
Joins for Hybrid Warehouses: Exploiting Massive
Parallelism in Hadoop and Enterprise Data Warehouses

Yuanyuan Tian1, Tao Zou2⇤, Fatma Özcan1, Romulo Goncalves3†, Hamid Pirahesh1

1IBM Almaden Research Center, USA {ytian, fozcan, pirahesh}@us.ibm.com
2Google Inc, USA taozou@google.com

3Netherlands eScience Center, Netherlands r.goncalves@esciencecenter.nl

ABSTRACT
HDFS has become an important data repository in the enterprise
as the center for all business analytics, from SQL queries, machine
learning to reporting. At the same time, enterprise data warehouses
(EDWs) continue to support critical business analytics. This has
created the need for a new generation of special federation between
Hadoop-like big data platforms and EDWs, which we call the hy-
brid warehouse. There are many applications that require correlat-
ing data stored in HDFS with EDW data, such as the analysis that
associates click logs stored in HDFS with the sales data stored in
the database. All existing solutions reach out to HDFS and read the
data into the EDW to perform the joins, assuming that the Hadoop
side does not have the efficient SQL support.

In this paper, we show that it is actually better to do most data
processing on the HDFS side, provided that we can leverage a so-
phisticated execution engine for joins on the Hadoop side. We
identify the best hybrid warehouse architecture by studying various
algorithms to join database and HDFS tables. We utilize Bloom
filters to minimize the data movement, and exploit the massive par-
allelism in both systems to the fullest extent possible. We describe
a new zigzag join algorithm, and show that it is a robust join al-
gorithm for hybrid warehouses which performs well in almost all
cases.

1. INTRODUCTION
Through customer engagements, we observe that HDFS has be-

come the core storage system for all enterprise data, including en-
terprise application data, social media data, log data, click stream
data, and other Internet data. Enterprises are using various big
data technologies to process this data and drive actionable insights.
HDFS serves as the storage where other distributed processing frame-
works, such as MapReduce [11] and Spark [43], access and operate
on the large volumes of data.

At the same time, enterprise data warehouses (EDWs) continue
to support critical business analytics. EDWs are usually shared-
nothing parallel databases that support complex SQL processing,
updates, and transactions. As a result, they manage up-to-date data

⇤Work described in this paper was done while the author was work-
ing at IBM
†Work described in this paper was done while the author was work-
ing at IBM

©2015, Copyright is with the authors. Published in Proc. 18th Interna-
tional Conference on Extending Database Technology (EDBT), March 23-
27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0
.

and support various business analytics tools, such as reporting and
dashboards.

Many new applications have emerged, requiring the access and
correlation of data stored in HDFS and EDWs. For example, a
company running an ad-campaign may want to evaluate the effec-
tiveness of its campaign by correlating click stream data stored in
HDFS with actual sales data stored in the database. These appli-
cations together with the co-existence of HDFS and EDWs have
created the need for a new generation of special federation between
Hadoop-like big data platforms and EDWs, which we call the hy-
brid warehouse.

Many existing solutions [37, 38] to integrate HDFS and database
data use utilities to replicate the database data onto HDFS. How-
ever, it is not always desirable to empty the warehouse and use
HDFS instead, due to the many existing applications that are al-
ready tightly coupled to the warehouse. Moreover, HDFS still does
not have a good solution to update data in place, whereas ware-
houses always have up-to-date data. Other alternative solutions ei-
ther statically pre-load the HDFS data [41, 17, 18], or fetch the
HDFS data at query time into EDWs to perform joins [14, 13, 28].
They all have the implicit assumption that SQL-on-Hadoop sys-
tems do not perform joins efficiently. Although this was true for
the early SQL-on-Hadoop solutions, such as Hive [39], it is not
clear whether the same still holds for the current generation so-
lutions such as IBM Big SQL [19], Impala [20], and Presto [33].
There was a significant shift last year in the SQL-on-Hadoop so-
lution space, where these new systems moved away from MapRe-
duce to shared-nothing parallel database architectures. They run
SQL queries using their own long-running daemons executing on
every HDFS DataNode. Instead of materializing intermediate re-
sults, these systems pipeline them between computation stages. In
fact, the benefit of applying parallel database techniques, such as
pipelining and hash-based aggregation, have also been previously
demonstrated by some alternative big data platforms to MapRe-
duce, like Stratosphere [5], Asterix [6], and SCOPE [10]. More-
over, HDFS tables are usually much bigger than database tables,
so it is not always feasible to ingest HDFS data and perform joins
in the database. Another important observation is that enterprises
are investing more on big data systems like Hadoop, and less on
expensive EDW systems. As a result, there is more capacity on
the Hadoop side. Remotely reading HDFS data into the database
introduces significant overhead and burden on the EDWs because
they are fully utilized by existing applications, and hence carefully
monitored and managed.

Split query processing between the database and HDFS has been
addressed by PolyBase [13] to utilize vast Hadoop resources. HDFS
clusters usually run on cheaper commodity hardware and have much
larger capacity than databases. However, PolyBase only considers

373 10.5441/002/edbt.2015.33

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.33

pushing down limited functionality, such as selections and projec-
tions, and considers pushing down joins only when both tables are
stored in HDFS.

Federation [21, 2, 34, 40, 30] is a solution to integrate data stored
in autonomous databases, while exploiting the query processing
power of all systems involved. However, existing federation so-
lutions use a client-server model to access the remote databases
and move the data. In particular, they use JDBC/ODBC interfaces
for pushing down a maximal sub-query and retrieving its results.
Such a solution ingests the result data serially through the sin-
gle JDBC/ODBC connection, and hence is only feasible for small
amounts of data. In the hybrid warehouse case, a new solution that
connects at a lower layer is needed to exploit the massive paral-
lelism on both the HDFS side and the EDW side.

In this paper, we identify an architecture for hybrid warehouses
by 1-) building a system that provides parallel data movement by
exploiting the massive parallelism of both HDFS and EDWs to the
fullest extent possible, and 2-) studying the problem of efficiently
executing joins between HDFS and EDW data. We start by adapt-
ing well-known distributed join algorithms, and propose extensions
that work well between a parallel database and an HDFS cluster.
Note that these joins work across two heterogeneous systems and
hence have asymmetric properties that needs to be taken into ac-
count.

HDFS is optimized by large bulk I/O, and as a result record level
indexing does not provide significant performance benefits. Other
means, like column-store techniques [1, 31, 29], need to be ex-
ploited to speed up data ingestion.

Parallel databases use various techniques to optimize joins and
minimize data movement. They use broadcast joins when one of
the tables participating in the join is small enough, and the other is
very large, to save communication cost. The databases also exploit
careful physical data organization for joins. They rely on query
workloads to identify joins between large tables, and co-partition
them on the join key to avoid data communication at query time.

In the hybrid warehouse, these techniques have limited applica-
bility. Broadcast joins can only be used in limited cases, because
the data involved is usually very large. As the database and the
HDFS are two independent systems that are managed separately,
co-partitioning related tables is also not an option. As a result, we
need to adapt existing join techniques to optimize the joins between
very large tables when neither is partitioned on the join key. It is
also very important to note that no existing EDW solution in the
market today has a good solution for joining two large tables when
they are not co-partitioned.

We exploit Bloom filters to reduce the data communication costs
in joins for hybrid warehouses. A Bloom filter is a compact data
structure that allows testing whether a given value is in a set very
efficiently, with controlled false positive rate. Bloom filters have
been proposed in the distributed relational query setting [25]. But
they are not used widely, because they introduce overhead of ex-
tra computation and communication. In this paper, we show that
Bloom filters are almost always beneficial when communicating
data in the hybrid warehouse which integrated two heterogeneous
and massively parallel data platforms, as opposed to the homoge-
neous parallel databases. Furthermore, we describe a new join al-
gorithm, the zigzag join, which uses Bloom filters both ways to
ensure that only the records that will participate in the join need
to be transferred through the network. The zigzag join is most ef-
fective when the tables involved in the join do not have good local
predicates to reduce their sizes, but the join itself is selective.

In this work, we consider executing the join both in the database
and on the HDFS side. We implemented the proposed join algo-

rithms for the hybrid warehouse using a commercial shared-nothing
parallel database with the help of user-defined functions (UDFs),
and our own execution engine for joins on HDFS, called JEN. To
implement JEN, we took a prototype of the I/O layer and the sched-
uler from an existing SQL-on-Hadoop system, IBM Big SQL [19],
and extended it with our own runtime engine which is able to pipeline
operations and overlay network communication with processing
and data scanning. We observe that with such a sophisticated ex-
ecution engine on HDFS, it is actually often better to execute the
joins on the HDFS side.

