
A Generic Solution to Integrate SQL and Analytics for Big

Data

Nick R. Katsipoulakis1⇤, Yuanyuan Tian2, Fatma Özcan2, Berthold Reinwald2, Hamid Pirahesh2

1University of Pittsburgh katsip@cs.pitt.edu
2IBM Almaden Research Center {ytian, fozcan, reinwald, pirahesh}@us.ibm.com

ABSTRACT
There is a need to integrate SQL processing with more advanced
machine learning (ML) analytics to drive actionable insights from
large volumes of data. As a first step towards this integration,
we study how to efficiently connect big SQL systems (either MPP
databases or new-generation SQL-on-Hadoop systems) with dis-
tributed big ML systems. We identify two important challenges to
address in the integrated data analytics pipeline: data transforma-
tion, how to efficiently transform SQL data into a form suitable
for ML, and data transfer, how to efficiently handover SQL data to
ML systems. For the data transformation problem, we propose an
In-SQL approach to incorporate common data transformations for
ML inside SQL systems through extended user-defined functions
(UDFs), by exploiting the massive parallelism of the big SQL sys-
tems. We propose and study a general method for transferring data
between big SQL and big ML systems in a parallel streaming fash-
ion. Furthermore, we explore caching intermediate or final results
of data transformation to improve the performance. Our techniques
are generic: they apply to any big SQL system that supports UDFs
and any big ML system that uses Hadoop InputFormats to ingest
input data.

1. INTRODUCTION
Enterprises are employing various big data technologies to pro-

cess huge volumes of data and drive actionable insights. Data ware-
houses integrate and consolidate enterprise data from many opera-
tional sources, and are the primary data source for many analytical
applications, whether it is reporting or machine learning (ML). Tra-
ditionally data warehouses has been implemented using large-scale
MPP SQL databases, such as IBM DB2, Oracle Exadata, TeraData,
and Greenplum. Recently, we observe that enterprises are creating
Hadoop warehouses in HDFS and Hadoop ecosystem, using SQL-
on-Hadoop technologies like IBM Big SQL [13], Hive [21], and
Impala [14]. In this paper, we use the term big SQL systems to
refer to both the large-scale MPP databases as well as the SQL-on-
Hadoop systems.

To gain actionable insights, enterprises need to run complex an-
alytics on their warehouse data. There has been some works that
embed ML inside SQL systems, through user defined functions
⇤The work described in this paper was done while the author was
working at IBM Almaden Research Center

©2015, Copyright is with the authors. Published in Proc. 18th Interna-
tional Conference on Extending Database Technology (EDBT), March 23-
27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0
.

(UDFs). We refer to this approach as the In-SQL analytics ap-
proach. Such examples include Hivemall [12] for Hive, and Bis-
march [7] which is incorporated into the Madlib analytics library [11]
for Greenplum and Impala [22]. However, through UDFs, only a
limited number of ML algorithms can be supported. For exam-
ple, only convex optimization problems can be implemented in Bis-
march.

With the big data revolution, most new developments of big ML
algorithms happen outside the SQL systems, and mainly on big
data platforms like Hadoop. There are many options, such as ML-
Lib [20], SystemML [9], and Mahout [1], and more systems and
special algorithms are developed every day. Enterprises need to in-
tegrate their big SQL system with their big ML system. The solu-
tion should also be extensible to any future system. The following
example will demonstrate this need of integration.

An Example Scenario. A data analyst from an online retailer
wants to build a classification model on the abandonment of on-
line shopping carts in USA. The detailed information of online
shopping carts and customers are stored in two tables carts and
users either in a MPP database or in a SQL-on-Hadoop sys-
tem. To prepare the data that she later will feed into an SVM
algorithm, the analyst needs to combine the two tables and ex-
tract the three needed features, the customer’s age, gender and
the dollar amount of the shopping cart, as well as the indicator
field abandoned for building the classification model. This data
preparation can be easily expressed as a SQL query shown below.
SELECT U.age, U.gender, C.amount, C.abandoned

FROM carts C, users U

WHERE C.userid=U.userid AND U.country=‘USA’

