
Learning to Rank Adaptively for
Scalable Information Extraction

Pablo Barrio
Columbia University

pjbarrio@cs.columbia.edu

Gonçalo Simões
INESC-ID and IST, Universidade de Lisboa
goncalo.simoes@tecnico.ulisboa.pt

Helena Galhardas
INESC-ID and IST, Universidade de Lisboa
helena.galhardas@tecnico.ulisboa.pt

Luis Gravano
Columbia University

gravano@cs.columbia.edu

ABSTRACT
Information extraction systems extract structured data from
natural language text, to support richer querying and anal-
ysis of the data than would be possible over the unstruc-
tured text. Unfortunately, information extraction is a com-
putationally expensive task, so exhaustively processing all
documents of a large collection might be prohibitive. Such
exhaustive processing is generally unnecessary, though, be-
cause many times only a small set of documents in a collec-
tion is useful for a given information extraction task. There-
fore, by identifying these useful documents, and not process-
ing the rest, we could substantially improve the efficiency
and scalability of an extraction task. Existing approaches
for identifying such documents often miss useful documents
and also lead to the processing of useless documents unnec-
essarily, which in turn negatively impacts the quality and
efficiency of the extraction process. To address these limita-
tions of the state-of-the-art techniques, we propose a prin-
cipled, learning-based approach for ranking documents ac-
cording to their potential usefulness for an extraction task.
Our low-overhead, online learning-to-rank methods exploit
the information collected during extraction, as we process
new documents and the fine-grained characteristics of the
useful documents are revealed. Then, these methods decide
when the ranking model should be updated, hence signifi-
cantly improving the document ranking quality over time.
Our experiments show that our approach achieves higher ac-
curacy than the state-of-the-art alternatives. Importantly,
our approach is lightweight and efficient, and hence is a sub-
stantial step towards scalable information extraction.

1. INTRODUCTION
Information extraction systems are complex software tools

that discover structured information in natural language
text. For instance, an information extraction system trained
to extract tuples for anOccurs-in(NaturalDisaster , Location)

c⃝2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0.

relation may extract the tuple <tsunami, Hawaii> from the
sentence: “A tsunami swept the coast of Hawaii.” Having
information in structured form enables more sophisticated
querying and data mining than what is possible over the nat-
ural language text. Unfortunately, information extraction is
a time-consuming task. A state-of-the-art information ex-
traction system to extract Occurs-in tuples may take more
than two months to process a collection containing about
1 million documents. Since document collections routinely
contain several millions of documents, improving the effi-
ciency and scalability of the extraction process is critical,
even over highly parallel computation environments.

Interestingly, extracting a relation of interest with a prop-
erly trained information extraction system rarely requires
processing all documents of a collection: Many times only a
small set of documents produces tuples for a given relation,
because relations tend to be topic-specific, in that they are
associated mainly with documents about certain topics. For
example, only 1.69% out of the 1.03 million documents in
collections 1-5 from the TREC conference1 produce Occurs-
in tuples when processed with a state-of-the-art informa-
tion extraction system and, not surprisingly, most of these
documents are on environment-related topics. If we could
identify the small fraction of documents that lead to the
extraction of tuples, we would extract all tuples while de-
creasing the extraction time by over 90% without any need
to change the information extraction system.

To identify the documents that produce tuples for an ex-
traction task, which we refer to as the useful documents, ex-
isting techniques (e.g., QXtract [2], PRDualRank [14], and
FactCrawl [7]) are based on the observation that such doc-
uments tend to share words and phrases that are specific
to the extraction task at hand. For example, documents
containing mentions of earthquakes—hence useful for the
Occurs-in relation—many times include words like “richter”
or “hypocenter.” These words and phrases can then be used
as keyword queries, to retrieve from the collection the (hope-
fully useful) documents that the extraction system will then
process. To discover these words and phrases, a critical step
in the process, these techniques analyze a sample of docu-
ments from the collection of interest. The size of this docu-
ment sample is necessarily small to keep the overhead of the
querying approach at reasonable levels.

