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ABSTRACT
Flash SSDs are omnipresent as database storage. HDD re-
placement is seamless since Flash SSDs implement the same
legacy hardware and software interfaces to enable backward
compatibility. Yet, the price paid is high as backward com-
patibility masks the native behaviour, incurs significant com-
plexity and decreases I/O performance, making it non-robust
and unpredictable. Flash SSDs are black-boxes. Although
DBMS have ample mechanisms to control hardware directly
and utilize the performance potential of Flash memory, the
legacy interfaces and black-box architecture of Flash devices
prevent them from doing so.

In this paper we demonstrate NoFTL, an approach that
enables native Flash access and integrates parts of the Flash-
management functionality into the DBMS yielding signif-
icant performance increase and simplification of the I/O
stack. NoFTL is implemented on real hardware based on
the OpenSSD research platform. The contributions of this
paper include: (i) a description of the NoFTL native Flash
storage architecture; (ii) its integration in Shore-MT and
(iii) performance evaluation of NoFTL on a real Flash SSD
and on an on-line data-driven Flash emulator under TPC-
B,C,E and H workloads. The performance evaluation results
indicate an improvement of at least 2.4x on real hardware
over conventional Flash storage; as well as better utilisation
of native Flash parallelism.

1. INTRODUCTION
Many basic database architectural principles and algo-

rithms have been designed around the properties of HDD.
Flash memories provide a set of di↵erent I/O characteris-
tics and promise to speedup the critical I/O path. We ar-
gue that the design of the storage architecture is not well
suited for new kinds of memory in terms of both software
and hardware. Flash devices still support the same block
level interface as HDDs, which ensures backwards compat-
ibility and eases replacement, but is also a major source of
unpredictability and non-robustness.
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The low-level block interface compatibility is realized by
the Flash Translation Layer (FTL) that is executed inside
the storage device on top of limited hardware. The FTL
creates a black-box around the Flash memory, masking its
performance characteristics and emulating a HDD-like be-
haviour [5, 3]. The FTL yields: (i) significant overhead;
(ii) unpredictable and state-dependent performance due to
background processes [5, 4]; (iii) inability to optimize the
DBMS I/O behaviour to new kinds of storage[4, 10]; and
last but not least, uncures (iv) high costs of Flash SSDs.
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Figure 1: DBMS storage alternatives

Historically, database systems assume direct control over
the hardware and the I/O stack to increase performance.
Traditionally a DBMS would use a file system based (”cooked”)
storage on traditional block devices (Figure 1.a). Database
systems on raw storage (Figure 1.b) eliminate file system
overhead, enable raw storage access and direct physical data
placement, achieving better performance [14]. Newer ap-
proaches propose a departure from block device interfaces,
achieving: atomic writes, computational e�ciency and par-
allelism [15], stripped down FTL and a native interface to
host [4, 10]. With NoFTL (Figure 1.c) we consider native
Flash access, and explore approaches to natural integration
of FTL functionality in the DBMS.

Contributions. NoFTL removes all intermediate ab-
straction layers along the critical I/O path (block device
interface, file system and FTL), and enables the DBMS to
control the Flash memory directly. This minimizes the over-
head of garbage collection (GC) and wear-leveling (WL), al-
lowing the DBMS to e�ciently utilize the Flash memory.
The contributions of this paper are: (i) we implemented
NoFTL on real hardware based on the OpenSSD research
platform as well as on a real-time data-driven Flash emula-
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tor; the latter was validated against OpenSSD and extended
to support parallelism; (ii) we incorporated di↵erent FTLs
(DFTL, Faster); (iii) live TPC-C, -B and -H tests under
Shore-MT indicate a NoFTL performance improvement of
1.5x to 2.4x. NoFTL has been initially demonstrated in [8].
In contrast to [8] the current demonstration has the following
improvements: (a) the real time emulator has been extended
to handle parallelism (Section 3.2); (b) NoFTL has been im-
plemented on the hardware research platform - OpenSSD
(Section 3.3); (c) the database integration is deepened.