Spark provides a unified environment that allows combining SQL
(Spark SQL) and ML (MLlib) together. The data handover be-
tween Spark SQL and MLlib is through the distributed (and of-
ten in-memory) data structure, called Resilient Distributed Datasets
(RDDs). Again, analysts are limited by the ML algorithms sup-
ported in MLlib. If an analyst wants to use an existing algorithm
in Mahout or if she has her own analytics algorithm already imple-
mented in MapReduce, she has to write the data into HDFS, run her
analytics algorithm, and store results back into HDFS. In addition,
in both Spark and the In-SQL analytics approach, one is locked in
a particular environment. But in reality, enterprises need a generic
solution that works with many big SQL and big ML system, and is
easily extensible to any future system.

The straightforward approach to connect big SQL and ML sys-
tem is through files on a shared file system, such as HDFS since
most big ML systems are running on Hadoop. In other words, the
big SQL system outputs results onto HDFS and then the big ML
system reads them from HDFS. This approach obviously incurs a
lot of overhead. In this paper, we explore whether we can do better

671 10.5441/002/edbt.2015.67

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.67

than this basic approach.
We identify two major challenges when connecting big SQL and

big ML systems: (1) data transformation and (2) data transfer.
Data transformation deals with the fact that SQL systems and

ML systems prefer data in different formats. For example, most
ML systems work on numeric values only. For categorical val-
ues (e.g. the gender of a customer) normally stored as strings in
SQL systems, they have to be recoded [5] and sometimes dummy
coded [4] (details will be provided in Section 2) before the analy-
sis can be applied. Today, such transformation functionalities are
rarely provided in either big SQL or big ML systems, which means
they have to be implemented by users. One can choose to im-
plement these transformation functions outside both systems, us-
ing her preferred data transformation framework, e.g, MapReduce.
But, this introduces another hop, hence extra overhead, between
SQL and ML systems. A better approach would be to incorporate
transformations in either SQL or ML systems. In order to provide
a generic solution, we leverage the extensibility (e.g UDFs) of big
SQL systems and propose an In-SQL transformation approach. In
fact, we found that most common data transformations between
SQL and analytics can be implemented through UDFs by exploit-
ing the massive parallelism inside big SQL systems.

Data transfer, on the other hand, deals with how the output of a
SQL system is passed over to the ML system for processing. When
the SQL system requires a long haul to produce the output, the
straightforward approach of handing over files on a shared file sys-
tem may be preferred for fault tolerance reasons. But the extra file
system write and read can be a performance hurdle. Another im-
portant issue about the straightforward approach is the fact that the
entire output of the transformation step needs to be produced and
materialized (a blocking operation) before it can be ingested into
the ML system. In this paper, we propose a general approach to
parallel data streaming between these two systems. This approach
avoids touching the file system between SQL and ML systems, and
can be used by any big SQL system that supports UDFs and any
big ML system that uses Hadoop InputFormat for ingesting data
(in fact, all ML systems on Hadoop do) in parallel.

Caching is a common technique used in distributed systems to
reduce communication costs. In this paper, we explore caching
intermediate or final results of the transformation step to help sig-
nificantly reduce the costs of connecting big SQL systems with big
ML systems. Most often the intermediate results that are required
by the recoding transformations can be precomputed and reused.

Note that the need for integrating SQL and ML existed even
before the era of big data. People have been fetching data from
databases and feeding them to ML softwares, such as R [19], in the
past. But since the data exchanged between the two systems were
small, data transformation and transfer were not challenging prob-
lems. For example, there are functions provided in R (sequential
implementations) for common data transformations. Data transfer,
on the other hand, is usually done through passing physical files
around. However, this old way of sequentially transforming data
and passing files around is often infeasible when huge volumes of
data are involved. Exploiting the massive parallelism inside and
between big SQL and big ML systems is a necessity to guarantee
performance, and this is exactly what we strive to achieve in this
paper.

The contributions of this paper are as follows:

• We first propose an In-SQL approach to incorporate common
data transformations for analytics inside big SQL systems
through UDFs, by fully exploiting the massive parallelism of
the big SQL systems.

• We then introduce a general approach to transfer data be-
tween big SQL and big ML systems in a parallel streaming
fashion, without touching the file system.

