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ABSTRACT
Most of previous studies on automatic database partitioning
focus on deriving a (near-)optimal (re)partition scheme ac-
cording to a specific pair of database and query workload and
oversees the problem about how to efficiently deploy the de-
rived partition scheme into the underlying database system.
In fact, (re)partition scheme deployment is often non-trivial
and challenging, especially in a distributed OLTP system
where the repartitioning is expected to take place online
without interrupting and disrupting the processing of nor-
mal transactions. In this paper, we propose SOAP, a system
framework for scheduling online database repartitioning for
OLTP workloads. SOAP aims to minimize the time frame of
executing the repartition operations while guaranteeing the
correctness and performance of the concurrent processing of
normal transactions. SOAP packages the repartition oper-
ations into repartition transactions, and then mixes them
with the normal transactions for holistic scheduling opti-
mization. SOAP utilizes a cost-based approach to rank the
repartition transactions’ scheduling priorities, and leverages
a feedback model in control theory to determine in which
order and at which frequency the repartition transactions
should be scheduled for execution. When the system is
under heavy workload or resource shortage, SOAP takes
a further step by allowing repartition operations to piggy-
back onto the normal transactions so as to mitigate the re-
source contention. We have built a prototype on top of Post-
greSQL and conducted a comprehensive experimental study
on Amazon EC2 to validate SOAP’s significant performance
advantages.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems - Distributed
Databases and Transaction Processing

General Terms
Algorithms, Design, Performance, Experimentation
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1. INTRODUCTION
The difficulty of scaling front-end applications is well known

for DBMSs executing highly concurrent workloads. One ap-
proach to this problem employed by many Web-based com-
panies is to partition the data and workload across a large
number of commodity, shared-nothing servers using a cost-
effective, distributed DBMS. The scalability of online trans-
action processing (OLTP) applications on these DBMSs de-
pends on the existence of an optimal database design, which
defines how an application’s data and workload is parti-
tioned across the nodes in a cluster, and how queries and
transactions are routed to the nodes. This in turn deter-
mines the number of transactions that access data stored
on each node and how skewed the load is across the cluster.
Optimizing these two factors is critical to scaling complex
systems: a growing fraction of distributed transactions and
load skew can degrade performance by a factor of over ten.
Hence, without a proper design, a DBMS will perform no
better than a single-node system due to the overhead caused
by blocking, inter-node communication, and load balancing
issues.

Automatic database partitioning has been extensively re-
searched in the past. As a consequence, nowadays, most
DBMSs offer database partitioning design advisory tools.
The idea of these tools analyze the workload at a given time
and suggest a (near-)optimal repartition scheme in a cost-
based or policy-based manner, with the expectation that
the system performance can thereby always maintain a con-
sistently high level. It is then the DBA’s responsibility to
deploy the derived repartition scheme into the underlying
database system, which however often posts great challenges
to the DBA. On the one hand, the repartition operations
should be executed fast enough so that the new partition
scheme can start to take effect as soon as possible. How-
ever, granting high execution priorities to the repartition-
ing operations will inevitably slow down or even stall the
normal transaction processing on the database system. On
the other hand, the repartitioning procedure should be as
transparent to the users as possible. In other words, the
normal user transactions’ correctness must not be violated
and the processing performance should not be significantly
influenced. Obviously, even skilled DBAs may not be able
to easily figure out the best ways of deploying repartition
schemes, especially when the workload changes over time
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and has bursts and peaks. As a result, automatic parti-
tion scheme deployment satisfying the above requirements
is highly desirable. Surprisingly, few previous studies have
been devoted to this important research problem.

In this paper, we focus on the problem about how to
optimally execute a database repartition plan consisting of
a set of repartition operations in a distributed OLTP sys-
tem, where the repartitioning is expected to take place on-
line without interrupting and disrupting the normal trans-
actions’ processing. We propose SOAP, a system frame-
work for scheduling online database repartitioning for OLTP
workloads. SOAP aims to minimize the time frame of ex-
ecuting the repartition operations while guaranteeing the
correctness and performance of the concurrent normal trans-
action processing.

SOAP models and groups the repartition operations into
repartition transactions, and then mixes them with the nor-
mal transactions for holistic scheduling optimization. There
are two basic strategies for SOAP to schedule the reparti-
tion transactions, which are similar to the techniques used
in state-of-the-art database systems’ online repartitioning
solutions. The first strategy is to maximize the speed of
applying the repartition plan and submit all the reparti-
tion transactions to the waiting queue with a priority higher
than the normal transactions. The second strategy schedules
repartition transactions only when the system is idle. Both
basic strategies lack the flexibility to find a good trade-off
between the two contradicting objectives: maximizing the
speed of executing repartition transactions and minimizing
the interferences to the processing of normal transactions.
As a result, SOAP interleaves the repartition transactions
with normal transactions, and leverages feedback models in
control theory to determine in which order and at which fre-
quency the repartition transactions should be scheduled for
execution.

In the feedback-based method the repartition transactions
have the same priority as the normal transactions, hence
they will contend with normal transactions for the locks
of database objects and significantly increase the system’s
workload, especially when the system is under heavy loads
or resource shortage. To mitigate this issue, SOAP utilizes a
piggyback-based approach, which injects repartition opera-
tions into the normal transactions. The overhead of acquir-
ing and releasing locks as well as performing the distributed
commit protocols incurred by a repartition transaction can
be saved if the normal transaction that it piggybacks on will
access the same set of database objects.

