per, minPS and minRec values in different databases
per minPS minRec

1 2 3 1 2 3 1 2 3
T10I4D100k 360 720 1440 0.1% 0.2% 0.3% 1 2 3
Shop-14 360 (=6 hr.) 720 (=12 hrs.) 1440 (=24 hrs.) 0.1% 0.2% 0.3% 1 2 3
Twitter 360 (=6 hr.) 720 (=12 hrs.) 1440 (=24 hrs.) 2% 5% 10% 1 2 3
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Figure 6: Finding RP-patterns for suffix item ‘f ’
in RP-tree: (a) prefix-tree for item ‘f ’ (i.e., PTf),
(b) conditional tree for item ‘f ’ (i.e., CTf), and (c)
RP-tree after pruning item ‘f ’

and its ts-lists are pushed to its parent nodes, as shown in
6(c). All the above processes are once again repeated until
the RP-list ̸= ∅.
The above bottom-up mining technique on a support de-

scending RP-tree is efficient, because it shrinks the search
space dramatically as the mining process progresses.

5. EXPERIMENTAL RESULTS
In this section, we first evaluate the performance of RP-

growth. Next, we discuss the usefulness of recurring pat-
terns by comparing them against p-patterns and periodic-
frequent patterns. It should be noted that our recurring
patterns are the generalization of periodic-frequent patterns,
as the latter patterns exhibit complete (rather than partial)
cyclic repetitions in the entire database. There are only
two Apriori-like algorithms, periodic-first and association-
first, to discover p-patterns. We use the periodic-first al-
gorithm to discover p-patterns since it is relatively faster
than the association-first algorithm. We use the Periodic-
Frequent pattern-growth++ algorithm (PF-growth++) [15]
to discover periodic-frequent patterns. We do not compare
the performance of RP-growth against the periodic-first and
PF-growth++ algorithms. The reason is that the other al-
gorithms discover regular patterns; therefore, they use dif-
ferent measures to assess the periodic interestingness of a
pattern.

5.1 Experimental setup
The algorithms, RP-growth, periodic-first and PF-gro-

wth++, were written in GNU C++ and run with Ubuntu
14.4 on a 2.66 GHz machine with 8 GB of memory. To
the best of our knowledge, there are no publicly available
time-based sequences. Therefore, we conducted experiments
using the following databases.

• T10I4D100K database. This database is a syn-
thetic transactional database generated using the pro-
cedure given by [23]. This database contains 100,000
transactions and 941 distinct items.

• Shop-14 database. A Czech company provided click-

stream data of seven online stores in the ECML/PKDD
2005 Discovery challenge. We considered the click
stream data of product categories visited by the users
in “Shop 14” (www.shop4.cz), and created a transac-
tional database with each transaction representing the
set of web pages visited by the people at a particular
minute interval. The transactional database contains
59,240 transactions (i.e., 41 days of page visits) and
138 distinct items (or product categories).

• Twitter database. We created this database by con-
sidering the top 1000 English hashtags appearing in 44
million tweets/retweets from 1-May-2013 to 31-August-
2013 (i.e., 123 days). The measure, term frequency-
inverse document frequency, is used to rank the hash-
tags. The timestamp of each transaction represents
a minute starting from 00:00 hours of 1-May-2013 to
24:00 hours of 31-August-2013. The resultant trans-
actional database has 177,120 transactions with 1000
distinct items (or hashtags). More details on the data
collection process and the usefulness of this data in
finding interesting events has been presented in [26].

To mine p-patterns and recurring patterns, we transformed
all the above databases into time-based sequences using the
timestamps of each transaction. As this transformation pro-
cess is a rather simple and straight-forward approach, we do
not discuss it for brevity.

Table 4 lists the different per, minPS and minRec val-
ues used in above the databases. The periodic interval (i.e.,
per value) in both Shop-14 and Twitter databases varied
from six hours to one day. Similarly, the minRec in these
databases varied from 1 to 3. In this paper, we do not
present the results for minRec values greater than 3 be-
cause very few recurring patterns were getting generated
at minRec > 3. The minPS values in T10I4D100K and
Shop-14 databases varied from 0.1% to 0.3%. The reason
for choosing low minPS values is to discover the patterns
involving both frequent and rare items. In the Twitter
database, we set minPS at 2%, 5% and 10%. The reason for
choosing a relatively high minPS values as compared with
the other two databases is that very low minPS values are
resulting in a combinatorial explosion producing too many
patterns.