• We further explore caching techniques to reduce the costs of
connecting big SQL and big ML systems.

2. IN-SQL DATA TRANSFORMATION
Most big SQL systems today have UDF support for extensibil-

ity, which makes it feasible to employ a generic In-SQL solution for
common transformations for ML. We will use the two most com-
mon transformations, recoding of categorical variables and dummy
coding, as examples to demonstrate how these transformations can
be implemented in parallel fashions using UDFs. Some less com-
mon transformations, such as effect coding and orthogonal cod-
ing [6], can be implemented in similar ways as dummy coding.

2.1 Recoding of Categorical Variables
Most data transformation between SQL and ML systems deals

with categorical variables. This is because categorical variables are
usually represented as string fields in SQL systems, but it is very
hard and inefficient to handle string values in analytics. As a result,
most ML systems prefer handling numeric values only. One of the
most common data transformation, therefore, is recoding of cate-
gorical variables [5]. Figure 1(b) shows an example recoding of the
categorical fields gender and abandoned in the table shown in
Figure 1(a) (This table could be the result of a query in a SQL sys-
tem). The recoded numeric values are usually consecutive integers
starting from 1. Here, for the field gender, the value ‘F’ is re-
coded to 1 and ‘M’ is recoded to 2. And for the field abandoned,
‘Yes’ and ‘No’ are recoded to 1 and 2 respectively.

The above recoding is seemingly simple. In a centralized envi-
ronment, it only requires one pass of data to perform the recoding
of all categorical fields, assuming the number of distinct values for
each field is not large. This centralized algorithm simply keeps
track of a running map of current recoded values for each categor-
ical field while scanning through the data. If a value of a field has
been seen before, it just uses the map to recode it, otherwise a new
recoding is added to the map.

In a distributed environment, however, a two-phase approach is
needed. In the first phase, each local worker computes its distinct
values for each categorical field in its local partition, and then ex-
changes the local lists to obtain the global distinct values. In the
second pass of the data, we can use the global distinct values to
perform the recoding.

This two pass algorithms can be easily implemented using a
combination of UDFs and SQL statements. For example, in the
first pass, we can implement a parallel table UDF, which in paral-
lel reads its local partition of the table and generate another table
with two fields colName and colVal, which contains the lo-
cal unique values for each categorical column. For example, the
returned records in a local partition might be {(‘gender’, ‘F’),

(‘gender’, ‘M’), (‘abandoned’, ‘Yes’)}. These records can then
be passed to a SELECT DISTINCT colName, colValue FROM ... state-
ment to compute the global unique values. We can also introduce
another table UDF to add a recoded value field recodeVal to the
results, generating recode mapping records like {(‘gender’, ‘F’,

1), (‘gender’, ‘M’, 2), (‘abandoned’, ‘Yes’, 1), (‘abandoned’,

‘No’, 2)}. Let’s denote the original table as T and the recode map
table as M, then the final recoding in the second pass can be simply
implemented by a join like below:

672

age gender amount abandoned
57 'F' 108.00 'Yes'
40 'M' 57.98 'Yes'
35 'F' 265.97 'No'

(a) original table

age gender amount abandoned
57 1 108.00 1
40 2 57.98 1
35 1 265.97 2

(b) recoding

age female male amount abandoned
57 1 0 108.00 1
40 0 1 57.98 1
35 1 0 265.97 2

(c) dummy coding

Figure 1: Recoding and dummy coding of categorical variables

SELECT T.age, Mg.recodeVal as gender, T.mount,

Ma.recodeVal as abandoned

FROM T, M as Mg, M as Ma

WHERE Mg.colName=‘gender’ AND T.gender=Mg.colVal

AND Ma.colName=‘abandoned’ AND T.abandoned=Ma.colVal

Although one could use SQL queries to compute the distinct val-
ues, each column that needs to be recoded would result in such an
SQL query, and would require one pass of the data. Using UDFs,
we can scan the data once and compute the distinct values for all
required columns.