While the piggyback-based approach consumes less re-
sources, it fails to take use of the available system resources
to speed up the repartitioning process. This may leave some
resources unused when the system workload is low and there
are few transactions to piggyback on. Therefore, SOAP
adopts a hybrid approach that is composed by a piggyback
module and the feedback module. When the system work-
load does not use up all the system’s resources, we can make
use of the available resources to repartition the data be-
fore the actual arrival of transactions that will access them,
meanwhile the piggyback-based approach will attempt to let
the repartition transactions piggyback on the normal trans-
actions when they arrive.

To summarize, we make the following contributions with
this work:

• To the best of our knowledge, we are among the first

to specifically study the problem of online deploying
database partition schemes into OLTP systems.

• We propose a feedback model that realizes dynamic
scheduling of the repartition operations.

• We also propose a piggyback approach to execute se-
lected repartition operations within normal transac-
tions to further mitigate the repartitioning overhead.

• We have built a SOAP prototype on top of PostgreSQL,
and conducted a comprehensive experimental study on
Amazon EC2 that validates SOAP’s significant perfor-
mance advantages.

The rest of this paper is organized as follows. In Section 2,
we describe the generic SOAP system architecture, as well
as how SOAP realizes online repartitioning for OLTP work-
loads. In Section 3, we elaborate SOAP’s feedback-based,
piggyback-based and hybrid approaches of online schedul-
ing repartition operations. Section 4 presents the experi-
ment set-up and experimental results of a SOAP prototype
on an Amazon EC2 cluster. We discuss the related works in
Section 5 and then conclude in Section 6.

2. SOAP SYSTEM OVERVIEW
In this section, we describe the generic SOAP system ar-

chitecture, as well as how SOAP realizes online repartition-
ing for OLTP workloads.

2.1 SOAP System Architecture
Figure 1 shows a SOAP-enabled distributed database ar-

chitecture providing OLTP services. The clients submit user
transactions through a transaction manager (TM), which
can be either centralized or distributed.Each submitted trans-
action will be given a global unique ID by the TM. TM
takes care of the processing life-cycle of transactions and
guarantees their ACID properties with certain distributed
commit protocols and concurrency control protocols. The
query router maintains the mappings between data parti-
tions and their resident nodes, based on which it routes the
incoming transaction queries to the correct nodes for exe-
cution. All the submitted transactions will be associated
with a scheduling priority and then put into a processing
queue, where higher-priority transactions will be executed
first, while the FIFO policy will be applied to break the tie.
The rules of setting priorities are customizable.

The transaction manager, query router and processing
queue are common components in most OLTP systems, while
SOAP introduces a new component repartitioner to coordi-
nate its online database repartitioning for OLTP workloads.
In the following subsection, we describe how the reparti-
tioner works.

2.2 Online Database Repartitioning
In this paper, we consider the scenarios where the type of

transactions and frequency of OLTP workloads could change
over time, so that periodic database repartitioning is re-
quired in order to maintain the system performance.

The repartitioner determines when and how the OLTP
database should be repartitioned. Its optimizer component
periodically extracts the frequency of transactions and their
visiting data partitions from the workload history, and then
estimates the system throughput and latency in the near
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Figure 1: The generic SOAP system architecture

future based on the history. If the estimated system per-
formance is under a predefined threshold, the optimizer will
derive a repartition plan in a cost-based manner. The repar-
tition plan could be at the granularity of moving individual
tuple or tuples within some ranges or with some hash keys
on their attributes. We assume each tuple contains enough
information to be positioned by query router. We assume
tuple replicas are only made for the purpose of high availabil-
ity, yet make no assumptions about the replication strategy
utilized. Tuple replicas will be distributed over distinct data
partitions, and the query router will determine for a trans-
action which replica of a specific tuple should be visited.

The optimizer will generate three types of repartition op-
erations together with the normal transactions accessing the
database objects repartitioned by each of them, i.e. new
replica creation, replica deletion and objects migration.

• New Replica Creation: insert some new replicas of
database objects originally stored in a data partition
into an another one containing no other replicas of the
same objects.

• Replica Deletion: for database objects with multiple
replicas, delete the specific replica within one parti-
tion.

• Objects Migration: relocate some database objects be-
tween two partitions; the procedure is realized by first
inserting new replicas of them into the destination par-
tition and then deleting the original ones from the
source partition.

To execute the repartition operations, the scheduler pack-
ages them into repartition transactions using the informa-
tion provided by the optimizer. The repartition transac-
tion will be scheduled by the repartitioner and submitted
to the system at a chosen time. It utilizes a cost-based ap-
proach to determine the repartition transactions’ execution
orders, and leverages a feedback model in control theory to

determine at which frequency the repartition transactions
should be scheduled for execution. As such, the processing
of repartition transactions and normal transactions may be
interleaved. In other words, during the database repartition-
ing, the processing of normal transactions will keep going
on, and an online scheduling algorithm, which will be elabo-
rated in Section 3, attempts schedule repartition transaction
so that the time frame of executing the repartition opera-
tions is minimized while guaranteeing the correctness and
performance of the concurrent processing of normal trans-
actions.

The repartitioner accesses the system logs, manipulates
the processing queue and updates the mapping information
and routing rules in the query router during and after the
database repartitioning. With the piggyback-based execu-
tion method, the repartitioner may need to modify the nor-
mal transactions by inserting additional repartition opera-
tions to some of them, and the transaction manager will
coordinate the processing of the modified normal transac-
tions.