2. RELATED WORK
Numerous designs of FTLs that can be classified as Page-

Block- or Hybrid-/Log-Block- Mapping FTLs have been pro-
posed ([16], [7], [11], [12] etc.). An evaluation and compar-
ison of di↵erent FTLs is provided in [5, 6, 13]. DFTL is
introduced in [7] as a page-mapping FTL. There are mul-
tiple Flash simulation frameworks such as FlashSim [9] or
DiskSim. There is ongoing research on omitting certain on-
device FTL functionalities: [15] is not using the block I/O
interface; [4] presents a hybrid approach which can bypass
the on-device FTL. Specialized Flash Server Storage moves
the FTL from a device into the driver, such as FusionIO [1].
NoFTL completely removes the on-device FTL, enabling the
DBMS to take full control over the Flash device. An earlier
demonstration of NoFTL is provided in [8], while here we:
i) extend the emulator with parallelism; ii) port and present
NoFTL on real hardware - the OpenSSD board; and iii)
further integrate NoFTL into the DBMS.

3. THE NOFTL CONCEPT
Due to the black-box design of modern SSDs neither (i)

the information about internal Flash architecture can be uti-
lized by data placement algorithms in the DBMS; nor (ii)
the DBMS status information about stored data and I/O
(runtime & history) can be used to optimize the FTL. Fur-
thermore, the DBMS can experience significant fluctuations
in I/O latency and throughput that are state-dependent and
result from expensive FTL operations (e.g., WL and GC).
For instance, the average 4KB random write latency on a
SLC SSD is 0.450ms, while frequent FTL-specific outliers
under heavy load can reach 80ms [5]. In the same time, the
e�ciency of the FTL maintenance functionality is strongly
coupled to limited on-device computational resources (e.g.,
single ASIC controller and up to 512MB of RAM).

NoFTL is in an attempt to overcome the aforementioned
disadvantages. Under NoFTL the DBMS operates directly
on native Flash memory, without intermediate layers such
as file system, block-device layer or on-device FTL (Figure
1). The Flash maintenance (address translation, GC, WL,
etc.) is integrated into the DBMS. Such an integration is
based on the following important observation: large parts
of the FTL naturally leverage the functionality of existing
DBMS modules such as the storage manager, the free space
manager or the transaction manager (Figure 2).

The general integration strategy is the optimization of
Flash maintenance and DBMS algorithms based on the:
(i) usage of more powerful computational and memory re-
sources of the host system (e.g., address mapping); (ii) us-
age of the DBMS run-time information and knowledge about
the stored data and I/O (e.g., WL & GC); (iii) elimination
of redundant functionality along the I/O path (e.g., bu↵er

management, free space management and address mapping
in file system and FTL); (iv) optimisation of DBMS data
placement and access algorithms based on the Flash layout
(e.g., assignment of DBMS background flushers to physical
address space regions).

Noteworthy is that under NoFTL the DBMS is not con-
fronted with the intricate low-level NAND control. The Flash
SSD is still assumed to have a thin hardware management
layer (Figure 2) providing low-level NAND chip manage-
ment, such as timing and synchronisation, low-level row and
column address translations, channel and bus management.
The functionality of the controller can optionally be imple-
mented as a kernel driver (cheap but slow).
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Figure 2: General Architecture of NoFTL

The minimal set of commands that the native Flash in-
terface provides is: PAGE READ and PAGE PROGRAM
with data transfer; COPYBACK PROGRAM and BLOCK ERASE
without transfer of user data. Meaningful are also the vari-
ants of those commands to support reading or writing the se-
ries of pages (not necessary logically adjacent), which would
be further translated into appropriate optimized commands
according to the Flash specification (like READ/PROGRAM
CACHE RANDOM/SEQUENTIAL in ONFI NAND). The
protocol must also include the identification command (sim-
ilar to HDIO GETGEO for HDDs), which allows the DBMS
to receive detailed information about the architecture of the
Flash SSD (e.g., channels, LUNs, Flash type, etc.).

3.1 Host Memory Resources
The logical-to-physical address translation is the core com-

ponent of an out-of-place update strategy, and is one of the
most memory consuming subsystems within modern Flash
SSDs. Since the amount of on-device memory is insu�cient
to hold a complete mapping table at page-level granular-
ity, multiple alternatives were proposed in the recent years.
Three of them, recognized as state-of-the-art, are page-level
FTLs DFTL (demand-based FTL) [7] and LazyFTL [12], as
well as the hybrid mapping scheme FASTer [11].