Note that although categorical values are represented as strings
in tables, some modern column stores are able to exploit dictionary
compression to physically store string values as integers. Utiliz-
ing these integers directly as the recoded values for ML systems
is an interesting direction. However, there are a number of chal-
lenges. First of all, the internal physical dictionary encoding is
usually not exposed to users, thus utilizing the encoded integers is
difficult or even impossible in a general approach using UDFs. Sec-
ond, most dictionary compression for big SQL systems, such as in
the Parquet format [18] for Impala and ORC format [17] for Hive,
is applied only for a local partition of data. Therefore, we can-
not directly use the local encoded integers for the global recoding.
Lastly, some ML systems, such as SystemML [9], require the re-
coded categorical values to be consecutive integers starting from 1.
Some dictinary compression algorithms may not produce consecu-
tive integers. Moreover, the recoding needs to be done on filtered
data, and hence we may have to recode the values again.

2.2 Dummy Coding
Some ML algorithms, such as SVM and logistic regression, re-

quire generating binary features from a categorical variable before
invoking the algorithms. This transformation is called dummy cod-
ing [4]. People also call it one-hot encoding or one-of-K encoding.
Figure 1(c) shows an example dummy coding for the gender field
in the recoded table of Figure 1(b). In dummy coding, a categori-
cal variable with K distinct values is split into K binary variables.
Assuming the categorical variable has already been recoded, then
the original variable with value i results in the ith binary variable
to be 1, and the remaining K � 1 variables to be 0.

To implement dummy coding in big SQL systems, we only need
a parallel table UDF that takes in the number of distinct values for
each categorical variable (already obtained during recoding phase)
and scans through each partition to perform the dummy coding in
parallel.

3. PARALLEL STREAMING DATA TRANS-
FER

In this section, we describe our approach to parallel streaming
data transfer. There are two main goals that we want to achieve
when designing the streaming data transfer method: (1) generality
of the approach on various big SQL and big ML systems, and (2)
exploitation of the massive parallelism between the two systems.

SQL
Worker 1

SQL
Worker 2

ML
Worker 2

ML
Worker 3

ML
Worker 4

ML
Worker 1

Coordinator

SQL_IP1

SQL_IP2

ML_IP1

ML_IP2

ML_IP3

ML_IP4

ML Job

(1
) r

eg
ist

er

(2) launch(3) input splits

(4) register

(5) match
 making

(6
) M

L
w

or
ke

rs
 to

 c
on

ne
ct

(6) SQ
L worker to connect

(7) establish connection

(8) data transfer

Figure 2: Information and data flow in parallel streaming data
transfer

To achieve generality, we again exploit the UDF extensibility in the
big SQL systems and extend the Hadoop’s InputFormat interface in
the big ML systems. In fact, most existing big ML systems [9, 1,
20] can input data through the InputFormat interface. So, a user can
choose any of the existing big ML system to run the analytics. The
only change she has to make is to use our specialized SQLStream-
InputFormat in the job configuration. To exploit the massive paral-
lelism between two independent distributed systems, we introduce
a long standing coordinator service to help bridge the two systems
to establish parallel communication channels. In addition, we try
to take advantage of data locality as much as possible when the big
SQL and big ML systems share the same cluster resources.

Figure 2 shows the detailed information and data flow in our
parallel data streaming method. The data transfer starts from the
parallel table UDF in the SQL system. This UDF takes in as inputs
the table to be transferred, the IP and port number of the coordina-
tor, as well as the command and arguments to invoke the desired
algorithm of the target ML system. When this UDF is executed in
each SQL worker, it first connects to the coordinator, notifies the
coordinator of its own worker id, IP address, and the total number
of active SQL workers, and also passes along the command and ar-
guments of the target ML algorithm (step 1 in Figure 2). When all
the SQL workers have registered, the coordinator launches the ML
job with the provided command and arguments (step 2).