3. ONLINE REPARTITION SCHEDULING
The scheduling of repartition operations has to be done

in an online fashion. Besides the incoming workload is hard
to predict, there are many system factors that will cause
the system performance to fluctuate over time, such as vari-
ations of network speeds/bandwidth, transaction failures,
and interferences from other programs running on the same
server. Therefore, we study how to implement an online
scheduler that can continuously adapt to the system’s ac-
tual workload and capacity.

3.1 Generating and Ranking Repartition Trans-
actions

In all the subsequent scheduling algorithms, we have to
first decide the execution order of repartition transactions
and schedule the more “beneficial” ones before those less
“beneficial”. To achieve this, we need to estimate the cost
and benefit of executing such transactions. To estimate the
cost of a transaction under different partitioning plans, we
follow the approach in [4]. Suppose the cost of running
transaction Ti with a repartition plan where all the tuples
accessed by Ti are collocated in a single partition is Ci, then
the cost of Ti with a plan where Ti has to access more than
one partition is 2Ci.

To estimate the benefit of a repartition transaction, we
use the cost model of the data partitioning algorithms, such
as [4, 13, 15]. Suppose the cost of an arbitrary normal trans-
action Ti with partition plan P is Ci(P), then the benefit of
a repartition transaction Tj , denoted as Bj can be defined
as Σ∀Tifi(Ci(O)− Ci(P)), where fi is the frequency of Ti.
Finally, we can define the benefit density of Tj as Bj/Cj

and then we can schedule the repartition transactions in de-
scending order of their benefit densities.

To package the repartition operations into transactions,
there are two simple options: (1) putting all operations into
one transaction and (2) creating one transaction for each op-
eration. The first option will create a very large transaction
especially when there are a lot of data to be repartitioned.
Such a large transaction will be run for a very long time and
will significantly increase resource contention. For example,
with a 2PL policy, the repartition transaction has to hold
the locks of all the data objects involved in the repartition
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plan until it is committed. This will substantially increase
the degree of lock contention with the normal transactions.
On the other hand, the second option will not suffer from
this problem but it will create a lot of transactions each in-
curring overhead to the transaction manager. It is desirable
to find a good trade-off between this two extremes. In prin-
ciple, we would like to create small transactions and their
overhead can be paid off by the benefit that it will bring to
the system. As accurately predicting and quantifying the
overhead and the degree of lock contentions that will be in-
troduced by a repartition transaction is difficult, we adopt a
simple heuristic here. Roughly speaking, we put the repar-
tition operations that repartition all the objects accessed by
a normal transaction into a repartition transaction. In this
way, we can ensure that there is at least one normal transac-
tion that will benefit from executing the repartition transac-
tion. Provided that the achieved benefit is greater than the
overhead of introducing the repartition transaction, we can
ensure that the overhead will be paid off when the repar-
tition transaction is executed. Furthermore, even with this
heuristic, there are still many possible ways to combine the
repartition operations into transactions. We prefer generat-
ing transactions that will have higher benefit densities and,
as mentioned earlier, schedule them in descending order of
their benefit densities.

Algorithm 1 shows the whole process for the scheduler to
generate a ranked list of repartition transactions. Given a
new partition plan P generated by a cost-based repartition
optimizer, the scheduler will obtain a list of repartition op-
erations OPrep together with the list of normal transactions
that will access the data objects modified by each operation.
In line 1-8, we construct a map TOP that maps the ID of a
normal transaction ti with frequency fi to a group of repar-
tition operations that will modify objects accessed by ti. In
other words, the performance of ti will be affected by this
list of repartition operations.

We then calculate the benefit of executing each repartition
operation in lines 9-14. After that, we can calculate the total
benefits of each group of repartition operations in Top and
store them in another map Tbenefit with value descending
order. Finally, we transform each group of repartition op-
erations into a repartition transaction, and make sure each
repartition operation only belongs to one repartition trans-
action. These repartition transactions will be returned by
the algorithm as the output. Furthermore, we calculate the
benefit density of each repartition transaction and sort them
in descending order. Given a repartition transaction ri and
a normal transaction ti whose performance will be affected
by ri, TRep maps the ID of ri to the ID of ti and the benefit
density of ri. Such auxiliary information will be used in our
subsequent scheduling algorithms.

3.2 Basic Solution
In general, there is a tension between the two objectives

in our scheduling: (1) executing the repartitioning queries
as soon as possible to improve the current partitioning plan,
(2) avoiding interferences to the normal transactions and
making the repartition process transparent to the end users.
In this subsection, we propose two baseline solutions, each
favoring one of the objectives.

Apply-All. This strategy is to maximize the speed of ap-
plying the repartitioning plan and submits all the repartition
transactions to the waiting queue with a priority higher than

Algorithm 1: Generating and Ranking Repartition
Transactions
Data: a list of repartition operations OPrep generated

by optimizer, new partition plan P
Result: a list of repartition transactions LRep,a map

TRep mapping repartition transaction id to a
affected normal transaction id and the benefit
density of the repartition transaction

1 Create HashMap Top, a mapping from normal
transaction to the repartition operations that edit the
objects visited by it

2 for opk ∈ OPrep do
3 for Normal transaction ti accessing the objects

modified by opk do
4 if Ci(O)− Ci(P) > 0 then
5 Insert opk to Top.get(ti)

6 for ti ∈ Top.keylist do

7 benefit ← fi
Ci(O)−Ci(P)

Top.get(ti).size()