The contributions of this paper are summarized as follows:

• Through detailed experiments, we show that it is often better
to execute joins on the HDFS side as the data size grows,
when there is a sophisticated execution engine on the HDFS
side. To the best of our knowledge, this is the first work that
argues for such a solution.

• We describe JEN, a sophisticated execution engine on the
HDFS side to fully exploit the various optimization strategies
employed by a shared-nothing parallel database architecture,
including multi-threading, pipelining, hash-based aggrega-
tion, etc. JEN utilizes a prototype of the I/O layer and the
scheduler from IBM Big SQL and provides parallel data move-
ment between HDFS and an EDW to exploit the massive par-
allelism on both sides.

• We revisit the join algorithms that are used in distributed
query processing, and adapt them to work in the hybrid ware-
house between two heterogeneous massively parallel data
platforms. We utilize Bloom filters, which minimize the data
movement and exploit the massive parallelism in both sys-
tems.

• We describe a new join algorithm, the zigzag join, which
uses Bloom filters on both sides, and provide a very efficient
implementation that minimizes the overhead of Bloom filter
computation and exchange. We show that the zigzag join
algorithm is a robust algorithm that performs the best for hy-
brid warehouses in almost all cases.

The rest of the paper is organized as follows: We start with
a concrete example scenario, including our assumptions, in Sec-
tion 2. The join algorithms are discussed in Section 3. We imple-
mented our algorithms using a commercial parallel database and
our own join execution engine on HDFS. In Section 4, we describe
this implementation. We provide detailed experimental results in
Section 5, discuss related work in Section 6, and conclude in Sec-
tion 7.

2. AN EXAMPLE SCENARIO
In this paper, we study the problem of joins in the hybrid ware-

house. We will use the following example scenario to illustrate the
kind of query workload we focus on. This example represents a
wide range of real application needs.

Consider a retailer, such as Walmart or Target, which sells prod-
ucts in local stores as well as online. All the transactions, either
offline or online, are managed and stored in a parallel database,
whereas users’ online click logs are captured and stored in HDFS.
The retailer wants to analyze the correlation of customers’ online
behaviors with sales data. This requires joining the transaction ta-
ble T in the parallel database with the log table L on HDFS. One
such analysis can be expressed as the following SQL query.

374

SELECT L.url_prefix, COUNT(*)
FROM T, L
WHERE T.category = ‘Canon Camera’
AND region(L.ip)= ‘East Coast’
AND T.uid=L.uid
AND T.tdate >= L.ldate AND T.tdate <= L.ldate+1
GROUP BY L.url_prefix

This query tries to find out the number of views of the urls visited
by customers with IP addresses from East Coast who bought Canon
cameras within one day of their online visits.

Now, we look at the structure of the example query. It has local
predicates on both tables, followed by an equi-join. The join is
also coupled with predicates on the joined result, as well as group-
by and aggregation. In this paper, we will describe our algorithms
using this example query.

In common setups, a parallel database is deployed on a small
number (10s to 100s) of high-end servers, whereas HDFS resides
on a large number (100s to 10,000s) of commodity machines. We
assume that the parallel database is a full-fledged shared-nothing
parallel database. It has an optimizer, indexing support and sophis-
ticated SQL engine. On the HDFS side, we assume a scan-based
processing engine without any indexing support. This is true for all
the existing SQL-on-Hadoop systems, such as MapReduce-based
Hive [39], Spark-based Shark [42], and Impala [20]. We do not
tie the join algorithm descriptions to a particular processing frame-
work, thus we generalize any scan-based distributed data processor
on HDFS as a HQP (HDFS Query Processor). For data charac-
teristics, we assume that both tables are large, but the HDFS table
is much larger, which is the case in most realistic scenarios. In
addition, since we focus on analytic workloads, we assume there
is always group-by and aggregation at the end of the query. As
a result, the final query result is relatively small. Finally, without
loss of generality, we assume that queries are issued at the paral-
lel database side and the final results are also to be returned at the
database side. Note that forwarding a query from the database to
HDFS is relatively cheap, so is passing the final results from HDFS
back to the database.

Note that in this paper we focus on the actual join algorithms for
hybrid warehouses, thus we only include a two-way join in the ex-
ample scenario. Real big data queries may involve joining multiple
tables. For these cases, we need to rely on the query optimizer in
the database to decide on the right join orders, since queries are is-
sued at the database side in our setting. However, the study of the
join orders in hybrid warehouse is beyond the scope of this paper.

3. JOIN ALGORITHMS
In this section, we describe a number of algorithms for joining a

table stored in a shared-nothing parallel database with another table
stored in HDFS. We start by adapting well-known distributed join
algorithms, and explore ways to minimize the data movement be-
tween these two systems by utilizing Bloom filters. While existing
approaches [27, 26, 25, 24, 32] were designed for homogeneous
environments, our join algorithms work across two heterogeneous
systems in the hybrid warehouse. When we design the algorithms,
we strive to leverage the processing power of both systems and
maximize parallel execution.

Before we describe the join algorithms, let’s provide a brief in-
troduction to Bloom filters first. A Bloom filter is essentially a bit
array of m bits with k hash functions defined to summarize a set of
elements. Adding an element to the Bloom filter involves applying
the k hash functions on the element and setting the correspond-
ing positions of the bit array to 1. Symmetrically, testing whether
an element belongs to the set requires simply applying the hash

DB Worker HQP

2. Send BFDB

3. Scan HDFS
table TH, apply
local predicates,
projection and
BFDB

4. Send filtered HDFS table TH’

5. Execute the join and
aggregation (shuffle/broadcast
data as needed)

1. Apply local predicates &
projection on TDB, and build
BFDB

Figure 1: Data flow of DB-side join with Bloom filter

functions and checking whether all of the corresponding bit posi-
tions are set to 1. Obviously, the testing incurs some false positives.
However, the false positive rate can be computed based on m, k and
n, where n is the number of unique elements in the set. Therefore,
m and k can be tuned for desired false positive rate. Bloom filter
is a compact and efficient data structure for us to take advantage of
the join selectivity. By building a Bloom filter on the join keys of
one table, we can use it to prune out the non-joinable records from
the other table.

3.1 DB-Side Join
Many database/HDFS hybrid systems, including Microsoft Poly-

base [13], Pivotal HAWQ [15], TeraData SQL-H [14], and Oracle
Big Data SQL [28], fetch the HDFS table and execute the join in
the database. We first explore this approach, which we call DB-side
join. In the plain version, the HDFS side applies local predicates
and projection, and sends the filtered HDFS table in parallel to the
database. The performance of this join method is dependent on the
amount of data that needs to be transferred from HDFS. Two fac-
tors determine this size: the selectivity of the local predicates over
the HDFS table and the size of the projected columns.

Note that the HDFS table is usually much larger than the database
table. Even if the local predicates are highly selective, the filtered
HDFS table can still be quite large. In order to further reduce the
amount of data transferred from HDFS to the parallel database, we
introduce a Bloom filter on the join key of the database table after
applying local predicates, and send the Bloom filter to the HDFS
side. This technique enables the use of the join selectivity to filter
out HDFS records that cannot be joined. This DB-side join algo-
rithm is illustrated in Figure 1.

In this DB-side join algorithm, each parallel database node (DB
worker in Figure 1) first computes the Bloom filter for their lo-
cal partitions and then aggregate them into a global Bloom filter
(BFDB) by simply applying bitwise OR. We take advantage of the
query optimizer of the parallel database. After the filtered HDFS
data is brought into the database, it is joined with the database data
using the join algorithm (broadcast or repartition) chosen by the
query optimizer. Note that in the DB-side join, the HDFS data may
need to be shuffled again at the database side before the join (e.g.
if repartition join is chosen by the optimizer), because we do not
have access to the partitioning hash function of the database.

In the above algorithm, there are different ways to send the database
Bloom filter to HDFS and transmit the HDFS data to the database.
Which approach works best depends on the network topology and
the bandwidth. We defer the discussion of detailed implementation
choices to Section 4.

3.2 HDFS-Side Broadcast Join
The second algorithm is called HDFS-side broadcast join, or

simply broadcast join. This is the first algorithm that executes the

375

DB Worker HQP

2. Broadcast TDB’ to
all HQP nodes

3. Scan HDFS table TH,
apply local predicates,
projection, compute the join
and partial aggregation

5. Send final result to a
single DB node

1. Apply local predicates &
projection on TDB

4. Compute final
aggregation

Figure 2: Data flow of HDFS-side broadcast join

DB Worker HQP

2. Send BFDB and send
TDB’ to HPQ nodes using
agreed hash function

3. Scan HDFS table TH,
apply local predicates,
projection and BFDB,
shuffle TH’ using the
same hash function

6. Send final result to a
single DB node

4. Compute the join
and partial aggregation

1. Apply local predicates &
projection on TDB, and build
BFDB

5. Compute final
aggregation

Figure 3: Data flow of HDFS-side repartition join with Bloom
filter

join on the HDFS side. The rational behind this algorithm is that if
the predicates on the database table are highly selective, the filtered
database data is small enough to be sent to every HQP node, so that
only local joins are needed without any shuffling of the HDFS data.
When the join is executed on the HDFS side, it is logical to push-
down the grouping and aggregation to the HDFS side as well. This
way, only a small amount of summary data needs to be transferred
back to the database to be returned to the user. The HDFS-side
broadcast join algorithm is illustrated in Figure 2.