When the ML job tries to spawn tasks to read data, it first creates
an InputFormat object. InputFormat has a member function called
getInputSplits(), which is responsible for dividing the input data
into subsets. Each subset is called an InputSplit and is consumed by
one ML worker. In other words, the number of InputSplits equals

673

to the number of ML workers. We customized the getInputSplits
method to contact the coordinator to decide on the InputSplits (step
3). Let n be the number of SQL workers and m be the number
of InputSplits. If m is not pre-specified by the particular ML al-
gorithm, then we always set m = n ⇥ k, where k is a parameter
to control the degree of parallelism in the ML job. We divide the
needed m InputSplits evenly into n groups, with each group cor-
responding to the data from one SQL worker, as demonstrated in
Figure 2. To take advantage of the potential locality, we also pro-
vide the locations for each InputSplit where the data for the split
would be local. In particular, for each InputSplit corresponding to
the ith SQL worker, we use the IP address of this SQL worker as
the location of the InputSplit. With the provided locations, when
the ML job spawns the ML workers to read data, it tries to colo-
cate, when possible, in a best effort manner, the ML workers with
the corresponding SQL workers, so that data transfer does not incur
network I/O.

After the ML workers are spawned, they register themselves
back to the coordinator (step 4 in Figure 2). Then, the coordinator
matches the IP of each SQL worker with the IPs of its correspond-
ing ML workers (step 5), and subsequently sends the matched in-
formation back to the workers on both sides (step 6). Now, the job
of the coordinator is done. Finally, the SQL workers and the ML
workers establish the TCP socket connections (step 7), before the
actual data transfer starts (step 8). Each SQL worker sends data
to its ML workers in a round robin fashion. Inside a SQL worker,
there is a send-buffer associated with each target ML worker for
buffering the sent data. Similarly, each ML worker has a receive-
buffer to buffer the received data from its corresponding SQL worker.
The sizes of the buffers are controllable system parameters. If an
ML worker is slow to ingest its data and the corresponding send
buffer becomes full, we can spill it onto the local disks to syn-
cronize the producer and consumers.

4. QUERY REWRITER FOR DATA TRANS-
FORMATION AND TRANSFER

Although we have provided various UDFs for the common data
transformation and parallel data streaming, it is still a difficult task
for the users to compose the queries to invoke these UDFs. For
ease of use, we provide a query rewriter outside the SQL systems.
A user provides this query rewriter with her SQL query (such as
the example query in Section 1), the transformations needed on the
results of the query, and if parallel data streaming is needed, the
necessary information for calling the target ML algorithm. Then,
the query rewriter will extend the given query into another query
with UDFs, and other operations to perform the required transfor-
mations and the data transfer.

5. CACHING
When similar data transformations are repeated between a big

SQL system and a big ML system, we can exploit caching to reduce
the cost. We identified two cases of caching, assuming there is no
data update: (1) caching fully transformed data, and (2) caching
intermediate recode maps.

5.1 Caching Fully Transformed Data
In this case, we cache the fully transformed data in the big SQL

system by storing it as a materialized view or an actual HDFS table.
If later another ML algorithm needs to be run on the data resulted
from the same SQL queries, we can directly reuse the stored data,
thus saving the cost of the SQL queries and the data transformation
all together. This situation happens, for example, when an analyst

wants to run a number of classification algorithms, such as SVM,
logistic regression, naive Bayes and decision trees, to compare the
quality of different classifiers on a particular dataset.

Besides the above case, the fully transformed data can also be
reused if a subset of the transformed data is needed. Let’s take the
example scenario in Section 1 as an instance. If we cache the fully
transformed result of this query, and later we encounter another
query shown below as the data preparation for an ML algorithm,
we can fully utilize the cached data, without running the query and
transforming the query result.
SELECT U.age, C.amount, C.abandoned

FROM carts C, users U

WHERE C.userid=U.userid AND U.country=‘USA’

AND U.gender = ‘F’

The reason that we can fully utilize the cached result is that this
new query satisfy the following conditions:

1. It contains the same tables in the from clause, and the same
join conditions and predicates in the where clause, as the
query for the cached data.