Unfortunately, small document samples are unlikely to re-
flect the typically large variations in language and content

1http://trec.nist.gov/data.html

241 10.5441/002/edbt.2015.22

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.22

that useful documents for an extraction task may exhibit.
For example, a document sample for Occurs-in may not
include any documents on (relatively rare) volcano erup-
tions, and hence these techniques may fail to derive queries
such as [lava] or [“sulfuric acid”] that would retrieve relevant,
volcano-related documents. As a result, the queries from ex-
isting techniques may suffer from low recall during extrac-
tion. Furthermore, precision is also compromised: standard
keyword search identifies documents whose topic is relevant
to the queries, without considering their relevance to the
information extraction task at hand.
To alleviate the precision-related issue above, FactCrawl [7]

moves a step beyond keyword search: after retrieving docu-
ments with sample-derived keyword queries, FactCrawl re-
ranks the documents according to a simple function of the
number and “quality”—based on their F-measure [27]—of
the queries that retrieved them, thus helping prioritize the
extraction effort. However, FactCrawl exhibits two key weak-
nesses: (i) for document retrieval and ranking, FactCrawl
relies on queries derived, once and for all, from a document
sample, and hence suffers from the sample-related problems
discussed above; (ii) for document ranking, FactCrawl relies
on a coarse, query-based document scoring approach that
is not adaptive (i.e., the scoring function does not change
as we observe new documents). Therefore, this approach
does not benefit from the information that is captured as
the extraction process progresses.
In this paper, we advocate an adaptive document rank-

ing approach that addresses the above limitations of the
state-of-the-art techniques. Specifically, we propose a princi-
pled, efficient learning-to-rank approach that prioritizes doc-
uments for an information extraction task by combining: (i)
online learning [30], to train and adapt the ranking mod-
els incrementally, hence avoiding computationally expensive
retrains of the models from scratch; and (ii) in-training fea-
ture selection [17], to identify a compact, discriminative set
of words and phrases from the documents to train ranking
models effectively and efficiently. Importantly, our approach
revises the document ranking decisions periodically, as the
ongoing extraction process reveals (fine-grained) characteris-
tics of the useful documents for the extraction task at hand.
Our approach thus manages to capture, progressively and
in an adaptive manner, the heterogeneity of language and
content typically exhibited by the useful documents, which
in turn leads to information extraction executions that are
substantially more efficient—and effective—than those with
state-of-the-art approaches, as we will see. In summary, we
present an end-to-end document ranking approach for ef-
fective and efficient information extraction in an adaptive,
online, and principled manner. Our main contributions are:

• Two low-overhead ranking algorithms for information ex-
traction based on learning-to-rank strategies. These al-
gorithms perform online learning and in-training feature
selection (Section 3.1).

• Two techniques to detect when adapting the ranking model
for information extraction is likely to have a significantly
positive impact on the ranking quality (Section 3.2).

• An experimental evaluation of our approach using mul-
tiple extraction tasks implemented with a variety of ex-
traction approaches (Sections 4 and 5). Our approach
has low overhead and manages to achieve higher accuracy
than the state-of-the-art approaches, and hence is a sub-
stantial step towards scalable information extraction.

2. BACKGROUND AND RELATED WORK
Information extraction systems extract structured infor-

mation from natural language text. For instance, an extrac-
tion system properly trained to extract tuples of an Occurs-
in(NaturalDisaster , Location) relation might extract the tu-
ple<tsunami, Hawaii> from the sentence: “A tsunami swept
the coast of Hawaii.” These systems often rely on com-
putationally expensive processing steps and, consequently,
processing all documents exhaustively becomes prohibitively
time consuming for large document collections [2]. Ideally,
we should instead focus the extraction effort on the use-
ful documents, namely, the documents that produce tuples
when processed with the information extraction system at
hand.

As a crucial task, information extraction optimization ap-
proaches (e.g., Holistic-MAP [31]) choose a document selec-
tion strategy to identify documents that are likely to be use-
ful. State-of-the-art approaches for such document selection
(e.g., QXtract [2], PRDualRank [14], and FactCrawl [7]) are
based on the observation that useful documents for a spe-
cific relation2 tend to share distinctive words and phrases.
Discovering these words and phrases is challenging because:
(i) many extraction systems rely on off-the-shelf, black-box
components (e.g., named entity recognizers), from which
we cannot extract relevant words and phrases directly; and
(ii) machine learning techniques for information extraction
do not generally produce easily interpretable models, which
complicates the identification of relevant words and phrases.
QXtract learns these words and phrases through document
classification: after retrieving a small document sample, QX-
tract automatically labels each document as useful or not by
running the extraction system of interest over these docu-
ments. QXtract can thus learn that words like “richter” or
“hypocenter” are characteristic of some of the useful doc-
uments for Occurs-in. Then, QXtract uses these learned
words and phrases as keyword queries to retrieve (other)
potentially useful documents (see Figure 1). More recent ap-
proaches (e.g., FactCrawl [7] and PRDualRank [14]) adopt
similar retrieval-based document selection strategies.