In the first step, each database node applies local predicates and
projection over the database table. Each database node broadcasts
its filtered partition to every HQP node (Step 2). Each HQP node
performs a local join in Step 3. Group-by and partial aggregation
are also carried out on the local data in this step. The final aggre-
gation is computed in Step 4 and sent to the database in Step 5.

3.3 HDFS-Side Repartition Join
The second HDFS-side algorithm we consider is the HDFS-side

repartition join, or simply repartition join. If the local predicates
over the database table are not highly selective, then broadcasting
the filtered data to all HQP nodes will not be a good option. In this
case, we need a robust join algorithm. We expect the HDFS table
to be much larger than the database table in practice, and hence it
makes more sense to transfer the smaller database table and execute
the final join at the HDFS side. Just as in the DB-side join, we can
also improve this basic version of repartition join by introducing a
Bloom filter. Figure 3 demonstrates this improved algorithm.

In Step 1, all database nodes apply local predicates over the
database table, and project out the required columns. All database
nodes also compute their local Bloom filters which are then aggre-
gated into a global Bloom filter and sent to the HQP nodes. In this
algorithm, the HDFS side and the database agree on the hash func-
tion to use when shuffling the data. In Step 2, all database nodes use
this agreed hash function and send their data to the identified HQP
nodes. This means that once the database data reaches the HDFS

side, it doesn’t need to be re-shuffled among the HQP nodes. In
Step 3 of the HDFS-side repartition join, all HQP nodes apply the
local predicates and projection over the HDFS table as well as the
Bloom filter sent by the database. The Bloom filter further filters
out the HDFS data. The HQP nodes use the same hash function
to shuffle the filtered HDFS table. Then, they perform the join and
partial aggregation (step 4). The final aggregation is executed on
the HDFS side in Step 5 and sent to the database in Step 6.

3.4 HDFS-Side Zigzag Join
When local predicates on neither the HDFS table nor the database

table are selective, we need to fully exploit the join selectivity to
perform the join efficiently. In some sense, a selective join can
be used as if it were extended local predicates on both tables. To
illustrate this point, let’s first introduce the concepts of join-key se-
lectivity and join-key predicate.

Let T 0
DB be the table after local predicates and projection on the

database table TDB , and T 0
H be the table after local predicates and

projection on the HDFS table TH . We define JK(T 0
DB) as the set

of join keys in T 0
DB , and JK(T 0

H) as the set of join keys in T 0
H . We

know that only the join keys in JK(T 0
DB) \ JK(T 0

H) will appear
in the final join result. So, only JK(T 0

DB)\JK(T 0
H)

JK(T 0
H

) fraction of the
unique join keys in T 0

H will participate in the join. We call this frac-
tion the join-key selectivity on T 0

H , denoted as ST 0
H

. Likewise, the

join-key selectivity on T 0
DB is ST 0

DB
=

JK(T 0
DB)\JK(T 0

H)

JK(T 0
DB

) . Lever-
aging the join-key selectivities through Bloom filters is essentially
like applying extended local predicates on the join key columns of
both tables. We call them join-key predicates.

Through the use of a 1-way Bloom filter, the DB-side join and the
repartition join described in previous sections are only able to lever-
age the HDFS-side join-key predicate to reduce either the HDFS
data transferred to the database or the HDFS data shuffled among
the HQP workers. The DB-side join-key predicate is not utilized
at all. Below, we introduce a new algorithm, zigzag join, to fully
utilize the join-key predicates on both sides in reducing data move-
ment, through the use of 2-way Bloom filters. Again, we expect the
HDFS table to be much larger than the database table in practice,
hence the final join in this algorithm is executed on the HDFS side,
and both sides agree on the hash function to send data to the correct
HQP nodes for the final join.

The zigzag join algorithm is described in Figure 4. In Step 1, all
database nodes apply local predicates and projection, and compute
their local Bloom filters. The database then computes the global
Bloom filter BFDB and sends it to all HQP nodes in Step 2. Like in
the repartition join with Bloom filter, this Bloom filter helps reduce
the amount of HDFS data that needs to be shuffled.

In Step 3, all HQP nodes apply their local predicates, projection
and the database Bloom filter BFDB over the HDFS table, and
compute a local Bloom filter for the HDFS table. The local Bloom
filters are aggregated into a global one, BFH , which is sent to all
database nodes. At the same time, the HQP nodes shuffle the fil-
tered HDFS table based on the agreed hash function. In Step 5, the
database nodes receive the HDFS Bloom filter BFH and apply it to
the database table to further reduce the number of database records
that need to be sent. The application of Bloom filters on both sides
ensure that only the data that will participate in the join (subject to
false positive of the Bloom filter) needs to be transferred.

Note that in Step 5 the database data need to be accessed again.
We rely on the advanced database optimizer to choose the best strat-
egy: either to materialize the intermediate table TDB0 after local
predicates and projection are applied, or to utilize indexes to access
the original table TDB . It is also important to note that while the

376

DB Worker HQP

2. Send BFDB

3a. Scan HDFS table
TH, apply local
predicates, projection
and BFDB

3b. Compute BFH

3c. Use an agreed hash
function to shuffle TH’

4. Send BFH

5. Apply BFH to TDB’

6. Send TDB’’ to HQP nodes
using agreed hash function

1. Apply local predicates &
projection on TDB, and build
BFDB

7. Compute the join
and partial aggregation

9. Send final result to a
single DB node

8. Compute final
aggregation

Figure 4: Data flow of zigzag join

HDFS bloom filter is applied to the database data, the HQP nodes
are shuffling the HDFS data in parallel, hence overlapping many
steps of the execution.

In Step 6, the database nodes send the further filtered database
data to the HQP nodes using the agreed hash function. The HQP
nodes perform the join and partial aggregation (Step 7), collabora-
tively compute the global aggregation (Step 8), and finally send the
result to the database (Step 9).

Note that zigzag join is the only join algorithm that can fully
utilize the join-key predicates as well as the local predicates on both
sides. The HDFS data shuffled across HQP nodes are filtered by the
local predicates on TH , the local predicates on TDB (as BFDB is
built on TDB after local predicates), and the join-key predicate on
T 0
H . Similarly, the database records transferred to the HDFS side

are filtered by the local predicates on TDB , the local predicates on
TH (as BFH is built on TH after local predicates), and the join-key
predicate on T 0

DB .
Although Bloom filters and semi-join techniques are known in

the literature, they are not widely used in practice due to the over-
head of computing Bloom filters and multiple data scans. However,
the asymmetry of slow HDFS table scan and fast database table ac-
cess makes these techniques more desirable in a hybrid warehouse.
Note that a variant version of the zigzag join algorithm which exe-
cutes the final join on the database side will not perform well, be-
cause scanning the HDFS table twice, without the help of indexes,
is expected to introduce significant overhead.

4. IMPLEMENTATION
In this section, we provide an overview of our implementation

of the join algorithms for the hybrid warehouse and highlight some
important details.

4.1 Overview
In our implementation, we used IBM DB2 Database Partition-

ing Feature (DPF), which is a shared-nothing distributed version of
DB2, as our EDW. We implemented all the above join algorithms
using C user-defined functions (UDFs) in DB2 DPF and our own
C++ MPI-based join execution engine on HDFS, called JEN. JEN
is our specialized implementation of HQP used in the algorithm de-
scriptions in Section 3. We used a propotype of the I/O layer and
the scheduler from an early version of IBM Big SQL 3.0 [19], and
build JEN on top of them. We also utilized Apache HCatalog [16]
to store the meta data of the HDFS tables.

JEN consists of a single coordinator and a number of workers,
with each worker running on an HDFS DataNode. JEN workers are
responsible for reading parts of HDFS files, executing local query
plans, and communicating with other workers, the coordinator, and
DB2 DPF workers. Each JEN worker is multi-threaded, capable of

exploiting all the cores on a machine. The communication between
two JEN workers or with the coordinator is done through TCP/IP
sockets. The JEN coordinator has multiple roles. First, it is respon-
sible for managing the JEN workers and their state so that workers
know which other workers are up and running in the system. Sec-
ond, it serves as the central contact for the JEN workers to learn the
IPs of the DB2 workers and vice versa, so that they can establish
communication channels for data transfers. Third, it is also respon-
sible for retrieving the meta data (HDFS path, input format, etc) for
HDFS tables from HCatalog. Once the coordinator knows the path
of the HDFS table, it contacts the HDFS NameNode to get the lo-
cations of each HDFS block, and evenly assigns the HDFS blocks
to the JEN workers to read, respecting data locality.