2. The projected fields are a subset of the projected fields in the
query for the cached data.

3. Additional conjunctive predicates are only on the projected
fields in the query for the cached data.

In fact, if we denote the result of query in Section 1 as T, the new
query can be expressed as a selection and projection query on table
T as below.
SELECT age, amount, abandoned

FROM T

WHERE gender = ‘F’

5.2 Caching Recode Maps
The applicability of caching the fully transformed data is limited.

For the following query, the cached data cannot be used at all, as
it does not satisfy the conditions described in the previous subsec-
tion.
SELECT U.age, U.gender, C.amount, C.nItems, C.abandoned

FROM carts C, users U

WHERE C.userid=U.userid AND U.country=‘USA’

AND C.year = 2014

However, we notice that this query satisfies a different set of con-
ditions, which allow it to benefit from caching the intermediate re-
code map (see Section 2.1) generated during the transformation of
the previous query:

1. It contains the same tables in the from clause, and the same
join conditions in the where clause, as the previous query.

2. It contains predicates on the same set of fields as the pred-
icates on the previous queries, and each predicate is either
the same as or logically stronger than (e.g. a < 18 is log-
ically stronger than a 20) the corresponding predicate in
the previous query.

3. The projected categorical fields are a subset of the projected
categorical fields in the previous query.

4. Additional predicates are conjunctive.

By reusing the recode map for the new query, we avoid one of
the two passes for the new query during recoding.

As can be seen above, the way we detect whether a query can
benefit from the cached data is similar to utilizing materialized

674

views in query optimization [10, 16] and we extend the query rewriter
introduced in Section 4 to utilize these techniques. When the rewriter
gets a query, it first check to see if any of the existing materialized
views can be used and rewrites the query accordingly.

6. DISCUSSION ON FAULT TOLERANCE
Fault tolerance is a very hard problem for integrating big SQL

and big ML systems. First of all, if either the underlying big SQL
system or the big ML system lacks fault tolerance support, the
whole integration pipeline has to be restarted from scratch in case
of a failure. In fact, most MPP databases do not support mid-query
failure recovery. Most SQL-on-Hadoop engines, like Impala [14]
also sacrifice mid-query recory. As for big ML systems, MLlib
is the only one known to support mid-query fault tolerance. Even
both underlying systems provide fault tolerance guarantees, we still
need the connection between the two to be resilient to failures. If
data transfer between the two systems is through files on HDFS, or
if the cached results from the big SQL system can be directly reused
by the big ML system, the fault tolerance can be guaranteed. On the
other hand, if parallel data streaming in Section 3 is used, more care
has to be taken. First, we need the coordinator service to be resilient
itself. This can be achieved by using Zookeeper [2]. In addition,
when the data transfer between a SQL worker and an ML worker
fails, due to the failure of either end points or the connection, we
need to notify the big SQL system to restart the SQL worker and
simultaneously tell the big ML system to restart all the ML workers
corresponding to the SQL worker, so that the data transfer can be
resumed.

An alternative to our streaming data transfer is utilizing an in-
memory file system like Tachyon [15], which would provide fault-
tolerance guarantees. However, Tachyon is still very Spark and
RDD oriented, whereas in this work we thrive to be provide a
generic solution that works for all big SQL and big ML systems,
whether they run their own native processes, or use MapReduce or
Spark.

7. PRELIMINARY EXPERIMENTS
In this section, we report the results of our preliminary experi-

mental study by using IBM Big SQL 3.0 as the big SQL system
and Spark MLlib as the big ML system.

We used 5 servers for all our experiments. Each had 2x Intel
Xeon CPUs @ 2.20GHz, with 6x physical cores each (12 phys-
ical cores in total), 12x SATA disks, 1x 10 Gbit Ethernet card,
and a total of 96GB RAM. Each node runs 64-bit Ubuntu Linux
12.04, with a Linux Kernel version 3.2.0-23. One of the servers
was used as the HDFS NameNode, MapReduce JobTracker, Spark
master as well as Big SQL head node. The remaining 4 servers
host the HDFS DataNodes, MapReduce TaskTrackers (9 mappers
per server), Spark workers (6 workers on each server) and Big SQL
workers (1 worker with multi-threading on each server). HDFS
replication was set to 3. The send-buffer and receive-buffer sizes
were both set to 4KB for the parallel data streaming.