QXtract issues queries to the standard keyword search
interface of document collections in order to retrieve poten-
tially useful documents for extraction. Such keyword search
interface, unfortunately, is not tailored for information ex-
traction: the documents that are returned for a keyword
query are ranked according to how well they match the query
and not on how useful they are for the underlying informa-
tion extraction task [7]. For example, the query [tornado]
for the Occurs-in relation returns only 145 useful documents
among the top-300 matches from our validation split of the
New York Times annotated corpus3 (see Section 4) using
Lucene4, a state-of-the-art search engine library.

FactCrawl [7] moves a step beyond keyword search and re-
ranks the retrieved documents to prioritize the extraction ef-
fort (see Figure 1). Specifically, FactCrawl scores documents
proportionally to the number and quality of the queries that
retrieve them. FactCrawl determines the quality of each
learned query—and of the query generation method that

2Our approach is not applicable over open information ex-
traction scenarios (e.g., [4]) where most documents often
contribute tuples to the open-ended extraction task.
3http://catalog.ldc.upenn.edu/LDC2008T19
4http://lucene.apache.org/

242

was used to generate the query—in an initial step, once
and for all, by retrieving a small number of documents with
the query and running them through the extraction system
in question. With this initial step, FactCrawl derives: (i)
for each query q, the F-measure Fβ(q), where β is a pa-
rameter that weights precision over recall; and (ii) for each
query generation method m, the average F avg

β (m) of the
Fβ value of all queries generated with method m. During
the extraction process, after retrieving documents with a
set Qd of queries learned via a query generation method
m, FactCrawl re-ranks the documents according to a scor-
ing function S(d) =

∑
q∈Qd

Fβ(q) · F avg
β (m). FactCrawl’s

document re-ranking process improves the efficiency of the
extraction, since the documents more likely to be useful
are processed earlier. However, FactCrawl exhibits two key
weaknesses: (i) for document retrieval and ranking, just as
QXtract (see discussion above), FactCrawl relies on queries
derived, once and for all, from a small initial document sam-
ple, and hence may miss words and phrases relevant to the
information extraction task at hand; and (ii) for document
ranking, FactCrawl relies on a coarse, query-based document
scoring approach that is not adaptive, and hence does not
benefit from the wealth of information that is captured as
the extraction process progresses.
Adaptive models have been used for information extrac-

tion in a variety of ways. Early influential systems for large-
scale information extraction, such as DIPRE [10] and Snow-
ball [1], have relied on bootstrapping to adapt to newly dis-
covered information. Starting with a small number of “seed”
tuples for the extraction task of interest, these systems learn
and iteratively improve extraction patterns and, simultane-
ously, build queries from the tuples that they discover using
these patterns. However, these systems are not suitable for
our problem for two main reasons. First, techniques based
on bootstrapping often exhibit far-from-perfect recall, since
it is difficult to reach all tuples in a collection by using pre-
viously extracted tuples as queries [2, 19]. Second, extrac-
tion systems are many times “black box” systems, which im-
pedes the alteration of their extraction decisions. Other ap-
proaches (e.g., [12]) have relied on label propagation: start-
ing with labeled and unlabeled examples, these approaches
propagate the given labels to the unlabeled examples based
on some example similarity computation. Such label propa-
gation approaches are not beneficial for our extraction sce-
nario, where the extraction system has already been trained
and we can obtain new labels (i.e., useful or not) for pre-
viously unseen documents automatically by running the ex-
traction system over them.