5.2 Generation of recurring patterns
Table 5 lists the numbers of recurring patterns discovered

in T10I4D100K, Shop-14 and Twitter databases at different
per, minPS andminRec values. The partial results of Table
5 are shown in Figure 7. The following observations can
drawn from this figure:

• At a fixed per and minRec, the increase in minPS can
decrease the number of recurring patterns. The reason
is that many patterns failed to appear periodically for
longer time periods.
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Table 5: Number of recurring patterns generated at different per, minPS and minRec threshold values
Dataset minPS Number of recurring patterns

minRec = 1 minRec = 2 minRec = 3
per=360 per=720 per=1440 per=360 per=720 per=1440 per=360 per=720 per=1440

T10I4- 0.1% 428 1254 7193 255 436 1036 194 160 27
D100k 0.2% 339 757 3205 168 103 39 72 0 0

0.3% 296 622 2148 109 32 2 21 0 0
Shop-14 0.1% 593 1885 4977 447 1339 3198 338 266 9

0.2% 342 1077 1906 257 750 1470 118 14 0
0.3% 251 744 933 195 534 760 48 3 0

Twitter 2% 14736 36354 42319 8718 17982 19746 4551 7749 8103
5% 1655 11268 26341 595 6847 7010 337 3713 5123
10% 511 714 1190 11 34 912 6 17 98
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Figure 7: Recurring patterns discovered in Twitter data

• At a fixed minPS and per, the increase in minRec
can decrease the number of recurring patterns. This is
because many patterns failed to satisfy the increased
minRec values.

• At a fixed minPS, the increase in per can have dif-
ferent impact on the generation of recurring patterns
for the values minRec = 1 and minRec > 1. At
minRec = 1, increase in per can increase the number
of recurring patterns. The reason is that the inter-
arrival times of the patterns that were considered as
aperiodic at low per values were considered as periodic
with the increase in the per value. For minRec > 1,
increase in per can either increase or decrease the num-
ber of recurring patterns. The reason for decrease is
due to the merging of interesting periodic-intervals dis-
covered at low per values.

Table 6 lists some of the recurring patterns discovered
from the Twitter database at per = 360, minPS = 2% and
minRec = 1. Figures 8 (a) and (b) show the frequencies of
the terms present in patterns {yyc, uttarakhand} and {nu-
clear, hibaku} on a daily basis. It can be observed that
“uttarakhand” is a relatively rare term as compared with
other terms, and our model has effectively discovered the
knowledge pertaining to this term. Another interesting ob-
servation from Table 5 is that even at lowminPS values, our
model has generated only a limited number of recurring pat-
terns in each database. This clearly shows that our model
can discover the knowledge pertaining to rare terms without
producing too many uninteresting patterns. In other words,
our model is tolerant of the “rare item problem”.

5.3 Performance of RP-growth
Table 7 lists the runtime required using RP-growth to

discover recurring patterns in T10I4D100K, Shop-14, and
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Figure 8: Frequency of hashtags at different days
in database. Date is of form ‘dd-mm’. Year of this
date is 2013

Twitter databases. The runtime involves the time taken
to transform the time-based sequence into a transactional
database and mining of recurring patterns. Figure 9 shows
the runtime required by RP-growth while mining the recur-
ring patterns in Twitter database. The changes in the per,
minPS and minRec threshold values shows a similar effect
on runtime consumption as in the generation of recurring
patterns. The proposed algorithm discovered the complete
set of recurring patterns at a reasonable runtime even at low
minPS thresholds.

5.4 Comparison of p-patterns, recurring pat-
terns and periodic-frequent patterns

We compared p-patterns, recurring patterns and periodic-
frequent patterns at different per and minPS values. For
brevity, we present the results discovered when period is
set to 1 day, i.e., per = 1440. The minSup and minPS
values are set to 0.1% and 2% respectively for Shop-14 and
Twitter databases. The p-pattern mining requires another
parameter known as window length (w). We set w = 1 for
our experiment.
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Table 6: Some of the interesting recurring patterns discovered in Twitter database
S.No Pattern Periodic duration Cause for the events
1 {yyc, uttarakhand} [2013-06-21 01:08, On June 20, Uttarakhand, a state in India and Alberta,

2013-07-01 04:27] a province in Canada have witnessed heavy floods.
2 {nuclear, hibaku} [2013-05-06 22:33, (i) A Japanese minister has visited Chernobyl, Ukraine to

2013-05-24 22:13], learn from the recovery from the severe nuclear accident.
(In Japanese, hibaku [2013-07-01 06:17, (ii) People were tweeting about detection of Plutonium
means radiation.) 2013-07-14 06:21] at a point 12 KM from Fukoshima nuclear reactor.

3 {pakvotes, nayapakistan} [2013-05-09 16:15, The general elections were held in Pakisthan.
2013-05-15 14:11] on May 11, 2013.