8 for opk ∈ Top.get(ti) do
9 opk.benefit += benefit

10 Create HashMap Tbenefit, a mapping from repartition
operation group ID to the total benefit for system if all
the operations within this group are executed

11 for (ti,Lop) ∈ Top.entrySet do
12 benefit ← 0; for opi ∈ Lop do
13 benefit += opi.benefit;
14 Insert (ti,benefit) to Tbenefit;

15 Sort Tbenefit with value descending order
16 for (ti,benefit) ∈ Tbenefit do
17 ops ← Top.get(ti);
18 for opi ∈ ops do
19 if opi /∈ OPrep then
20 Remove opi from ops; Tbenefit.get(ti) ←

Tbenefit.get(ti)− opi.benefit;
21 Remove ops from OPrep;
22 Create ri with ops;
23 ci ← Cost(ri,O);

24 cpri ←
Tbenefit.get(ti)

ci
;

25 Insert ((ri, ti),cpri) to TRep;
26 Insert ri to LRep

27 Sort TRep with value descending order;

the normal transactions. As mentioned earlier, the system
will schedule the transactions in descending order of their
priorities and hence this strategy is equivalent to pausing
the processing of normal transactions and performing the
repartitioning queries immediately. Depending on the num-
ber of repartition transactions, the normal transactions may
need to wait for a rather long time, which is usually unac-
ceptable.

After-All. To minimize the interferences to normal trans-
actions, we can use a lazy strategy where repartition trans-
actions will only be scheduled when the system is idle. We
can achieve this by giving all the repartition transactions a
priority lower than the normal ones. By doing so, the normal
transactions will almost not be affected by repartition trans-
actions and the repartitioning could be done transparently.
Due to this advantage, a state-of-the-art approach for online
repartitioning adopted this strategy [15]. However, there is
a downside of this approach: the repartitioning may be per-
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Figure 2: A sample PID controller block diagram

formed too slowly, especially when the system workload is
high and there is very little idle time. Under this situation,
the high workload could actually be alleviated by adopting
the new and better partitioning plan and this strategy fails
to take advantage of those.

3.3 Feedback-based Approach
As discussed earlier, the aforementioned basic solutions

lack the flexibility to find a good trade-off between the two
contradicting objectives. To achieve this, one can sched-
ule some additional repartition transactions on top of those
scheduled by the After-All strategy. These additional trans-
actions will be assigned with the same priority as the normal
transactions so that they have the chance to be executed
faster. We call such transactions as high-priority reparti-
tion transactions to distinguish them with those low-priority
ones scheduled by the After-All strategy. To limit the im-
pact over the normal transactions, we can limit the number
of high priority repartition transactions.

However, such a seemingly simple idea is rather challeng-
ing to realize in practice. Note that the number high-priority
repartition transactions that we can execute without signifi-
cant disturbance of the normal transactions heavily depends
on the system’s current workload and capacity. In reality,
the system’s workload may have temporal skewness and fluc-
tuations even if it appears to be uniformly distributed for
a long period [13]. Furthermore, the system’s capacity is
also subject to variations caused by external factors, such as
external workload imposed on the same server or other vir-
tual servers running on the same physical machine or cluster
rack in a cloud computing environment. A desirable solution
should be able to detect such short-term variations of system
workload and capacity and promptly adapt the scheduling
strategy accordingly. To achieve this goal, we model our
system as an automatic control system and make use of the
feedback control concept in control theory to design an adap-
tive scheduling strategy.

Control theory deals with the behaviors of complex dy-
namic systems with inputs and present output values. A
controller is engineered to generate proper corrective actions
so that system error, i.e. the differences between the desired
output value, called setpoint (SP ), and the actual measured
output value, called process variable (PV ), are minimized.

A commonly used controller is the Proportional-Integral-
Derivative controller (PID controller). Figure 2 depicts a
graphical representation of a PID controller. Let u(t) be
the output of the controller, then the PID controller can be

defined as follows:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d

dt
e(t) (1)

where Kp, Ki and Kd are the proportional, integral and
derivative gains respectively, and e(t) is the system error
at time t. The system error can be minimized by tuning
the three gains so that the controller will generate proper
outputs. Simply put, Kp, Ki and Kd determines how the

present error (e(t)), the accumulation of past errors (
∫ t

0
e(τ)dτ)

and the predicted future error ( d
dt
e(t)) would affect the con-

troller’s output.
The system for scheduling repartition transactions can be

modeled as a PID controller as follows. We can use the
ratio of the total cost of the high-priority repartition trans-
actions to that of the normal transactions as the SP for the
PID controller. By stabilizing this ratio, we can constrain
the total workload imposed by the high-priority repartition
transactions at a desirable level so that they would have
limited impact over the latency of the normal transactions
and in the mean time maximize the speed of applying the
repartitioning plan.

To capture the fluctuations of the system’s workload and
capacity, we divide the time into small intervals and measure
the aforementioned ratio for every interval. The actual ratio
that is measured would be the PV of the PID controller
and hence the error can be computed as SP − PV . The
output of the controller is the ratio to be used to calculate
the number of high-priority repartition transactions that we
should schedule in the coming interval.

To tune the parameters of the PID controller, we take an
online heuristic-based tuning method formally known as the
Ziegler—Nichols method[19].

Finally, we enforce a limit on the maximum number of
high-priority repartition transactions scheduled in each time
interval to avoid significant impacts caused by sudden changes
of system workload and capacity, which the PID controller
will take some time to stabilize its outputs. Putting such
a limit is essentially a conservative approach to avoid too
much interferences during the period that the PID controller
is stabilizing its behavior.