3. ONLINE ADAPTIVE RANKING
We now propose an end-to-end document ranking ap-

proach for scalable information extraction (see Figure 2)
that addresses the limitations of the state of the art. Our ap-
proach prioritizes documents for an information extraction
task—with a corresponding already-trained information ex-
traction system—based on principled, efficient learning-to-
rank approaches that exploit the full contents of the docu-
ments (Section 3.1). Additionally, our approach revises the
ranking decisions periodically as the extraction process pro-
gresses and reveals (fine-grained) characteristics of the use-
ful documents for the extraction task at hand (Section 3.2).
Our approach thus manages to capture, progressively and
in an adaptive manner, the heterogeneity of language and

Figure 1: QXtract and FactCrawl.

content typically exhibited by the useful documents, which
leads to extraction processes substantially more efficient—
and effective—than those with state-of-the-art approaches,
as we will show experimentally in Sections 4 and 5.

3.1 Ranking Generation
To prioritize the information extraction effort, by focus-

ing on the potentially useful documents for the extraction
system at hand, we follow a learning-to-rank approach (see
Ranking Generation step in Figure 2). Similarly to state-of-
the-art query-generation and ranking efforts (see Section 2),
we obtain a small document sample and automatically “la-
bel” it with the information extraction system, without hu-
man intervention. We use the documents in this sample,
with their words as well as the attribute values of tuples
extracted from them as features, to train an initial docu-
ment ranking model. After the initial document ranking is
produced, we start processing documents, in order, with the
information extraction system (see Tuple Extraction step in
Figure 2).5 Unfortunately, the initial ranking model is gen-
erally far from perfect, because it is learned from a neces-
sarily small document sample. So our approach periodically
updates and refines the ranking model (see Update Detec-
tion step in Figure 2), as new documents are processed and
the characteristics of the useful documents are revealed, as
we will discuss in detail in Section 3.2.

Unfortunately, state-of-the-art approaches for learning to
rank [23] are problematic for our document ranking setting
for two main reasons. First, such approaches tend to be
computationally expensive [29], so updating and revising the
ranking model continuously over time, as new documents
are processed, would result in an unacceptably high over-
head in the extraction process. Second, such approaches
tend to require a relatively small feature space [3]. In con-
trast, in our ranking setting the feature space, including the
document words and attributes of extracted tuples, is vast;
furthermore, the feature space continues to grow as new doc-
uments are processed. Therefore, we need to develop uncon-
ventional learning-to-rank techniques for our ranking prob-
5The pool of documents to process is either the full docu-
ment collection, for collections of moderate size over which
we have full access, or, alternatively, the documents re-
trieved with queries learned from the document sample. In
Sections 4 and 5, we discuss this issue further and experi-
mentally study these two scenarios.

243

Figure 2: Our adaptive learning-to-rank approach
for information extraction.

lem, to address the above two limitations of state-of-the-art
approaches in an effective and efficient manner and with-
out compromising the quality of the ranking models that we
produce.
To address the efficiency limitation of learning-to-rank ap-

proaches, and to update the document ranking model effi-
ciently, we rely on online learning [8]. Using online learning,
we can train the ranking model incrementally, one document
at a time. Therefore, we can continuously adapt the rank-
ing model as we process new documents, without having
to retrain it from scratch. To adapt online learning to our
problem, the main challenge is to define an update rule for
the model—to be triggered when we observe new documents
along the extraction process—that is simple enough to be
efficient but, at the same time, sophisticated enough to pro-
duce high-quality models. From among the most robust on-
line learning approaches [8], the updates based on Pegasos
gradient steps [30] are particularly well suited for our ap-
proach because of their efficiency and accuracy. Specifically,
Pegasos gradient steps provide update rules that guarantee
that learning techniques based on Support Vector Machines
(SVM), the basis for some of the best-performing learning-
to-rank approaches, learn high-quality models efficiently.
To address the feature-set limitation of learning-to-rank

approaches, and to handle large (and expanding) feature
sets, we rely on in-training feature selection [17]. In a nut-
shell, with in-training feature selection the learning-to-rank
algorithm can efficiently identify the most discriminative fea-
tures, out of a large and possibly expanding feature set,
during the training of the document ranking model and
without an explicit feature selection step. To do so, we
rely on a sparse representation of the vectors that repre-
sent the feature weights, to discard all features with zero
value. Therefore, our objective is to penalize models that
rely on a large number of features with non-zero weight. In-
terestingly, we can rely on regularization [6] to control the
feature weight distribution in our learned models: regular-
ization penalizes models that have undesirable properties
such as having many features with non-zero weights, so we
can use it for in-training feature selection and also to avoid
overfitting. In our approach, we rely on a linear combina-
tion of two regularization methods, usually called elastic-net
regularization [35], which integrates: (i) the ℓ1-norm regular-
ization [32], which tends to learn models where only a small
subset of the features have non-zero weights; and (ii) the ℓ2-
norm regularization, which produces high-quality models by
avoiding overfitting. This combination is necessary because
the ℓ1-norm regularization does not perform well when the

number of documents is smaller than the feature space [35],
which is the case during early phases of the extraction pro-
cess.