At the DB2 side, we utilized the existing database query engine
as much as possible. For the functionalities not provided, such as
computing and applying Bloom filters, and different ways of trans-
ferring data to and from JEN workers, we implemented them us-
ing unfenced C UDFs, which provide performance close to built-in
functions as they run in the same process as the DB2 engine. The
communication between a DB2 DPF worker and a JEN worker is
also through TCP/IP sockets. Note that to exploit the multi-cores
on a machine we set up multiple DB2 workers on each machine of
a DB2 DPF cluster, instead of one DB2 worker enabled with multi-
core parallelism. This is mainly to simplify our C UDF implemen-
tations, as otherwise we have to deal with intra-process communi-
cations inside a UDF.

Each of the join algorithms is invoked by issuing a single query
to DB2. With the help of UDFs, this single query executes the
entire join algorithm: initiating the communication between the
database and the HDFS side, instructing the two sides to work col-
laboratively, and finally returning the results back to the user.

4.1.1 The DB-Side Join Example
Let’s use an example to illustrate how the database side and the

HDFS side collaboratively execute a join algorithm. If we want to
execute the example query in Section 2 using the DB-side join with
Bloom filter, we submit the following SQL query to DB2.

with LocalFilter(lf) as (
select get_filter(max(cal_filter(uid))) from T
where T.category=‘Canon Camera’
group by dbpartitionnum(tid)
),
GlobalFilter(gf) as (
select * from
table(select combine_filter(lf) from LocalFilter)
where gf is not null
),
Clicks(uid, url_prefix, ldate) as (
select uid, url_prefix, ldate
from GlobalFilter,
table(read_hdfs(‘L’, ‘region(ip)= \‘East Coast\’’,
‘uid, url_prefix, ldate’, GlobalFilter.gf, ‘uid’))
)
select url_prefix, count(*) from Clicks, T
where T.category=‘Canon Camera’ and Clicks.uid=T.uid
and days(T.tdate)-days(Clicks.ldate)>=0
and days(T.tdate)-days(Clicks.ldate)<=1
group by url_prefix

In the above SQL query, we assume that the database table T is
distributed across multiple DB2 workers on the tid field. The first
sub query (LocalFilter) uses two scalar UDFs cal_filter
and get_filter together to compute a Bloom filter on the local
partition of each DB2 worker We enabled the two UDFs to execute
in parallel, and the statement group by dbpartitionnum(tid)
further makes sure that each DB2 worker computes the Bloom filter

377

DB2
Agent 2

Worker 1

Worker 2

Worker 3

DB2
Agent 1

Coordinator

Request,
HDFS table

Workers to
connect

DB2 agent to connect,
HDFS blocks,
Input format, Schema

Predicates, Needed columns,
BF, Join-key column

Needed HDFS data

Figure 5: Communication in the read_hdfs UDF of the DB-
side join with Bloom filter

on its local data in parallel. The second sub query (GlobalFilter)
uses another scalar UDF combine_filter to combine the local
Bloom filters into a single global Bloom filter (there is only one
record which is the global Bloom filter returned for GlobalFilter).
By declaring combine_filter "disallow parallel", we make
sure it is executed once on one of the DB2 workers (all local Bloom
filters are sent to a single DB2 worker). In the third sub query
(Clicks), a table UDF read_hdfs is used to pass the following
information to the HDFS side: the name of the HDFS table, the
local predicates on the HDFS table, the projected columns needed
to be returned, the global database Bloom filter, and the join-key
column that the Bloom filter needs to be applied. In the same UDF,
the JEN workers subsequently read the HDFS table and send the
required data after applying predicates, projection and the Bloom
filter back to the DB2 workers. The read_hdfs UDF is executed
on each DB2 worker in parallel (the global Bloom filter is broad-
cast to all DB2 workers) and carries out the parallel data transfer
from HDFS to DB2. After that, the join together with the group-by
and aggregation is executed at the DB2 side. We pass a hint of the
cardinality information to the read_hdfs UDF, so that the DB2
optimizer can choose the right plan for the join. The final result is
returned to the user at the database side.

Now let’s look into the details of the read_hdfs UDF. Since
there is only one record in GlobalFilter, this UDF is called
once per DB2 worker. When it is called on each DB2 worker, it
first contacts the JEN coordinator to request for the connection in-
formation to the JEN workers. In return, the coordinator tells each
DB2 worker which JEN worker(s) to connect to, and notifies the
corresponding JEN workers to prepare for the connections from
the DB2 workers. This process is shown in Figure 5. Without the
loss of generality, let’s assume that there are m DB2 workers and
n JEN workers, and that m n. For the DB-side join, the JEN
coordinator evenly divides the n workers into m groups. Each DB2
worker establishes connections to all the workers in one group, as
illustrated in Figure 5. After all the connections are established,
each DB2 worker multi-casts the predicates on the HDFS table, the
required columns from the HDFS table, the database Bloom filter
and the join-key column to the corresponding group of JEN work-
ers. At the same time, DB2 workers tell the JEN coordinator which
HDFS table to read. The coordinator contacts the HCatalog to re-
trieve the paths of the corresponding HDFS files and the input for-
mat, and inquires the HDFS NameNode for the storage locations of
the HDFS blocks. Then, the coordinator assigns the HDFS blocks
and sends the assignment as well as the input format to the workers.
After receiving all the necessary information, each JEN worker is

t1
t1

t1

t1
t2

t3

DB-side join broadcast join repartition & zigzag join

Figure 6: Data transfer patterns between DB2 workers and
JEN workers in the join algorithms

ready to scan its share of the HDFS data. As it scans the data, it
directly applies the local predicates and the Bloom filter from the
database side, and sends the records with required columns back to
its corresponding DB2 worker.

4.2 Locality-Aware Data Ingestion from HDFS
As our join execution engine on HDFS is scan-based, efficient

data ingestion from HDFS is crucial for performance. We pur-
posely deploy the JEN workers on all HDFS DataNodes so that
we can leverage data locality when reading. In fact, when the JEN
coordinator assigns the HDFS blocks to workers, it carefully con-
siders the locations of each HDFS block to create balanced assign-
ments and maximize the locality of data in a best-effort manner.
Using this locality-aware data assignment, each JEN worker mostly
reads data from local disks. We also enabled short-circuit reads for
HDFS DataNodes to improve the local read speed. In addition,
our data ingestion component uses multiple threads when multiple
disks are used for each DataNode to further boost the data ingestion
throughput.

4.3 Data Transfer Patterns
In this subsection, we discuss the data transfer patterns of dif-

ferent join algorithms. There are three types of data transfers that
happen in all the join algorithms: among DB2 workers, among JEN
workers, and between DB2 workers and JEN workers. For the data
transfers among DB2 workers, we simply rely on DB2 to choose
and execute the right transfer mechanisms. Among the JEN work-
ers, there are three places that data transfers are needed: (1) shuf-
fle the HDFS data for the repartition-based join in the repartition
join (with/without Bloom filter) and the zigzag join, (2) aggregate
the global HDFS Bloom filter for the zigzag join, and (3) compute
the final aggregation result from the partial results on JEN workers
in the broadcast join, the repartition join and the zigzag join. For
(1), each worker simply maintains TCP/IP connections to all other
workers and shuffles data through these connections. For (2) and
(3), each worker sends the local results (either local Bloom filter
or local aggregates) to a single designated worker chosen by the
coordinator to finish the final aggregation.

The more interesting data transfers happen between DB2 work-
ers and JEN workers. Again, there are three places that the data
transfer is needed: shipping the actual data (HDFS or database),
sending the Bloom filters, and transmitting the final aggregated re-
sults to the database for all the HDFS-side joins. Bloom filters and
final aggregated results are much smaller than the actual data, how
to transfer them has little impact on the overall performance. For
the database Bloom filter sent to HDFS, we multi-cast the database
Bloom filters to HDFS following the mechanism shown in Figure 5.
For the HDFS Bloom filter sent to the database, we broadcast the
HDFS Bloom filter from the designated JEN worker to all the DB2
workers. The final results on HDFS is simply transmitted from the
designated JEN worker to a designated DB2 worker. In contrast to
the above, we put more thoughts on how to ship the actual data be-
tween DB2 and HDFS. Figure 6 demonstrates the different patterns
for transferring the actual data in the different join algorithms.