3.4 Piggyback-based Approach
In the feedback-based method the repartition transactions

have the same priority as the normal transactions, hence
they will contend with normal transactions for the locks
of database objects and significantly increase the system’s
workload.

In this section, we propose a piggyback-based approach,
which injects repartition operations into the normal trans-
actions that access the same object. As these transactions
would acquire the locks of these objects anyway, we can save
the overhead of acquiring and releasing locks as well as per-
forming the distributed commit protocols. Moreover, we can
reduce the degree of lock contention by reducing the number
of transactions.

The algorithm of this approach is illustrated in Algo-
rithm 2. The algorithm make use of the auxiliary informa-
tion produced in Algorithm 1. It examines the transaction
ID ti of the incoming normal transaction and check if there
exist an repartition transaction rj in TRep which ti can ben-
efit from but are not yet executed. If so, rj will piggyback
onto ti, injecting the repartition operations in rj to ti. These
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Algorithm Workload
HighLoad LowLoad

α = 100% α = 60% α = 20% α = 100% α = 60% α = 20%

Feedback
Zipf 1.05 1.05 1.1 1.05 1.03 1.015
Uniform 1.25 1.25 1.25 1.02 1.03 1.02

Hybrid
Zipf 1.05 1.05 1.05 1.05 1.03 1.05
Uniform 1.05 1.05 1.05 1.03 1.05 1.05

Table 1: SP value for Experiments

Algorithm 2: Piggyback Algorithms for incoming nor-
mal transactions Ti(k)

Data: a list of repartition transactions LRep, a map
TRep from repartition transaction id to an
affected normal transaction and the benefit
density of the repartition transaction, incoming
normal transactions Ti(k) in interval k, List of
all the repartition operations OPRep

Result: Piggybacked normal transaction executed in
interval k

1 Create a map P(k) of all the normal transactions
piggyback some repartition operations in interval k

2 for ti ∈ Ti(k) do
3 if rj , ti ∈ TRep.keylist then
4 ops ← LRep.get(rj)
5 Insert ops to ti
6 Inert (ti, (rj , ti)) to P(k)

7 Submit Ti(k)
8 Get Result(k) for any finished transaction
9 for (ti ∈ P(k)) do

10 if ti ∈ Result(k) then
11 if ti.success then
12 Remove P (k).get(ti) from TRep

13 else
14 Remove LRep.get(P (k).get(ti).getKey())

from ti
15 Resubmit ti

repartition operations will share the locks of objects with the
normal transactions. This essentially leads to a repartition-
on-demand strategy where data will be repartitioned only
when they are accessed. After the piggybacked transaction
is successfully committed, we will remove the corresponding
repartition transaction in TRep.

The piggyback method will increase the transaction fail-
ure rate as the execution times of normal transactions are in-
creased. If too many repartition operations piggyback onto a
normal transaction, then the system throughput will be de-
creased due to unnecessary aborts caused by the failure of
the piggybacked repartition operations. Therefore, we need
to limit the maximum number of repartition operations that
can piggyback onto each normal transaction. This parame-
ter should be tuned at runtime to adapt to the scenarios of
different systems.

3.5 Hybrid Approach
While the piggyback-based approach consumes less re-

sources, it fails to take use of the available system resources
to speed up the repartitioning process. This may not work
well when the system workload is low and there are few
transactions to piggyback on. A more desirable approach

is, when the system workload is low, we can take use of the
available resources to repartition the data before the actual
arrival of transactions that will access them, and when the
system is a bit congested, we can take advantage of the op-
portunities to piggyback the repartition operations on the
incoming transactions.

In this section, we present a hybrid approach that is com-
posed by a piggyback module and the feedback module. The
piggyback module will piggyback the repartition operations
on the incoming normal transactions. Then for each inter-
val, the feedback module will measure the actual PV value
by counting in both the repartition transactions and those
repartition operations piggybacked on the normal transac-
tions. In this way, the feedback module will adapt the num-
ber of repartition transactions according to the actual work-
load of the system. In other words, when there are more
incoming normal transactions that more repartition opera-
tions can piggyback on, we will reduce the number of repar-
tition transactions and vice versa.

4. EVALUATION
In this section, we will first provide some details of our

system implementation and experimental configuration in
Section 4.1. The experimental results under different work-
load conditions are presented and discussed in Section 4.3
and Section 4.2.

4.1 Experimental Configuration
System Implementation and Configuration. We

have used PostgreSQL 9.2.4 as the local DBMS system at
each data node and JavaSE-1.6 platform for developing and
testing our algorithms. We have developed a query router
using a lookup table to route each query to its target database
objects. We have also implemented a query parser that reads
a query and extracts the partition attributes of the target
objects, which will be used for query routing and applying
our online repartition strategies. For transaction manage-
ment, we take use of Bitronix[17], an implementation of Java
Transaction API 1.1 version adopting the XAResource inter-
face to interact with the DBMS resource managers running
each the individual data node and using 2-Phase Commit
protocol for distributed transaction commits.