We now propose two learning-to-rank strategies, BAgg-IE
and RSVM-IE, that overcome the limitations of state-of-the-
art learning-to-rank approaches by integrating online learn-
ing and in-training feature selection, as discussed above.
BAgg-IE: Our first strategy incorporates online learning
and in-training feature selection into a binary classification
scheme where documents are ranked according to their as-
signed label and prediction confidence. Since binary classi-
fiers optimize the accuracy of label assignment instead of the
instance order, they are not optimized for ranking tasks [18].
For this reason, BAgg-IE adopts a more robust approach
that exploits multiple binary classifiers based on bootstrap-
ping aggregation, or bagging [9]. With this approach, the
label assignments and confidence predictions derive from
the aggregation of the answers of a committee of classifiers,
rather than from an individual classifier. The intuition be-
hind BAgg-IE is that each classifier is able to evaluate dis-
tinct aspects of the documents, thus collectively mitigating
the limitations of each individual classifier. We adapt SVM-
based binary classifiers [20] to support online learning and
in-training feature selection. For online learning, our algo-
rithm is based on Pegasos, in which each text document is
a training instance and, hence, we update the model one
document at a time. For in-training feature selection, each
classifier in BAgg-IE combines the SVM binary classification
problem with the regularization components of the elastic-
net regularization framework that we discussed earlier, thus
yielding the following learning problem to solve:

argmin
w,b

λAll(
λL2

2
∥w∥2+(1−λL2)∥w∥1)+

∑

(d,y)∈S

ℓ(y⟨w,d⟩+b)

where b is the bias factor, ℓ is the hinge loss function, ℓ(t) =
max(0, 1−t), and ∥w∥1 and ∥w∥2 are the ℓ1 and ℓ2-norms of
the weight vector (i.e., the regularization components), re-
spectively. Moreover, λAll is the parameter that weights the
regularization component over the loss function, and λL2,
0 ≤ λL2 ≤ 1, is the parameter that weights the ℓ2-norm
regularization over the ℓ1-norm regularization.

The committee in BAgg-IE consists of three classifiers6,
trained over disjoint splits of the documents, which leads to
different feature spaces for each, and with balanced labels
(i.e., same number of useful and useless documents). Finally,
to obtain the score of a text document we sum over the nor-
malized scores of each classifier s(d) = 1

1+e−(w⊤d+b)
, which

accounts for the differences in the feature weights of each
classifier. In this equation, w and b are the weight vector
and bias factor, respectively, of the classifier.

In summary, BAgg-IE addresses the ranking problem as
an optimized classification problem. In contrast, our sec-
ond technique, RSVM-IE, which we describe next, adopts a
principled learning-to-rank approach natively.
RSVM-IE: Our second learning-to-rank strategy is based
on RankSVM [21], a popular and effective pairwise learning-
to-rank approach. Just as we did for BAgg-IE, we need to
modify RankSVM’s original optimization problem so that it
incorporates in-training feature selection and, in turn, suits
our ranking problem. In a nutshell, RankSVM scores the

6Additional classifiers would slightly improve performance
at the expense of substantial overhead.

244

documents via a linear combination of the document fea-
tures: the score of a document d is s(d) =

∑
i wi · di, where

wi is the weight of feature i and di is the value of feature i in
document d. The objective of RankSVM is then to find the
set of weights w = {w1, ..., wn} that is optimized to deter-
mine, in a pair of documents, if a document is more relevant
than the other document. To achieve this, RankSVM learns
the feature weights by comparing the features of useful and
useless documents in pairs: each pair includes a useful and a
useless document, and the label indicates whether the useful
document is the first document in the pair.
By integrating the in-training feature selection discussed

above into the original RankSVM formulation, we obtain
the following optimization problem to solve for RSVM-IE:

argmin
w

λAll(
λL2

2
∥w∥2+(1−λL2)∥w∥1)+

∑

(i,j)ϵP

ℓ(w⊤(di−dj))