We generated synthetic datasets in the context of the example
query scenario described in Section 1. In particular, we created a
56GB carts table with 1 billion records and 361 MB users table
with 10 million records. Both tables were stored in text format
on HDFS. We ran the SQL query shown in the example in Sec-
tion 1, transformed the result (recoding the categorical variables
and dummy coding), and passed the result to MLlib for running the
SVMWithSGD algorithm. In our experiments, we report the time
for processing the SQL query, transforming the result, transferring
the transformed data to the ML job, and reading the input data in

0

200

400

600

800

1000

1200

naïve insql insql+stream

ti
m

e
 (

s
e
c
)

input for ml

trsfm

prep

prepl+trsfm

prep+trsfm+input

Figure 3: Comparison of three approaches of connecting big
SQL and big ML systems

0

100

200

300

400

500

600

no cache cache recode maps cache transformed
result

tim
e

 (
s
e
c
)

Figure 4: Effect of caching

the ML job. We do not report the runtime of the ML algorithm,
because it is highly dependent on the actual data and the algorithm
(e.g how many iterations to converge). For example, reading the
transformed data from HDFS and running the SVMWithSGD for
10 iterations took 774 seconds. In the ML job, we first read the
input data, whether it is from HDFS or from parallel data transfer,
into a Spark in-memory RDD. After that we pass the RDD to the
MLlib SVMWithSGD algorithm. The measured time of reading
input in the ML job is the time from the start of the job till the
in-memory RDD is constructed.

Figure 3 compares three approaches of connecting SQL with ML
for big data. In the naive (denoted as naive in Figure 3) approach,
we use Big SQL to execute the SQL query and materialize the re-
sult on HDFS (prep). Then, we use a third tool, Jaql [3], to perform
the data transformation, since Jaql has built-in functions for recod-
ing of categorical variables and dummy coding (trsfm). Again, the
result is written to HDFS. Finally, Spark MLlib reads the data form
HDFS (input for ml) and performs the ML job. The breakdown of
execution times for different stages is shown in the figure. The sec-
ond approach, denoted as insql in the figure, employs the In-SQL
transformation method (we implemented the recoding of categor-
ical variables and dummy coding in Big SQL using UDFs). In
this approach, the transformation is combined together with the
SQL query, thus the operations can be performed in a pipeline
(prep+trsfm). In the third approach, denoted as insql+stream, we

675

use the parallel streaming data transfer in addition to the In-SQL
transformation. Now, all operations can be pipelined together (prep
+trsfm+input). In addition, as we use in-memory RDDs to store the
input data in Spark for the ML job, the transformed data from Big
SQL is never written to HDFS. As can be seen from Figure 3, the
In-SQL transformation significantly improves the performance of
the whole work flow: 1.7x speed up against the naive approach.
The insql+stream approach further improves the performance by
another 43 seconds. This is a significant reduction in data inges-
tion cost in Spark MLlib (reading from HDFS takes 46 seconds),
although it is not an impressive number in the overall workflow. In
this particular case, the transformed data itself was not very large
(5.6GB), and hence reading it from HDFS was not dominating the
overall data pipeline. If a larger dataset were used, the performance
would be more dramatic. We also want to note that if the ML algo-
rithm takes a long time to produce the desired model, then whether
using HDFS or streaming for data transfer makes little difference
in the overall performance. In addition, HDFS can also provide ad-
ditional fault tolerance, and could be preferable if the ML system
requires reading the input multiple times.

We now investigate the effect of caching intermediate or final
results of data transformation in connecting big SQL and big ML
systems. We compare the In-SQL transformation approach with
the approach where we cache intermediate recode maps, and the
approach where we cache the fully transformed result in Figure 4.
In all three approaches, we employ the parallel streaming trans-
fer to pass data to the ML job. Evidently, if caching can be used,
then the fully cached result will provide the best performance (2.2x
speedup against no cache), followed by the cached intermediate re-
code maps (1.5x speedup against no cache). But, keep in mind that
the applicabilities of the two caching approaches are limited, with
caching the fully transformed result most limited. For both caching
methods, the reusability depends on the complexity of the prepara-
tion SQL query and how fast, or if at all, the data gets updated.