DFTL and LazyFTL keep mapping information at page-
level granularity, but only a small fraction of it is cached.
They introduce computational (maintenance and look-ups
of cached mappings) and I/O overheads (page-ins and -outs
to fetch from and store mappings on Flash). Our earlier
results [8] indicate a performance slowdown of DFTL over
pure page-level mapping (where the whole mapping table is
cached) of up to 3.7x under TPC-C and -B benchmarks. In
FASTer the larger part of Flash memory is mapped at block-
level granularity (data block area), while only a small part
(log block area) uses page-level mappings. All updates and
write requests are first performed in the log block area, and
as soon as free space in that region runs out those updates
are merged with the corresponding blocks in the data block
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area. Merges result in expensive additional background I/Os
(Figure 3). For TPC-B, -C and -E the garbage collection
overhead in FASTer is almost twice as high as in NoFTL
(Figure 3). This overhead negatively influences the fore-
ground performance. Solely the use of DBMS-integrated
page-level mapping in NoFTL results in 2.4x and 2.25x im-
provement in transactional throughput (TPS) for TPC-C
and -B, respectively. The high write amplification in FASTer
significantly reduces the longevity of the Flash SSD.

IO type

Absolute Relative Absolute Relative Absolute Relative

COPYBACK 16 465 930 1.98x 17 295 713 2.15x 1 805 540 1.97x

ERASE 129 317 1.73x 135 839 1.82x 14 231 1.68x

TPC-C
SF=30

TPC-B
SF=350

TPC-E
1K Customers

Off-line trace-driven testing. Traces were recorded on in-memory 
database running the benchmarks for 60 minutes.

Figure 3: Absolute and relative I/O overhead of
garbage collection under FASTer and NoFTL.

3.2 Utilization of Flash parallelism
Many DBMS algorithms can be optimized based on the

architecture of underlying Flash SSDs. Direct control over
physical data placement allows to e�ciently utilize native
Flash parallelism. For instance, SATA2 allows for at most
32 concurrent I/O commands; whereas a commodity Flash
SSD with 8 to 10 chips is able to execute up to 160 concur-
rent I/Os (8-16 commands/chip). To make better use of the
available Flash parallelism, we have incorporated the knowl-
edge about Flash architecture into the logic of database
writer processes (db-writers). The basic idea is to remove
the contention for physical resources among db-writers. In-
stead of having multiple db-writers, where each is responsi-
ble for a subset of dirty pages from the whole address space,
we have assigned each db-writer to a certain physical re-
gion (i.e., set of NAND chips). Therefore, each db-writer
receives a distinct subset of dirty pages that belongs to a cor-
responding physical address space, and does not compete for
physical storage with db-writers assigned to other regions.
Depending on the workload and the size of the regions it
is also possible to assign several db-writers to a single re-
gion. We have implemented this optimization in Shore-MT.
We can demonstrate an improvement of throughput over the
initial implementation with the same number of background
writer processes of up to 1.5x for TPC-C and 1.43x for TPC-
B benchmarks (see Figure 4). With an increasing amount of
Flash parallelism and more db-writers (leveraging the par-
allelism), the di↵erence in the transactional throughput in-
creases. In the standard approach with a global assignment
the response time for each single db-writer increases, due to
the higher contention for Flash chips.

3.3 NoFTL Testbed
We have implemented the NoFTL concept in Shore-MT

[2], which is a recognised open-source storage engine sup-
porting ACID transactions, ARIES-type logging, Indices,
Bu↵er management. Furthermore, Shore-MT supports raw
devices and standard TPC benchmark implementations. The
NoFTL-version of the storage engine was evaluated on the
real hardware OpenSSD board, as well as on our enhanced
version of the real-time Flash emulator.

OpenSSD board. The OpenSSD project aims to pro-
vide an open hardware Flash research platform (see Figure
5). It allows to program the firmware running on the on-
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Figure 4: Tx. throughput of TPC-C/-B with global
and Flash-aware assignment of db-writers.

device controller to a certain extent, and to test di↵erent
FTL schemes and algorithms. The board contains a set of
operational FTLs, among them the popular FASTer scheme
[11]. To make OpenSSD perform as a native Flash board we
have removed the FTLs and modified the I/O protocol to
support the native Flash (ATA Pass-Through, Section 3).