where all variables are defined as for BAgg-IE, and di and dj

represent a useful and a useless document, respectively. For
online learning, and in contrast to BAgg-IE, which uses the
individual documents in the Pegasos scheme, the training
examples are the pairs of useful and useless documents that
the extraction process observes, which is known as Stochastic
Pairwise Descent [29].
Unlike BAgg-IE, RSVM-IE is designed from the ground

up to address a ranking task, so we expect it to outperform
BAgg-IE. Moreover, we expect the overhead of RSVM-IE to
be substantially lower than that of BAgg-IE, since BAgg-
IE maintains multiple learned models (i.e., the classifiers in
the committee). This overhead becomes noticeable when
the models are frequently updated. Next, we explain our
approach to decide when an update of the ranking models
is desirable during the extraction process, thus reducing the
overall document re-ranking overhead.

3.2 Update Detection
As we mentioned in Section 3.1, our adaptive extraction

approach revises the ranking decisions periodically, to ac-
count for the new observations gathered along the extraction
process. To determine when to update the ranking model
(and, correspondingly, the document ranking), we introduce
the Update Detection step (see Figure 2). To make this de-
cision, we analyze whether the features of recently processed
documents differ substantially from those in the ranking
model. If this is the case, then we trigger a new ranking
generation step (Section 3.1), which uses the recently pro-
cessed documents as additional training examples. The new
training examples often reveal novel features, or lead to ad-
justing the weight of known features, which in turn helps to
more effectively prioritize the yet-unprocessed documents.
One possible approach for update detection is through fea-

ture shifting detection techniques [16]. Feature shifting pre-
dicts whether the distribution of features in a (test) dataset
differs from the distribution of the features in the training
data. Unfortunately, most feature shifting techniques are
problematic: First, they rely on computationally expensive
algorithms (e.g., kernel-based one-class SVM classifier [16]),
thus incurring substantial overhead when applied repeatedly.
Second, these techniques only detect changes in existing fea-
tures, so they do not handle well the evolving feature space
in our problem. Thus, the features that do not appear in the
ranking would not be considered in the comparison, unless

we re-train the kernel-based classifier from scratch, which
would be prohibitively expensive.

As efficient alternatives, we introduce two update detec-
tion approaches, namely, Top-K and Mod-C. Top-K eval-
uates a reduced set of highly relevant features, determined
independently from the ranking model, whereas Mod-C di-
rectly manipulates the low-level characteristics of the rank-
ing model to detect changes in the feature space.
Top-K: Our first approach exploits the fact that the pre-
dicted usefulness of the documents in the current ranking
varies the most when the highly influential features in the
ranking model change. For instance, if the word “lava”
becomes more frequent along the processed useful docu-
ments in our Occurs-in example, this feature will become
(temporarily) more relevant than others. In that case, the
predicted usefulness of documents that include such word
should increase accordingly to be prioritized over other doc-
uments. Based on this observation, Top-K compares the K
most influential features in the current ranking against the
K most influential features according to the recently pro-
cessed documents, and triggers an update when the differ-
ence between these two sets exceeds a given threshold τ , de-
termined experimentally, as we explain in Section 4. Overall,
Top-K consists of two key steps: (i) feature selection, which
selects the K most influential features; and (ii) feature com-
parison, which measures the distance between two sets of
features. To perform feature selection, we choose the K fea-
tures with highest weight in an SVM-based linear classifier
trained—and subsequently updated—on the same features
(i.e., words and tuple attributes) as the ranking algorithm.
To perform feature comparison, we compute a generalized
version of the Spearman’s Footrule7 [22], which considers the
relative position of the features and their weights. According
to this measure, the difference between feature weights will
be higher when heavily weighted features change positions.