378

Read
Threads

Process
Thread

Send Buffers

Send Threads

Receive
Threads

Hash Table

Figure 7: Interleaving of scanning, processing and shuffling of
HDFS data in zigzag join

DB-side join with/without Bloom filter. For the two DB-side
joins, we randomly partition the set of JEN workers into m roughly
even groups, where m is the number of DB2 workers, then let each
DB2 worker bring in the part of HDFS data in parallel from the
corresponding group of JEN workers. DB2 can choose whatever
algorithms for the final join that it sees fit based on data statis-
tics. For example, when the database data is much smaller than
HDFS data, the optimizer chooses to broadcast the database table
for the join. When the HDFS data is much smaller than the database
data, broadcasting the HDFS data is used. In the other cases, a
repartition-based join algorithm is chosen. This means that when
the HDFS data is transferred to the database side, it may need to be
shuffled again among the DB2 workers. To avoid this second data
transfer, we would have to expose the partitioning scheme of DB2
to JEN and teach the DB2 optimizer that the data received from
JEN workers has already been partitioned in the desired way. Our
implementation does not modify the DB2 engine, so we stick with
this simpler and non-invasive data transfer scheme for the DB-side
joins.

Broadcast join. There are multiple ways to broadcast the database
data to JEN workers. One way is to let each DB2 worker connect
to all the JEN workers and deliver its data to every worker. An-
other way is to have each DB2 worker only transfer its data to one
JEN worker, which further passes on the data to all other work-
ers. The second approach puts less stress on the inter-connection
between DB2 and HDFS, but introduces a second round of data
transfer among the JEN workers. We found empirically that broad-
cast join only works better than other algorithms when the database
table after local predicates and projection is very small. For that
case, even the first transfer pattern does not put much strain on the
inter-connection between DB2 and HDFS. Furthermore, the sec-
ond approach actually introduces extra latency because of the extra
round of data transfer. For the above reasons, we use the first data
transfer scheme in our implementation of the broadcast join.

Repartition join with/without Bloom filter and zigzag join.
For these three join algorithms, the final join happens at the HDFS
side. We expose the hash function for the final repartition-based
join in JEN (DB2 workers can get this information from the JEN
coordinator). When a database record is sent to the HDFS side, the
DB2 worker uses the hash function to identify the JEN worker to
send to directly.

4.4 Pipelining and Multi-Threading in JEN
In the implementation of JEN, we try to pipeline operations and

parallelize computation as much as possible. Let’s take the sophis-
ticated zigzag join as an example.

At the beginning, every JEN worker waits to receive the global
Bloom filter from DB2, which is a blocking operation, since all the
remaining operations depend on this Bloom filter. After the Bloom

filter is obtained, each worker starts to read its portion of the HDFS
table (mostly from local disks) immediately. The data ingestion
component is able to dedicate one read thread per disk when mul-
tiple disks are used for an HDFS DataNode. In addition, a separate
process thread is used to parse the raw data into records based on
the input format and schema of the HDFS table. Then it applies the
local predicates, projection and the database Bloom filter on each
record. For each projected record that passes all the conditions,
this thread uses it to populate the HDFS-side Bloom filter, and ap-
plies the shuffling hash function on the join key to figure out which
JEN worker this record needs to be sent to for the repartition-based
join. Then, the record is put in a send buffer ready to be sent. All
the above operations on a record are pipelined inside the process
thread. At the same time, a pool of send threads poll the send-
ing buffers to carry out the data transfers. Another pool of receive
threads simultaneously receive records from other workers. And
for each record received in a receive thread, it uses the record to
build the hash table for the join. The multi-threading in this stage
of the zigzag join is illustrated in Figure 7. As can be seen, scan-
ning, processing and shuffling (sending and receiving) of HDFS
data are carried out totally in parallel. In fact, the repartition join
(with/without Bloom filter) also shares the similar interleaving of
scanning, processing and shuffling of HDFS data. Note that reading
from HDFS and shuffling data through networks are expensive op-
erations, although we only have one process thread which applies
the local predicates, Bloom filter and the projection, it is never the
bottleneck.

As soon as the reading from HDFS finishes (read threads are
done), a local Bloom filter is built on each worker. The work-
ers send local Bloom filters to a designated worker to compute the
global Bloom filter and pass it on to the DB2 workers. After that,
every worker waits to receive and buffer the data from DB2 in the
background. Once the local hash table is built (the send and receive
threads in Figure 7 are all done), the received database records are
used to probe the hash table, produce join results, and subsequently
apply a hash-based group-by and aggregation immediately. Here
again, all the operations on a database record are pipelined. When
all the local aggregates are computed, each worker sends its partial
result to a designated worker, which computes the final aggregate
and sends to a single DB2 worker to return to the user.

Note that in our implementation of the zigzag join, we choose to
build the hash table from the filtered HDFS data and use the trans-
ferred database data to prob the hash table for the final join, al-
though the database data are expected to be smaller in most cases.
This is because the filtered HDFS data is already being received
during the scan of the HDFS table due to multi-threading. Empir-
ically, we find that the receiving of the HDFS data is usually done
soon after the scan is finished. On the other hand, the database
data will not start to arrive until the HDFS table scan is done, as
the HDFS side bloom filter is fully constructed only after all HDFS
data are processed. Therefore, it makes more sense to start building
the hash table on the filtered HDFS data while waiting for the later
arrival of the database data. The current version of JEN requires
that all data fit in memory for the local hash-based join on each
worker. In the future, we plan to support spilling to disk to over
come this limitation.

5. EXPERIMENTAL EVALUATION
Experimental Setup. For the HDFS cluster, we used 31 IBM

System x iDataPlex dx340 servers. Each consisted of two quad-
core Intel Xeon E5540 64-bit 2.8GHz processors (8 cores in total),
32GB RAM, 5x DATA disks and interconnected using 1Gbit Ether-
net. Each server ran Ubuntu Linux (kernel version 2.6.32-24) and

379

Java 1.6. One server was dedicated as the NameNode, whereas the
other 30 were used as DataNodes. We reserved 1 disk for the OS,
and the remaining 4 for HDFS on each DataNode. HDFS replica-
tion factor is set to 2. A JEN worker was run on each DataNode and
the JEN coordinator was run on the Namenode. For DB2 DPF, we
used 5 servers. Each had 2x Intel Xeon CPUs @ 2.20GHz, with 6x
physical cores each (12 physical cores in total), 12x SATA disks, 1x
10 Gbit Ethernet card, and a total of 96GB RAM. Each node runs
64-bit Ubuntu Linux 12.04, with a Linux Kernel version 3.2.0-23.
We ran 6 database workers on each server, resulting in a total of 30
DB2 workers. 11 out of the 12 disks on each server were used for
DB2 data storage. Finally, the two clusters were connected by a 20
Gbit switch.

Dataset. We generated synthetic datasets in the context of the
example query scenario described in Section 2. In particular, we
generated a transaction table T of 97GB with 1.6 billion records
stored in DB2 DPF and a log table L on HDFS with about 15 bil-
lion records. The log table is about 1TB when stored in text format.
We also stored the log table in the Parquet columnar format [31]
with Snappy compression [36], to more efficiently ingest data from
HDFS. The I/O layer of our JEN workers is able to push down pro-
jections when reading from this columnar format. The 1TB text log
data is reduced to about 421GB in Parquet format. By default, our
experiments were run on the Parquet formatted data, but in Sec-
tion 5.4, we will compare Parquet format against text format to
study their effect on performance. The schemas of the transaction
table and the log table are listed below.

T(uniqKey bigint, joinKey int, corPred int, indPred
int, predAfterJoin date, dummy1 varchar(50), dummy2
int, dummy3 time)

L(joinKey int, corPred int, indPred int, predAfterJoin
date, groupByExtractCol varchar(46), dummy char(8))

The transaction table T is distributed on a unique key, called
uniqKey, across the DB2 workers. The two tables are joined on
a 4-byte int field joinKey. In both tables, there is one int column
correlated with the join key called corPred, and another int column
independent of the join key called indPred. They are used for local
predicates. The date fields, named predAfterJoin, on the two tables
are used for the predicate after the join. The varchar column group-
ByExtractCol in L is used for group-by. The remaining columns
in each table are just dummy columns. Values of all fields in the
two tables are uniformly distributed. The query that we ran in our
experiments can be expressed in SQL as follows.

select extract_group(L.groupByExtractCol), count(*)
from T, L
where T.corPred<=a and T.indPred<=b
and L.corPred<=c and L.indPred<=d
and T.joinKey=L.joinKey
and days(T.predAfterJoin)-days(L.predAfterJoin)>=0
and days(T.predAfterJoin)-days(L.predAfterJoin)<=1
group by extract_group(L.groupByExtractCol)

In the above query, the local predicates on T and L are on the
combination of the corPred and the indPred columns, so that we
can change the join selectivities given the same selectivities of the
combined local predicates. In particular, by modifying constants a
and c, we can change the number of join keys participating in the
final join from each table; but we can also modify the constants b
and d accordingly so that the selectivity of the combined predicates
stay intact for each table. We apply a UDF (extract_group) on the
varchar column groupByExtractCol to extract an int column as the
group-by column for the final aggregate count(*). To fully exploit

HDFS tuples shuffled DB tuples sent
repartition 5,854 million 165 million

repartition(BF) 591 million 165 million
zigzag 591 million 30 million

Table 1: Zigzag join vs repartition joins (�T = 0.1, �L = 0.4,
SL0 = 0.1, ST 0 = 0.2): # tuples shuffled and sent

the SQL support in DB2, we build one index on (corPred, indPred)
and another index on (corPred, indPred, joinKey) of table T. The
second index enables calculations of Bloom filters on T using an
index-only access plan.