Real-time Flash emulator. We have enhanced our
real-time Flash emulator [8] to support complex highly par-
allel Flash architectures. The emulator is implemented as a
device driver in the Linux kernel. The usage of low-level ker-
nel primitives guarantees high precision (⇠1µs) in simulation
of I/O latencies. There is no loss of accuracy with increasing
capacity of the emulated drive, however, the latter is limited
by the available RAM resources of the host system. The em-
ulated Flash storage provides either a block-device interface,
emulating a SSD or a character device interface, emulating
native Flash. The emulator allows to investigate parallelism,
di↵erent Flash layouts or NAND types (SLC,MLC,TLC) as
well as characteristics such as wear, which is not possible
with OpenSSD. The emulator’s behavior and characteristics
have been validated against the OpenSSD platform.

4. DEMONSTRATION
The demonstration is performed based on two platforms:

the OpenSSD hardware research platform and a real time
Flash emulator. We compare NoFTL against the conven-
tional DBMS storage, based on black-box Flash SSDs (Fig-
ure 1.a, 1.b). For the latter scenario (Figure 6.a) we choose
two state-of-the-art FTL as counterparts: (i) DFTL [7] (page-
level mapping); and (ii) FASTer [11] (hybrid mapping). All
demonstration scenarios are performed live either on real
hardware (OpenSSD board), or on the Flash emulator.

Demo Scenario 1 - Validation of Flash emulator.

In this scenario we stress the emulator with the Linux
FIO tool to showcase: (1) Its accuracy and reconfigurabil-
ity, i.e., test di↵erent internal architectures of Flash memory
on synthetic benchmarks; and (2) Investigate the DBMS
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Figure 5: OpenSSD connected to the test-bed.

utilisation of richer parallelism under NoFTL to improve
transactional throughput. We also perform the live valida-
tion of the Flash emulator against the OpenSSD hardware
by configuring the former with the properties and architec-
ture of latter and comparing the performance results of live
TPC benchmarks. For each demonstration run the audi-
ence is presented the resulting diagrams for transactional
throughput and response time as well as statistics regarding
erasures, writes and garbage collection activity.

Demo Scenario 2 - DBMS performance under NoFTL.

The general architecture of the NoFTL demonstration
testbed is depicted in Figure 6. During the demonstra-
tion the audience can select any of the TPC benchmarks
(-H, -B, -C or -E) and a demonstration platform (OpenSSD
or Flash emulator). Furthermore, the audience can config-
ure the Flash layout as well as the number of DBMS flush-
ers to experience the influence of the di↵erent strategies.
With an increasing amount of Flash parallelism and more
db-writers (leveraging the parallelism), the di↵erence in the
transactional throughput increases. Test results comprise
Shore-MT’s output, intermediate and average transactional
throughput, as well as detailed statistics of I/O operations
and GC overhead. Furthermore, we demonstrate the influ-
ence of the improved (”Flash-aware”) allocation and assign-
ment strategy of background writers in Shore-MT (Sect. 3.2).

Flash Emulator
DFTL Kernel Space

Storage Hardware

Block device I/F
Read/Write

Native Flash I/F:
(Read/Program Page,
Erase Block, Copyback, 
handle Page Metadata)

Shore-MT

SATA2 

OpenSSD 
FASTer FTL

TPC-H
TPC-B
TPC-C
TPC-E

Flash Emulator
RAW Flash

Shore-MT

SATA2
ATA Pass Through

OpenSSD 
RAW Flash

NoFTL
(address translation, 
GC, WL, BBM, etc.)

a) Traditional architecture with 
FTL-based Flash SSD

b) NoFTL architecture

Figure 6: Demonstration scenarios.

5. CONCLUSIONS
We demonstrate NoFTL - an approach that yields a signif-

icant simplification of the I/O stack; integrates Flash man-
agement in the DBMS; allows direct access to storage and
exposure of a native Flash interface. NoFTL is implemented
in Shore-MT, on top of the OpenSSD hardware research
platform and a real-time data-driven Flash emulator. We

validate live the real-time Emulator, and are able to show-
case di↵erent Flash layouts throughout the demonstration.
Under NoFTL Flash management algorithms can benefit
from the richer resources of the host system. We demon-
strate stable and predictable performance and an improve-
ment of up to 2.4x under TPC-C. The speedup results from
a reduced garbage collection overhead (2x less erases and
copybacks) due to better database integration of FTL func-
tionality. Furthermore, the low erase count under NoFTL
e↵ectively doubles the lifetime of the Flash storage. In ad-
dition, we demonstrate the utilisation of native Flash par-
allelism under NoFTL. With its Flash-aware DBMS writer
assignment strategy NoFTL achieves 1.5x higher transaction
throughput due to reduced Flash chip contention.
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