4 {oklahoma, tornado, [2013-05-21 11:52, Oklahoma was struck with a tornado on May 20, 2013.
prayforoklahoma} 2013-05-24 21:38]

Table 7: Runtime of RP-growth at different per, minPS and minRec threshold values
Dataset minPS Runtime of RP-growth

minRec = 1 minRec = 2 minRec = 3
per=360 per=720 per=1440 per=360 per=720 per=1440 per=360 per=720 per=1440

T10I4- 0.1% 14.8 150.9 366.5 3.8 10.7 40.1 3.5 3.9 6.3
D100k 0.2% 7.7 45.9 99.6 3.6 5.4 9.6 2.7 3.1 3.1

0.3% 3.7 11.6 21.3 3.2 3.4 4.2 2.5 2.4 2.6
Shop-14 0.1% 47.7 55.6 67.3 43.5 47.7 52.3 42.4 45.1 48.2

0.2% 42.9 46.1 51.3 41.7 43.4 45.0 41.4 42.1 43.8
0.3% 42.4 44.0 47.3 41.6 42.1 43.6 41.1 41.5 41.7

Twitter 2% 55.1 190.0 290.5 42.9 154.9 248.4 41.3 139.2 226.1
5% 37.9 134.3 225.6 33.0 105.3 181.9 31.5 96.1 159.7
10% 32.3 108.3 190.9 30.4 89.2 151.3 29.9 66.9 124.1

Table 8 lists the numbers of periodic-frequent patterns,
recurring patterns and p-patterns discovered in the Shop-
14 and Twitter databases. The column labeled ‘II’ in this
table refers to the length of the longest pattern discovered
in each of these databases. The following observations can
be drawn from this table.
First, the total numbers of periodic-frequent patterns dis-

covered in both databases were relatively less than the num-
ber of recurring patterns and p-patterns. The reason is that
the strict constraint that a frequent pattern has to exhibit
complete cyclic repetitions throughout the data has failed to
identify many interesting partial periodically appearing pat-
terns. Moreover, this strict constraint also resulted in find-
ing the very short periodic-frequent patterns (see columns
labeled ‘II’ in Table 8). This is because longer patterns gen-
erally fail to exhibit complete cyclic repetitions throughout
the data. Setting a high period threshold value can enable
a user to discover long periodic-frequent patterns. However,
this high period can result in discovering sporadically ap-
pearing patterns as periodic-frequent patterns. Thus, it is
necessary to relax this strict constraint without changing
the period threshold value. As our model enables a user
to relax this strict constraint, recurring patterns have been
found more interesting than the periodic-frequent patterns
for a given per threshold.
Second, the total number of p-patterns discovered in both

databases were much higher than the recurring patterns and
periodic-frequent patterns. The reason is that the usage of
a low minSup has facilitated Ma and Hellerstein’s model [7]
to discover not only all our recurring patterns as p-patterns,
but also resulted in a combinatorial explosion of frequently
appearing items producing too many p-patterns. Most im-
portantly, many of the p-patterns discovered at low minSup
were uninteresting to the users. The reason is that frequent

Table 8: Number of patterns discovered in Shop-14
and Twitter databases. Terms ‘I’ and ‘II’ represent
total number of patterns and maximum length of pat-
tern found in each database, respectively.

Shop-14 Twitter
I II I II

PF patterns 22 3 466 2
Recurring patterns 4,977 9 42,319 7
p-patterns 156,7001 12 442,076 16

items were combining with one another in all possible ways
and generating p-patterns by satisfying a low minSup value.
On the contrary, our model has reduced the combinatorial
explosion of frequent items by assessing their interestingness
with respect to their number of consecutive periodic appear-
ances in a portion of data.

6. CONCLUSIONS AND FUTURE WORK
We introduced a new class of partial periodic patterns

known as recurring patterns and discussed the usefulness of
these patterns in various real-world applications. We also
proposed a model for discovering such patterns. The pat-
terns discovered with the proposed model do not satisfy the
anti-monotonic property. Therefore, we proposed a novel
pruning technique to reduce the computational cost of find-
ing these patterns. We also proposed a pattern-growth algo-
rithm to discover the recurring patterns effectively. Experi-
mental results suggest that the model is tolerant to the“rare
item problem” and that the algorithm is efficient. The use-
fulness of the recurring patterns was discussed by comparing
them against the periodic-frequent and p-patterns.

In our current study, we did not considered noisy data
and the phase-shifts of the items within the data. For fu-
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Figure 9: Runtime of RP-growth

ture work, we will develop methods for handling these two
scenarios. Another interesting future work will be extend-
ing our model to improve the performance of an association
rule-based recommender system.
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