There are 16 million unique join keys in our dataset, so we create
Bloom filters of 128 million bits (16MB) using 2 hash functions,
which provides roughly 5% false positive rate. Note that exploring
the different combinations of Bloom filter size and number of hash
functions have been well studied before [9] and is beyond the scope
of this paper. Our particular choice of the parameter values gave us
good performance results in our experiments.

Our experiments were the only workloads that ran on the DPF
cluster and the HDFS cluster. But, we purposely allocated less
resources to the DPF cluster to mimic the case that the database
is more heavily utilized. For all the experiments, we reported the
warm-run performance numbers (we ran each experiments multiple
times and excluded the first run when taking average).

In all the figures shown below, we denote the database table T
after local predicates and projection as T’ (predicate selectivity de-
noted as �T), and the HDFS table L after local predicates and pro-
jection as L’ (predicate selectivity denoted as �L). We further rep-
resent the join-key selectivity on T’ as ST 0 and the join-key selec-
tivity on L’ as SL0 .

 0

 100

 200

 300

 400

 500

 600

 700

0.1 0.2 0.4

σL

ST’=0.05 ST’=0.1 ST’=0.2

repartition
repartition(BF)

zigzag

(a) �T = 0.1, SL0 = 0.1

 0

 100

 200

 300

 400

 500

 600

 700

0.1 0.2 0.4

σL

ST’=0.05 ST’=0.1 ST’=0.2

repartition
repartition(BF)

zigzag

(b) �T = 0.2, SL0 = 0.2

Figure 8: Zigzag join vs repartition joins: execution time (sec)

5.1 HDFS-Side Joins
We first study the HDFS-side join algorithms. We start with

demonstrating the superiority of our zigzag join to the other reparation-
based joins and then investigate when to use the broadcast join ver-
sus the repartition-based joins.

5.1.1 Zigzag Join vs Repartition Joins
We now compare the zigzag join to the repartition joins with and

without Bloom filter. All three repartition-based join algorithms
are best used when local predicate selectivities on both database
and HDFS tables are low.

Figure 8 compares the execution times of the three algorithms
with varying predicate and join-key selectivities on the Parquet for-

380

matted log table. It is evident that the zigzag join is the most ef-
ficient among the all repartition-based joins. It is up to 2.1x faster
than the repartition join without Bloom filter and up to 1.8x faster
than the repartition join with Bloom filter. When we zoom in the
last three bars in Figure 8(a), Table 1 details the number of HDFS
tuples shuffled across the JEN workers as well as the number of
database tuples sent to the HDFS side for the three algorithms. The
zigzag join is able to cut down the shuffled HDFS data by roughly
10x (corresponding to SL0 = 0.1) and the transferred database
data by around 5x (corresponding to ST 0 = 0.2). It is the only
algorithm that can fully utilize the join-key predicates as well as
the local predicates on both sides. In Figure 9, we fix the predicate
selectivities �T = 0.1 and �L = 0.4 to explore the effect of dif-
ferent join-key selectivities SL0 and ST 0 on the three algorithms.
As expected, with the same size of T’ and L’, the performance of
zigzag join improves with when the join-key selectivity SL0 or ST 0

decreases.

 0

 100

 200

 300

 400

 500

 600

 700

0.8 0.4 0.1

SL’

repartition
repartition(BF)

zigzag

(a) ST 0 = 0.5

 0

 100

 200

 300

 400

 500

 600

 700

0.5 0.35 0.2

ST’

repartition
repartition(BF)

zigzag

(b) SL0 = 0.4

Figure 9: Zigzag join (�T = 0.1, �L = 0.4) with different SL0

and ST 0 values: execution time (sec)

5.1.2 Broadcast Join vs Repartition Join
Besides the three repartition-based joins studied above, broad-

cast join is another HDFS-side join. To find out when this algo-
rithm works best, we compare broadcast join and the repartition
join without Bloom filter in Figure 10. We do not include the repar-
tition join with Bloom filter or the zigzag join in this experiment, as
even the basic repartition join is already comparable or better than
broadcast join in most cases. The tradeoff between the broadcast
join and the repartition join is basically broadcasting T’ through
the interconnection between the two clusters (the data transfered is
30⇥T’ since we have 30 HDFS nodes) vs sending T’ once through
the interconnection and shuffling L’ within the HDFS cluster. Due
to the multi-threaded implementation described in Section 4.4, the
shuffling of L’ is interleaved with the reading of L in JEN, thus this
shuffling overhead is somewhat masked by the reading time. As a
result, broadcast join performs better only when T’ is significantly
smaller than L’. In our setting, broadcast join is only preferable
when predicate on T is highly selective, e.g. �T 0.001 (T’
25MB). In comparison, repartition-based joins are the more stable
algorithms, and the zigzag join is the best HDFS-side algorithm in
almost all cases.

5.2 DB-Side Joins
We now compare the DB-side joins with and without Bloom fil-

ter to study the effect of Bloom filter. As shown in Figure 11,
Bloom filter is effective in most cases. For fixed local predicates
on T (�T) and join-key selectivity on L’ (SL0), the benefit grows

 0

 100

 200

 300

 400

 500

 600

 700

0.001 0.01 0.1 0.2

σL

broadcast
repartition

(a) �T = 0.001

 0

 100

 200

 300

 400

 500

 600

 700

0.001 0.01 0.1 0.2

σL

broadcast
repartition

(b) �T = 0.01

Figure 10: Broadcast join vs repartition join: execution time
(sec)

significantly as the size of L’ increases. Especially for selective
predicate on T, e.g. �T = 0.05, the impact of the Bloom filter is
more pronounced. However, when the local predicates on L are
very selective (�L is very small), e.g. �L 0.001, the size of L’
is already very small (e.g. less than 1GB when �L = 0.001), the
overhead of computing, transferring and applying the Bloom filter
can cancel out or even outweigh its benefit.

 0

 100

 200

 300

 400

 500

 600

 700

0.001 0.01 0.1 0.2

σL

db
db(BF)

(a) �T = 0.05, SL0 = 0.05

 0

 100

 200

 300

 400

 500

 600

 700

0.001 0.01 0.1 0.2

σL

db
db(BF)

(b) �T = 0.1, SL0 = 0.1

Figure 11: DB-side joins: execution time (sec)

5.3 DB-Side Joins vs HDFS-Side Joins
Where to perform the final join, on the database side or the HDFS

side, is a very important question that we want to address in this pa-
per. Most existing solutions [13, 15, 14, 28] choose to always fetch
the HDFS data and execute the join in the database, based on the
assumption that SQL-on-Hadoop systems are slower in performing
joins. Now, with the better designed join algorithms in this paper
and the more sophisticated execution engine in JEN, we want to
re-evaluate whether this is the right choice any more.

We start with the join algorithms without the use of Bloom filters,
since the basic DB-side join is used in the existing database/HDFS
hybrid systems, and the broadcast join and the basic repartition join
are supported in most existing SQL-on-Hadoop systems. Figure 12
compares the DB-side join against the best of the HDFS-side joins
(repartition join is the best for all cases in the figure). As shown in
this figure, DB-side join performs better only when the predicate
selectivity on the HDFS table is very selective (�L 0.01). For
lower selectivities, probably the common case, the repartition join
shows very robust performance while the DB-side join very quickly
deteriorates.

381

Now, let’s also consider all the algorithms with Bloom filters and
revisit the comparison in Figure 13. In most of the cases, the DB-
side join with Bloom filter is the best DB-side join and zigzag join
is the best HDFS-side join. Comparing this figure to Figure 12, the
DB-side join still works better in the same cases as before, although
all performance numbers are improved by the use of Bloom filters.
The zigzag join shows very steady performance (execution time
increases only slightly) with the increase of the L’ size, in compar-
ison with the steep deterioration rate of the DB-side join, making
this HDFS-side join a very reliable choice for joins in the hybrid
warehouse.