Our evaluation platform is deployed on a Amazon EC2
cluster consisting of 5 data nodes corresponding to 5 data
partitions respectively. Each data node runs an instance of
a PostgreSQL 9.2.4 server, which is configured to use the
read committed isolation level and has a limitation of 100
simultaneous connections. Note that higher isolation level
will decrease the system concurrency and hence lower the
system’s capacity. But it will not affect the performance of
our algorithms. The node configuration consists of 1 vCPU
using Intel Xeon E5-2670 processor and 3.75 GB memory
with an on-demand SSD local storage running 64-bit Ubuntu
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Figure 3: Experiment Results for Transaction Failure Rate

13.04. The query router is run on another EC2 instance with
the same setting.

Workloads and Datasets. We create a table containing
500, 000 tuples, each tuple has a global unique key field and
an integer content field. The size of each tuple is 8 bytes.
We generate two types of workload distribution to simulate
different sceneries of transaction popularity: a uniform dis-
tribution with 30, 000 distinct transactions and a Zipf dis-
tribution with 23, 457 distinct transactions. We generate
the workload with a Zipf distribution using the parameter
s = 1.16 so that the workload follows the 80-20 rule. Each
normal transaction contains 5 queries. Each query access
one unique tuple and is either a read-only or a write query
with equal possibility.

We use a Poisson distribution to determine how many nor-
mal transactions are submitted to the system during each
interval, which is set to be 20 seconds. Each run of the
experiment will last for 45 minutes and the normal transac-
tions are submitted to the system at the beginning of each
time interval. We generate a high and a low workload as
follows. Lowload has an average system utilization as 65%
before the repartitioning, which is measured by the percent-
age of time that the system spend on processing the normal
transactions. Highload simulates a system overloaded sit-
uation, where the incoming workload is 30% higher than
the system capacity. Under this situation, it is more urgent
to adopt the repartitioning plan to reduce the effective in-
coming load. Furthermore, for each situation, we vary the
percentage of tuples α we need to repartition, which varies
from 100% to 20%. After the repartitioning, α percent of the
normal transactions would be tranformed from distributed
transactions to non-distributed transactions.

Algorithm Settings. We compare all the algorithms
we discussed in the previous sections. We use two per-
formance metrics for comparison: the system throughput,
which is counted as the maximum number of normal trans-
actions that the system can process per unit of time, and

the processing latency, which is the time between a transac-
tion is submitted and the time its processing is finished. In
order to examine the lock contentions incurred by the var-
ious scheduling algorithms, we also collect the failure rate
of transactions, which is defined as the number of aborted
transactions compared to the total number of transaction
submitted to transaction manager.

In line with the workload generation, we divide the time
into 20 seconds of intervals and run the system for 10 inter-
vals to warm it up before we start the repartitioning. Fur-
thermore, the feedback-based approach uses 20 seconds as
the monitoring interval. For the feedback model parameter
used in each of the experiment, we have the different SP
values which are listed in Table 1. All the experiments will
have the same controller parameter Kp = 1, Ki = 0 and
Kd = 0.

4.2 Performance Under High Load
Recall that under the high workload setting, we have set

the initial workload to be higher than the system’s capacity
but it should become lower than the system’s capacity af-
ter applying the repartition plan as the normal transactions
would consume less resources with the new partition plan.
Therefore, it is necessary for the system to be able to process
the repartition transactions soon.

Zipf workload. The experimental results are presented
in Figure 4. As we discussed earlier, ApplyAll would stall
all the normal transactions and execute all the repartition
transactions before we resume the normal processing. This
should result in the fastest deployment of the new partition
plan. This is verified by Figures 4a, 4b and 4c. However as
one can see from Figures 4d, 4e and 4f and Figures 4g, 4h
and 4i, using this approach will experience a period that
system has a very low throughput and very high processing
latency caused by the stalling of the normal transactions.

As shown in Figure 4i, the impact on processing latency
can actually last much longer than the time needed to per-
form the repartitioning. This is because a long waiting queue
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(c) α = 20%
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Figure 4: Experiment Results for Zipf High Workload

will be built up during the repartitioning process and hence
it needs a longer time to clear the queue. (Note that we
have set the initial ratio of workload to system capacity be
roughly equal for all α values and we actually submit more
normal transactions in the case with a lower α value. Hence
the waiting queue will be longer in this case.)

On the contrary, AfterAll basically cannot execute any
repartition transactions due to the lack of system idle time,
hence it cannot take advantage of the new data partition
plan. The Feedback approach will enforce the scheduling of
some repartition transactions, hence can make some progress
in deploying the new partition plan (Figures 4a, 4b and 4c).
Accordingly the system’s throughput and processing latency
will improve gradually. (Again, we submit more normal
transactions in the case with a lower α value. So it takes a
longer time to deploy the repartition plan.)

As we analyzed in the earlier sections, the Piggyback ap-
proach can effectively reduce the cost of executing reparti-
tion operations. This is especially important when the sys-
tem is under high workload and has little extra resources for
repartitioning the data. Furthermore, the high arrival rate
of normal transactions provides abundant opportunities for
the repartition operations to piggyback. The results in Fig-
ure 4 verify our analysis. In comparing to ApplyAll, both
Piggyback and Hybrid do not incur any sudden dropping
of system performance while is able to quickly execute the
repartition plan. It even outperforms ApplyAll at almost all
time intervals in terms of both throughput and latency with

a lower α value, i.e. fewer tuples to be repartitioned.
Uniform workload. We also perform the experiments

with a workload under a uniform distribution. The results
are presented in Figure 5. The difference from the work-
load with a Zipf distribution is that we will not gain a lot
of improvement by executing a small portion of repartition
transactions.

Similar to the previous experiments, since the workload is
more than the system could handle, AfterAll could barely
execute any repartition transactions improve the system’s
performance, while ApplyAll finish the repartition process
in 20,12 and 4 intervals, which is proportional to the number
of repartition transactions that need to be executed.