8. CONCLUSION
In this paper, we studied the problem of integrating SQL and ML

processing for big data, providing a general purpose solution that
will work with any big SQL system that supports UDFs and any big
ML system that uses InputFormats to ingest its input. We focused
on two problems: data transformation and data transfer between the
two systems. In particular, we proposed an In-SQL approach to in-
corporate common data transformations for ML algorithms inside
big SQL systems through UDFs. In addition to the basic approach
of using files as the media for data transfer between systems, we
proposed a general streaming data transfer approach by introduc-
ing UDFs in big SQL systems and implementing a special Hadoop
InputFormat. Furthermore, we explored the use of caching inter-
mediate or final results of the transformations to reduce the costs of
connecting SQL and ML systems. Our preliminary experimental
results show that the In-SQL approach has great potential in reduc-
ing the data transformation cost, and caching is very effective in
improving the performance of the whole analytics work flow. The
parallel streaming data transfer approach has its pros and cons, de-
pending on the target ML system. Our preliminary experiments
show it results in significant reduction in data ingestion costs for
MlLib, which uses in-memory RDDs.

As future work, we plan to investigate using a message passing
system like Kafka [8] to pass the data between SQL and ML work-
ers. Kafka would gurantee at least one read, in case of failures.
Kafka could also be the system to cache the data when the ML
workers are not fast enough to consume the data. We also plan to
build a generic data exchange infrastructure that utilizes memory

and streaming between different frameworks running on big data
platforms, such as streaming, batch, SQL, ML, etc.

9. REFERENCES
[1] Apache Mahout. https://mahout.apache.org.
[2] Apache ZooKeeper.

http://zookeeper.apache.org.
[3] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Y.

Eltabakh, C.-C. Kanne, F. Özcan, and E. J. Shekita. Jaql: A
scripting language for large scale semistructured data
analysis. PVLDB, 4(12):1272–1283, 2011.

[4] D. Conway and J. M. White. Machine Learning for Hackers.
O’Reilly Media, 2 2012.

[5] Cookbook for R: Recoding data.
http://www.cookbook-r.com/Manipulating_
data/Recoding_data.

[6] Dummy, effect, & orthogonal coding.
http://luna.cas.usf.edu/~mbrannic/files/
regression/anova1.html.

[7] X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a unified
architecture for in-rdbms analytics. In SIGMOD, pages
325–336, 2012.

[8] R. C. Fernandez, P. Pietzuch, J. Koshy, J. Kreps, D. Lin,
N. Narkhede, J. Rao, C. Riccomini, and G. Wang. Liquid:
Unifying Nearline and Offline Big Data Integration. In
CIDR, 2015.

[9] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald,
V. Sindhwani, S. Tatikonda, Y. Tian, and S. Vaithyanathan.
SystemML: Declarative machine learning on mapreduce. In
ICDE, pages 231–242, 2011.

[10] A. Y. Halevy. Answering queries using views: A survey. The
VLDB Journal, 10(4):270–294, 2001.

[11] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang,
E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li,
and A. Kumar. The madlib analytics library: Or mad skills,
the sql. PVLDB, 5(12):1700–1711, 2012.

[12] Hivemall. https://github.com/myui/hivemall.
[13] IBM Big SQL 3.0: Sql-on-hadoop without compromise.

http://public.dhe.ibm.com/common/ssi/
ecm/en/sww14019usen/SWW14019USEN.PDF.

[14] Impala. http://github.com/cloudera/impala.
[15] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica.

Tachyon: Reliable, Memory Speed Storage for Cluster
Computing Frameworks. In SOCC, 2014.

[16] I. Mami and Z. Bellahsene. A survey of view selection
methods. SIGMOD Rec., 41(1):20–29, 2012.

[17] The ORC format. http:
//docs.hortonworks.com/HDPDocuments/
HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html.

[18] The Parquet format. http://parquet.io.
[19] R. http://http://www.r-project.org/.
[20] Spark MLlib. https://spark.apache.org/mllib.
[21] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,

S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive: A
warehousing solution over a map-reduce framework.
PVLDB, 2(2):1626–1629, 2009.

[22] How-to: Use MADlib pre-built analytic functions with
impala.
http://blog.cloudera.com/blog/2013/10/
how-to-use-madlib-pre-built-analytic-functions
-with-impala.

676