As discussed, Top-K maintains its own set of relevant
features according to an SVM-based binary classifier. The
advantage of this approach is that it makes Top-K inde-
pendent of the ranking technique. However, the relevant
features in this classifier may differ from those in the rank-
ing model [18]. In our Occurs-in example, for instance, a
trained RankSVM model weighted the word “northern” as
a top-20 feature, whereas a linear SVM model trained on
the same documents weighted “northern” almost neutrally.
Such discrepancies in the feature relevance may cause up-
dates that have little impact on the document ranking or,
alternatively, may lead to missing necessary updates because
important features are not being evaluated. We now intro-
duce Mod-C, which works directly with the ranking models,
to capture feature relevance directly.
Mod-C: The techniques in Section 3.1 learn ranking mod-
els that consist of a vector of numeric weights, where each
weight represents the captured relevance of one feature. We
can then use a vector similarity metric, such as cosine sim-
ilarity [24], to measure the difference between the relevance
of features in two similar ranking models. Our second tech-
nique, Mod-C, exploits this observation and compares the
current ranking model to an “updated” ranking model that
also includes some of the recently processed documents. This

7The generalized version of the Spearman’s Footrule that we

use is given by
∑

i wi ·
∣∣∣
∑

j:j≤i wj −
∑

j:σ(j)≤σ(i) wj

∣∣∣, where
σ(i) is the rank of feature i and wi is its weight.

245

updated ranking model includes only a fraction ρ of the
recently processed documents, since including all of these
documents would incur substantial overhead. To compare
the ranking models, Mod-C depends on a metric suitable
for the ranking model (e.g., cosine similarity for RSVM-IE)
and a threshold α, determined experimentally as we explain
in Section 4, that needs to be exceeded to trigger an up-
date. In our cosine similarity example, α would indicate
the maximum allowed angle between ranking models, hence
triggering an update when this angle is exceeded. Mod-C is
thus able to handle the real relevance of features, crucial to
precisely decide when an update in the ranking model will
improve the current document ranking.
In summary, we propose two update detection techniques

that decide efficiently when it is beneficial to revise the rank-
ing decisions to adaptively improve the extraction process.

4. EXPERIMENTAL SETTINGS
We now describe the experimental settings for the evalu-

ation of our adaptive ranking approach:
Datasets: We used the NYT Annotated Corpus [28], with
1.8 million New York Times articles from 1987 to 2007. We
split this corpus into a training set (97,258 documents), a de-
velopment set (671,457 documents), and a test set (1,086,944
documents). We evaluated different combinations of tech-
niques and parameters on the development set. We ran
the final experiments on the test set. Additionally, we used
collections 1-5 from the TREC conference8 to generate the
queries for the query-based sample generation that we ex-
plain later in this section.
Document Access: As mentioned in Section 3.1, we con-
sider two document-access scenarios: In the full-access sce-
nario, we rank all documents in a (moderately sized) docu-
ment collection. In contrast, in the (more realistic) search
interface access scenario, we retrieve the documents to rank
through keyword queries. We evaluate our ranking approach
over both scenarios. For the search interface access scenario
we learn the queries following QXtract (Section 2) to retrieve
an initial pool of documents. Also, we provide a search inter-
face over our collection using the Lucene indexer, to retrieve
additional documents as the extraction process progresses:
after each ranking update, we use the top-100 features of the
updated ranking model as individual text queries to retrieve
additional (potentially) useful documents.
Relations: Table 1 shows the broad range of relations from
different domains that we extract for our experiments, with
the number of useful documents for each relation in the test
set. Our relations include sparse relations, for which a rela-
tively small fraction of documents (i.e., less than 2% of the
documents) are useful, as well as dense relations.
Information Extraction Techniques: We selected the
extraction approach for each relation to include a variety of
extraction approaches (e.g., both machine learning and rule-
based approaches, as well as techniques with varying speed).
Specifically, we considered different entity and relation ex-
tractors for each relation, and selected the best performing
combination. However, for diversity, whenever we had ties
in performance, we selected the (arguably) less common con-
tender (e.g., a pattern-based approach to extract organiza-
tions and Maximum Entropy Markov Model [25], or MEMM,
for natural disasters):

8http://trec.nist.gov/data.html

Relation Useful Documents
Person–Organization Affiliation (PO) 185,237 (16.95%)
Disease–Outbreak (DO) 847 (0.08%)
Person–Career (PC) 458,294 (42.16%)
Natural Disaster–Location (ND) 18,370 (1.69%)
Man Made Disaster–Location (MD) 15,837 (1.46%)
Person–Charge (PH) 19,237 (1.77%)
Election–Winner (EW) 5,384 (0.50%)

Table 1: Relations for our experiments.

• For the Person–Organization Affiliation relation we used
Hidden Markov Models [13] and automatically generated
patterns [34] as named entity recognizers for Person and
Organization, respectively. We used SVM [15] to extract
the relation.