The above experimental results suggest that blindly executing
joins in the database is not a good choice any more. In fact, for
common cases when there is no highly selective predicate on the
HDFS table, HDFS-side join is the preferred approach. There are
several reasons for this. First of all, the HDFS table is usually much
larger than the database table. Even with decent predicate selectiv-
ity on the HDFS table, the sheer size after predicates is still big.
Second, as our implementation utilizes the DB2 optimizer as is, the
HDFS data shipped to the database may need another round of data
shuffling among the DB2 workers for the join. Finally, the database
side normally has much less resources than the HDFS side, thus
when both T’ and L’ are very large, HDFS-side join should be con-
sidered.

 0

 100

 200

 300

 400

 500

 600

 700

0.001 0.01 0.1 0.2

σL

db
hdfs-best

(a) �T = 0.05

 0

 100

 200

 300

 400

 500

 600

 700

0.001 0.01 0.1 0.2

σL

db
hdfs-best

(b) �T = 0.1

Figure 12: DB-side join vs HDFS-side join without Bloom fil-
ter: execution time (sec)

 0

 100

 200

 300

 400

 500

 600

 700

0.001 0.01 0.1 0.2

σL

db-best
hdfs-best

(a) �T = 0.05

 0

 100

 200

 300

 400

 500

 600

 700

0.001 0.01 0.1 0.2

σL

db-best
hdfs-best

(b) �T = 0.1

Figure 13: DB-side join vs HDFS-side join with Bloom filter:
execution time (sec)

5.4 Parquet Format vs Text Format
We now compare the join performance on the two different HDFS

formats. We first pick the zigzag join, which is the best HDFS-side
join, and the DB-side join with Bloom filter as the representatives,
and show their performance on the Parquet and text formats in Fig-
ure 14.

 0

 100

 200

 300

 400

 500

 600

 700

0.001 0.01 0.1 0.2

σL

text
parquet

(a) zigzag, �T = 0.1

 0

 100

 200

 300

 400

 500

 600

 700

0.001 0.01 0.1 0.2

σL

text
parquet

(b) db(BF), �T = 0.1

Figure 14: Parquet format vs text format: execution time (sec)

Both algorithms run significantly faster on the Parquet format
than on the text format. The 1TB text table on HDFS has already
exceeded the aggregated memory size (960GB) of the HDFS clus-
ter, thus simply scanning the data takes roughly 240 seconds in both
cold and warm runs. After columnar organization and compression,
the table is shrunk by about 2.4x, which can now well fit in the local
file system cache on each DataNode. In addition, projection push-
down can also be applied when reading from the Parquet format.
Therefore, it only takes 38 seconds to read all the required fields
from the Parquet data in a warm run. This huge difference in the
scanning speed explains the big gap in the performance.

 0

 100

 200

 300

 400

 500

 600

 700

0.1 0.2 0.4

σL

ST’=0.05 ST’=0.1 ST’=0.2

repartition
repartition(BF)

zigzag

(a) �T = 0.2

 0

 100

 200

 300

 400

 500

 600

 700

0.001 0.01 0.1 0.2

σL

db
db(BF)

(b) �T = 0.1

Figure 15: Effect of Bloom filter with text format: execution
time (sec)

Next, we investigate the effect of using Bloom filter in joins on
the text format. As shown in Figure 15, the improvement by Bloom
filter is less dramatic on the text format than on the Parquet format.
In some cases of the repartition join and the DB-side join, the over-
head of computing, transferring and applying the Bloom filter even
outweighs the benefit it brings. Again, the less benefit of Bloom
filter is mainly due to the expensive scanning cost for the text for-
mat. In addition, there is another reason for the less effectiveness
of Bloom filter in the repartition join and the zigzag join. Both al-
gorithms utilize a database Bloom filter to reduce the amount of
HDFS data to be shuffled, but with multi-threading, the shuffling

382

is interleaved with the scan of HDFS data (see Section 4.4). For
text format, the reduction of the shuffling cost is largely masked by
the expensive scan cost, resulting in the less shown benefit. How-
ever, for the zigzag join, with a second Bloom filter to reduce the
transferred database data, its performance is always robustly better.

5.5 Discussion
We now discuss the insights from our experimental study.
Among the HDFS-side joins, broadcast join only works for very

limited cases, and even when it is better, the advantage is not dra-
matic. Repartition-based joins are the more robust solutions for
HDFS-side joins, and the zigzag join with the 2-way Bloom filters
always brings in the best performance.

Bloom filter also helps the DB-side join. However, with its
steep deterioration rate, the DB-side join works well only when
the HDFS table after predicates and projection is relatively small,
hence its advantages are also confined to limited cases. For a large
HDFS table without highly selective predicates, zigzag join is the
most reliable join method that works the best most of the time, as
it is the only algorithm that fully utilizes the join-key predicates as
well as the local predicates on both sides.

HDFS data format significantly affects the performance of a join
algorithm. Columnar format with fast compression and decompres-
sion techniques brings in dramatic performance boost, compared to
the naive text format. So, when data needs to be accessed repeat-
edly, it is worthwhile to convert text format into the more advanced
format.

Finally, we would like to point out that a major contribution to
the nice performance of HDFS-side joins, is our sophisticated join
execution engine on HDFS. It borrows the well-known runtime op-
timizations from parallel databases, such as pipelining and multi-
threading. With our careful design in JEN, scanning HDFS data,
network communication and computation are all fully executed in
parallel.

6. RELATED WORK
In this paper, we study joins in the hybrid warehouse with two

fully distributed and independent query execution engines in an
EDW and an HDFS cluster, respectively. Although there has been
rich literature on distributed join algorithms, most of these existing
works study joins in a single distributed system.

In the context of parallel databases, Mackert and Lohman de-
fined Bloom join, which uses Bloom filters to filter out tuples with
no matching tuples in a join and achieves better performance than
semijoin [25]. Michael et al showed how to use a Bloom filter based
algorithm to optimize distributed joins where the data is stored in
different sites [26]. In [12], DeWitt and Gerber studied join al-
gorithms in a multiprocessor architecture and demonstrated that
Bloom filter provides dramatic improvement for various join algo-
rithms. PERF Join [24] reduces data transmission of two-way joins
based on tuple scan order instead of using Bloom filters. It passes a
bitmap of positions instead of a Bloom filter of values, in the second
phase of semi-join. However, unlike Bloom join, it doesn’t work
well in parallel settings, when there are lots of duplicated values.
Recently, Polychroniou et al proposed track join [32] to minimize
network traffic for distributed joins by scheduling transfers of rows
on a per join key basis. Determining the desired transfer schedule
for each join key, however, requires a full scan of the two tables be-
fore the join. Clearly, for systems where scan is a bottleneck, track
join would suffer from this overhead.

There has also been some work on join strategies in MapRe-
duce [8, 3, 4, 23, 44]. Changchun et al. [44] presented several
strategies to build the Bloom filter for the large dataset using MapRe-

duce, and compared Bloom join algorithms of two-way and multi-
way joins.

In this paper, we also exploit Bloom filters to improve distributed
joins, but in a hybrid warehouse setting. Instead of one, our zigzag
join algorithm uses two Bloom filters on both sides of the join to
reduce the non-joining tuples. Two-way Bloom filters require scan-
ning one of the tables two times, or materializing the intermediate
result after applying local predicates. As a result, two-way Bloom
filters are not as beneficial in a single distributed system. But, in our
case we exploit the asymmetry between HDFS and the database,
and scan the database table twice. Since HDFS scan is a domi-
nating cost, scanning the database table twice, especially when we
can leverage indexes, does not introduce significant overhead. As
a result, our zigzag join algorithm provides robust performance in
many cases.

With the need of hybrid warehouses, joins across shared-nothing
parallel databases and HDFS have recently received significant at-
tention. Most of the work either simply moves the database data to
HDFS [37, 38], or moves the HDFS data to the database through
bulk loading [38, 17], external tables [41, 17] or connectors [18,
38]. There are many problems with these approaches. First, HDFS
tables are usually pretty big, so it is not always feasible to load them
into the database. Second, such bulk reading of HDFS data into the
database introduces an unnecessary burden on the carefully man-
aged EDW resources. Third, database data gets updated frequently,
but HDFS still does not support updates properly. Finally, all these
approaches assume that the HDFS side does not have proper SQL
support that can be leveraged.

Microsoft Polybase [13], Pivotal HAWQ [15], TeraData SQL-
H [14], and Oracle Big Data SQL [28] all provide on-line approaches
by moving only the HDFS data required for a given query dynami-
cally into the database. They try to leverage both systems for query
processing, but only simple predicates and projections are pushed
down to the HDFS side. The joins are still evaluated entirely in the
database. Polybase [13] considers split query processing, but joins
are performed on the Hadoop side only when both tables are stored
in HDFS.