For the Feedback method, we set a higher SP value un-
der uniform workload to examine its performance when more
repartition transactions are enforced to be submitted to the
system. Under α = 100%, we cannot apply enough repar-
tition transactions to stop the queue size from increasing.
So even the repartition rate increases a bit in figure 5a, the
throughput and latency does not get improved. But under
the cases with α = 60% and α = 20%, since the number of
repartition transactions we need to execute is smaller, the
system finally finish the repartition in time and make the
system able to process all the incoming normal transactions
without queuing. In comparing the results in the previous
experiments, a higher SP here is actually beneficial when
the number of repartitioning transactions is relatively small
and Feedback has the chance to finish them in a good time.
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(c) α = 20%
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Figure 5: Experiment Results for Uniform High Workload

Similar to the Zipf workload, both Piggyback and Hybrid
performed the best in all cases. They can achieve a speed
that are almost identical to the ApplyAll approach.

Transaction failure rate. To further investigate the
effect of the algorithms, we also collect the failure rates of
transactions. Here we only report the results with α = 100%
since we could experience highest lock contention in these
scenarios. The results are shown in Figure 3. We can see
from Figure 3a, AfterAll has a very high failure rate dur-
ing the whole period simply because the system’s workload
is very high and it fails to apply the repartition plan to
quickly improve the system’s performance. Furthermore,
both the piggyback and hybrid method has a very low fail-
ure rate through the whole period, which clearly show the
piggyback-based method’s advantage of lowering lock con-
tentions. On the other hand, the feedback-based method
experiences some failure caused by the extra transactions
scheduled by the feedback-based method.

Figure 3b shows the results with the uniform workload.
The general trend is similar. But it is interesting to see that
the extra failure rate caused by the piggyback strategy lasts
longer than the case with Zipf workload. This is because
there is not any very hot transaction in this scenario, so
we cannot deploy the repartition plan as quickly as in the
case with Zipf workload. The mechanism of executing more
high-priority repartition transactions with Hybrid causes a
higher initial failure rate but it drops more quickly than the
piggyback approach. This shows that Hybrid has an edge

when there are less transactions to piggyback on.

4.3 Performance Under Low Load
In the low load experiments, we expect the system has

more idle time and the repartition process could be done
more aggressively to make use of those available resources.
For the Zipf workload, since there exist some transactions
that have very high frequencies, the resource contention un-
der the same load level will be higher than the Uniform
workload. The results are shown in Figure 6 and 7.

Zipf workload. ApplyAll performs similarly as under
high load situation. But since there are fewer normal trans-
actions, there are also fewer transactions that are queued up
during the repartitioning period and we have a shorter time
for the system to achieve its maximum performance after
the repartitioning period.

As the system has enough idle time now, AfterAll could
submit quite some repartition transactions. In Figure 6a,
we can see that it takes some time for the system to have an
idle period. It happens that there are three intervals that
have a very high workload generated by our Poisson load
generator. When the tuples accessed by the high frequency
normal transactions are not repartitioned yet, their average
execution time will be much higher than normal because of
resources contention. We could see that AfterAll does not
have this problem in Figures 4b and 4c. AfterAll has the
minimum interference to the normal transactions when the
system is able to handle the normal transaction load like
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(e) α = 60%
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(f) α = 20%
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Figure 6: Experiment Results for Zipf Low Workload

the situations in Figure 6h and 6i and hence it could be the
algorithm that can achieve the lowest average latency.

The Feedback method will add more repartition transac-
tions to the system besides filling the idle period. So we
can see in Figure 6g that it partitions the tuples accessed
by some high frequency transactions and render the system
load decreasing more quickly than AfterAll. Adding the ex-
tra repartition transactions will increase processing latency
of the normal transactions. This extra latency is a trade-off
against the repartitioning speed. In Figure 5d, we can see
that Feedback has a higher throughput than AfterAll but
with a higher latency before it finishes all the repartition
transactions.

The overhead of the piggyback method is proportional to
the number of piggybacked transactions. When the work-
load is low, like the condition in Figure 6f, it may not be
able to repartition the database as fast as the other meth-
ods. But the overhead on latency is also lower when the
workload is low, which is similar to AfterAll.

Hybrid performs very well even under low workload. It
always finishes the repartitioning work with a speed that is
only slower than ApplyAll and in the meantime keeps the
latency overhead less than the Feedback method. Since the
repartitioning speed of Hybrid is faster than Feedback, the
time period that normal transactions will experienced some
extra latency are much shorter.

With regard to the failure rate, the trend shown in Fig-
ure 3c is very similar to the case with high workload, except
that AfterAll has a much lower failure rate in this case. This
is because the system’s workload is not that high and After-
All has the opportunity apply the repartition plan to further

improve the system’s performance.
Uniform workload. The results are reported in Fig-

ure 7. In this case, the degree of resource contention among
normal transactions is lower than that with the Zipf work-
load. AfterAll could finish the repartitioning more quickly
than with the Zipf load. Since the frequency of each nor-
mal transaction is low, the effect of repartition may take
some time to get into effect. An interesting phenomenon is
that Piggyback in this case works worse than the previous
cases. With the uniform and low load situation, there are
relatively few transactions to be piggybacked on and hence
it take much longer for the piggyback approach to finish the
repartitioning.