Hadapt [7] also considers split query execution between the database
and Hadoop, but the setup is very different. As it only uses single-
node database severs for query execution, the two tables have to be
either pre-partitioned or shuffled by Hadoop using the same hash
function before the corresponding partitions can be joined locally
on each database.

In this paper, we show that as the data size grows it is better to
execute the join on the HDFS side, as we end up moving the smaller
database table to the HDFS side.

Enabling the cooperation of multiple autonomous databases for
processing queries has been studied in the context of federation [21,
2, 34, 40, 30] since the late 1970s. Surveys on federated database
systems are provided in [35, 22]. However, the focus has largely
been on schema translation and query optimization to achieve max-
imum query push down into the component databases. Little at-
tention has been paid on the actual data movement between dif-
ferent component databases. In fact, many federated systems still
rely on JDBC or ODBC connection to move data through a sin-
gle data pipe. In the era of big data, even with maximum query
push down, such naive data movement mechanisms result in seri-
ous performance issues, especially when the component databases
are themselves massive distributed systems. In this paper, we pro-
vide parallel data movement by fully exploiting the massive paral-
lelism between a parallel database and a join execution engine on
HDFS to speed up the data movement when performing joins in the
hybrid warehouse.

383

7. CONCLUSION
In this paper, we investigated efficient join algorithms in the con-

text of a hybrid warehouse, which integrates HDFS with an EDW.
We showed that it is usually more beneficial to execute the joins
on the HDFS side, which is contrary to the current solutions which
always execute joins in the EDW. We argue that the best hybrid
warehouse architecture should execute joins where the bulk of the
data is. In other words, it is better to move the smaller table to the
side of the bigger table, whether it is in HDFS or in the database.
This hybrid warehouse architecture requires a sophisticated execu-
tion engine on the HDFS side, and similar SQL capabilities on both
sides. Given the recent advancement on SQL-on-Hadoop solutions
[19, 20, 33], we believe this hybrid warehouse solution is now fea-
sible. Finally, our proposed zigzag join algorithm, which performs
joins on the HDFS side, utilizing Bloom filters on both sides, is the
most robust algorithm that performs well in almost all cases.

8. REFERENCES
[1] D. Abadi, P. Boncz, and S. Harizopoulos. The Design and

Implementation of Modern Column-Oriented Database Systems.
Now Publishers Inc., 2013.

[2] S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S.
Subrahmanian. Query caching and optimization in distributed
mediator systems. In SIGMOD, pages 137–146, 1996.

[3] F. Afrati and J. Ullman. Optimizing joins in a map-reduce
environment. In EDBT, pages 99–110, 2010.

[4] F. Afrati and J. Ullman. Optimizing multiway joins in a map-reduce
environment. TKDE, 23(9):1282–1298, 2011.

[5] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske,
A. Heise, O. Kao, M. Leich, U. Leser, V. Markl, F. Naumann,
M. Peters, A. Rheinländer, M. J. Sax, S. Schelter, M. Höger,
K. Tzoumas, and D. Warneke. The stratosphere platform for big data
analytics. VLDB Journal, 23(6):939–964, 2014.

[6] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. Borkar, Y. Bu,
M. Carey, K. Faraaz, E. Gabrielova, R. Grover, Z. Heilbron, Y.-S.
Kim, C. Li, G. Li, J. M. Ok, N. Onose, P. Pirzadeh, V. Tsotras,
R. Vernica, J. Wen, T. Westmann, I. Cetindil, and M. Cheelangi.
AsterixDB: A scalable, open source BDMS. PVLDB,
7(14):1905–1916, 2014.

[7] K. Bajda-Pawlikowski, D. J. Abadi, A. Silberschatz, and E. Paulson.
Efficient processing of data warehousing queries in a split execution
environment. In SIGMOD, pages 1165–1176, 2011.

[8] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and
Y. Tian. A comparison of join algorithms for log processing in
MapReduce. In SIGMOD, pages 975–986, 2010.

[9] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7), 1970.

[10] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: Easy and efficient parallel
processing of massive data sets. PVLDB, 1(2):1265–1276, 2008.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, 2008.

[12] D. J. DeWitt and R. H. Gerber. Multiprocessor hash-based join
algorithms. In VLDB ’85, pages 151–164, 1985.

[13] D. J. DeWitt, A. Halverson, R. V. Nehme, S. Shankar,
J. Aguilar-Saborit, A. Avanes, M. Flasza, and J. Gramling. Split
query processing in polybase. In SIGMOD, pages 1255–1266, 2013.

[14] Dynamic access: The SQL-H feature for the latest Teradata database
leverages data in Hadoop. http://www.teradatamagazine.
com/v13n02/Tech2Tech/Dynamic-Access.

[15] Pivotal HD: HAWQ. http://www.gopivotal.com/sites/
default/files/Hawq_WP_042313_FINAL.pdf.

[16] HCatalog. http://cwiki.apache.org/confluence/
display/Hive/HCatalog.

[17] High performance connectors for load and access of data from
Hadoop to Oracle database.
http://www.oracle.com/technetwork/bdc/
hadoop-loader/connectors-hdfs-wp-1674035.pdf.

[18] IBM InfoSphere BigInsights. http://pic.dhe.ibm.com/
infocenter/bigins/v1r4/index.jsp.

[19] IBM Big SQL 3.0: SQL-on-Hadoop without compromise.
http://public.dhe.ibm.com/common/ssi/ecm/en/
sww14019usen/SWW14019USEN.PDF.

[20] Impala. http://github.com/cloudera/impala.
[21] V. Josifovski, P. Schwarz, L. Haas, and E. Lin. Garlic: A new flavor

of federated query processing for DB2. In SIGMOD, pages 524–532,
2002.

[22] D. Kossmann. The state of the art in distributed query processing.
ACM Comput. Surv., 32(4):422–469, 2000.

[23] T. Lee, K. Kim, and H.-J. Kim. Join processing using bloom filter in
MapReduce. In RACS, pages 100–105, 2012.

[24] Z. Li and K. A. Ross. PERF join: An alternative to two-way semijoin
and bloomjoin. In CIKM, pages 137–144, 1995.

[25] L. F. Mackert and G. M. Lohman. R* optimizer validation and
performance evaluation for distributed queries. In VLDB, page 149,
1986.

[26] L. Michael, W. Nejdl, O. Papapetrou, and W. Siberski. Improving
distributed join efficiency with extended bloom filter operations. In
AINA, 2007.

[27] J. K. Mullin. Optimal semijoins for distributed database systems.
TSE, 16(5):558–560, 1990.

[28] Oracle Big Data SQL: One fast query, all your data.
https://blogs.oracle.com/datawarehousing/
entry/oracle_big_data_sql_one.

[29] The ORC format.
http://docs.hortonworks.com/HDPDocuments/HDP2/
HDP-2.0.0.2/ds_Hive/orcfile.html.

[30] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. D. Ullman.
A query translation scheme for rapid implementation of wrappers. In
DOOD, pages 161–186, 1995.

[31] Parquet. http://parquet.io.
[32] O. Polychroniou, R. Sen, and K. A. Ross. Track join: Distributed

joins with minimal network traffic. In SIGMOD, pages 1483–1494,
2014.

[33] Presto. http://prestodb.io.
[34] M.-C. Shan, R. Ahmed, J. Davis, W. Du, and W. Kent. Pegasus: A

heterogeneous information management system. In W. Kim, editor,
Modern Database Systems, pages 664–682. ACM
Press/Addison-Wesley Publishing Co., 1995.

[35] A. P. Sheth and J. A. Larson. Federated database systems for
managing distributed, heterogeneous, and autonomous databases.
ACM Comput. Surv., 22(3):183–236, 1990.

[36] Snappy. http://code.google.com/p/snappy.
[37] Sqoop. http://sqoop.apache.org.
[38] Teradata connector for Hadoop. http://developer.

teradata.com/connectivity/articles/
teradata-connector-for-hadoop-now-available.

[39] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. Hive: A warehousing solution
over a map-reduce framework. PVLDB, 2(2):1626–1629, 2009.

[40] A. Tomasic, L. Raschid, and P. Valduriez. Scaling access to
heterogeneous data sources with DISCO. TKDE, 10(5):808–823,
1998.

[41] Teaching the elephant new tricks. http://www.vertica.com/
2012/07/05/teaching-the-elephant-new-tricks.

[42] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and
I. Stoica. Shark: SQL and rich analytics at scale. In SIGMOD, pages
13–24, 2013.

[43] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed
datasets: a fault-tolerant abstraction for in-memory cluster
computing. In NSDI, 2012.

[44] C. Zhang, L. Wu, and J. Li. Optimizing distributed joins with bloom
filters using MapReduce. In Computer Applications for Graphics,
Grid Computing, and Industrial Environment, pages 88–95, 2012.

384