Furthermore, from Figure 3d, we can find that before the
repartitioning is finished, the piggyback approach incurs a
higher failure rate. This is because, even though Piggy-
back does not incur additional transactions, the piggybacked
transactions will run longer than normal and this may still
increase lock contentions to a certain degree. Given the
longer repartitioning period in this case, its overhead on fail-
ure rate is more prominent here. On the contrary, Hybrid is
able to make use of the available system resources to speed
up the repartition and hence do not suffer this problem.

5. RELATED WORKS
Data partitioning for distributed database system is about

designing a data placement strategy minimizing the trans-
action overheads and balancing the workloads. Besides ba-
sic algorithms using some static functions, such as range-
based or hash-based, to partition the data, researchers have
recently been focusing on workload-aware partitioning al-
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Figure 7: Experiment Results for Uniform Low Workload

gorithms that take the transaction statistics as input [4,
13]. These solutions utilize various techniques to model the
historical workload information and search for an optimal
partition scheme according to a specific objective function.
Schism [4] is an automatic partitioning tool trying to mini-
mize distributed transactions. Horticulture [13] further im-
prove this approach by considering temporary skewness of
workloads and using a local search algorithm to optimize
partition schemes. This work provides a cost model for pro-
cessing a transaction that considers both the number of par-
titions the transaction need to access and the overall skew-
ness of data access.

Alekh etc.[8] present an online partitioning method that
will partition the data in checkpoint time intervals. They
generate partition schemes based on historical query execu-
tion logs and automatically update the partition plan when
the workload changes. Besides the static partitioning meth-
ods, there are also some studies on incremental partition-
ing. For example, Sword [15] adopts a similar model as
Schism [4] and introduces an incremental repartitioning al-
gorithm that calculates the contribution of each repartition
operation and the cost of executing it. They also propose a
threshold on the number of repartition queries that will be
generated for each repartition step and a constrained num-
ber of repartition queries will be executed when the system
is at a lean period. This approach is similar to our baseline
solution AfterAll. Some commercial database systems [12,
10] support online partitioning. But all of them require the

partitioned data would not be untouched by normal trans-
actions during the partitioning period. Hence this is similar
to our ApplyAll solution. In our former short paper[1], we
briefly presented the basic ideas about the feedback and pig-
gyback algorithms. In this paper, we provide a more thor-
ough analysis of the problem, consider the drawbacks of the
piggyback solution and provide more experiment results to
illustrate the trade-offs in the piggyback solution. We also
propose the hybrid approach that combines the feedback and
piggyback algorithm to benefit from the advantages of both
algorithms while avoiding the problem of high failure rate in
the piggyback solution and the problem of high interference
with normal transactions in the feedback solution.

On the other hand, some researches on quality of service
(QoS) of OLTP systems, such as [11], have considered the
different resources’ influence on transaction performance and
have attempted to find the bottleneck resource for OLTP
transactions and shows an arresting performance improve-
ment. [6] makes use of machine learning methods to predict
multiple performance metrics of analytical queries. The so-
lution relies on SQL text extracted from the query execution
plans. In [18], the authors addressed predictions of query
execution time using the query optimizer’s cost model and
the generated query plan, which can be used to estimate
the transaction execution time in OLTP systems. For dis-
tributed systems, the extra cost of network communication
will be the new bottleneck, which limits the OLTP transac-
tions performance [3]. It is an important part of execution
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cost if we want to optimize the transaction performance in
a distributed environment.

Live migration of databases [5] focuses on migrating a
whole database from one system to another while providing
non-stop services and has not considered the scenario of mi-
grating data from multiple nodes to multiple destinations,
which however is the common case in our online data parti-
tioning problem and may encounter distributed transactions
that update the data at both the source and the destination
nodes simultaneously. The authors of [5] provide a solution
of combining on-demand pull and asynchronous push to mi-
grate a tenant with minimal service interruption. Their so-
lution is somehow similar to our piggyback approach, where
data that needs to be moved will be migrated when the in-
coming transactions visit it.

Transaction scheduling is an important topic studied in
various areas such as Web services and database systems,
and there are several works, such as [7, 2]), that tried to find
an optimal schedule by considering query execution time,
transaction deadline and system workload. Given the trans-
actions’ execution time and hard execution deadlines, most
of the scheduling problems are NP-Complete [16]. The most
common solution is cost-based algorithms [9]. The quality of
a schedule highly depends on the cost estimation and how
the execution cost each transaction is modeled. [14] is a
scheduling and admission control method using a priority
token bank in computer networks. They classify jobs into
N classes and jobs within each class are treated equally (by
using FIFO). This approach is much simpler than cost-based
scheduling (CBS).

6. CONCLUSION
In this paper, we studied the problem of online reparti-

tioning of a distributed OLTP database. We identify that
the two basic solutions are very rigid and miss the opportu-
nities to find good trade-offs between the speed of reparti-
tioning and the impact on the normal transactions. We then
propose to use control theory to design an adaptive methods
which can dynamically change the frequency that we submit
repartition transactions to the system. As putting the repar-
tition queries into extra transactions may further increase
the system’s resource contention especially when the system
has a high workload, we also proposed a piggyback-based
method to mitigate the repartitioning overhead, which how-
ever do not perform well when the system has a low workload
and there is few transactions to piggyback on. Our hybrid
approach intelligently integrates the two approaches and is
able to combine their strengths while avoiding their prob-
lems. Based on the experiments of running our prototype
on Amazon EC2, we can conclude that Hybrid is the overall
best approach and achieves a great performance improve-
ment in comparing to the two basic solutions used in most
existing systems.
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