• For the Disease–Outbreak relation we used dictionaries
and manually crafted regular expressions as named entity
recognizers for Disease and Temporal Expression, respec-
tively. We used the distance between entities to predict if
they are related.

• For the remaining relations, we used Stanford NER9 to
find Person and Location entities, a MEMM [25] to find
Natural Disasters, and Conditional Random Fields [26]
to find the remaining entities. Then, we used the Sub-
sequence Kernel [11] to identify relations between these
entities.

Development Toolkits: We used the following off-the-
shelf libraries: (i) Lingpipe10, for rule-based named entity
extraction; (ii) OpenNLP11, for word and sentence segmen-
tation; (iii) E-txt2db12 and Stanford NER, to train and ex-
ecute named entity extractors based on machine learning;
and (iv) REEL13 [5], to train relation extraction models.
Sampling Strategies: We compared two techniques to col-
lect the initial document sample for our ranking techniques
(Section 3.1):

• Simple Random Sampling (SRS): SRS picks 2,000 docu-
ments at random from the collection (only for the full-
access scenario).

• Cyclic Query Sampling (CQS): CQS iterates repeatedly
over a list of queries and collects the unseen documents
from the nextK documents that each query retrieves until
it collects 2,000 documents. We learned 5 lists of queries
using sets of 10,000 random documents (5,000 useful and
5,000 useless) from the TREC collection by applying the
SVM-based method in QXtract [2].

Ranking Generation Techniques: We evaluated our rank-
ing generation techniques from Section 3.1. To obtain the
best parameters for these techniques, we performed several
experiments over our development set, varying λAll and λL2.
The parameter values that we determined experimentally
are as follows: for BAgg-IE, λAll = 0.5 and λL2 = 0.99;
while for RSVM-IE, λAll = 0.1 and λL2 = 0.99. Setting
λL2 = 0.99 results in an ℓ1-norm weight of 1 − λL2 = 0.01.
This weight in turn results in models with 10 times fewer
features—which are hence 10 times faster—than models that
only use the ℓ2-norm. Higher ℓ1-norm weights would lead to

9http://nlp.stanford.edu/software/CRF-NER.shtml
10http://alias-i.com/lingpipe/
11http://opennlp.apache.org/
12http://web.ist.utl.pt/ist155840/etxt2db/
13http://reel.cs.columbia.edu/

246

lower-quality ranking models, as discussed in Section 3.
We also evaluated the following (strong) baselines:

• FactCrawl (FC): FC corresponds to our implementation
of FactCrawl [7], as described in Section 2.

• Adaptive FactCrawl (A-FC): We produced a new version
of FC that re-ranks the documents. Specifically, to make
FC more competitive with our adaptive ranking strategies,
A-FC recomputes the quality of the queries, and re-ranks
the documents with these new values after each document
is processed. In addition, A-FC learns new queries and
retrieves more documents before every re-ranking step.

(We evaluated other approaches, such as QXtract [2] and
PRDualRank [14], but do not discuss them further because
FactCrawl dominated the alternatives that we considered.)
Update Detection Techniques: We evaluated our up-
date detection techniques from Section 3.2:
• Top-K: We set K = 200, which experimentally led to

high coverage of the relevant features and small overhead
in feature comparison. We set τ = ε ·K, where ε indicates
how much each feature can change without impacting the
ranking. We experimented with several values of τ and
finally picked τ = 0.5 (ε = 0.0025).

• Mod-C: We evaluated several combinations of ρ and α:
the best value for ρ is 0.1, while the best angle values for
α are 5◦ and 30◦ for RSVM-IE and BAgg-IE, respectively.

We also compared against the following baselines:
• Wind-F: We implemented a näıve approach for update de-

tection that updates the ranking model after processing a
fixed number of documents. We experimented with sev-
eral values and observed no substantial differences. We re-
port our results for updating 50 times along the extraction
process, which leads to updates after 13,429 and 21,739
documents for the validation and test sets, respectively.

• Feat-S: We implemented an efficient version of feature
shifting [16] using an online one-class SVM based on Pe-
gasos [30]. We used a Gaussian kernel with γ = 0.01 and
k = 6, as suggested in [16]. Finally, we triggered an up-
date when the geometrical difference F = 1− S exceeded
a threshold τ = 0.55. Since the features of the documents
after each update tend to fluctuate, we only run Feat-S
after processing 700 new documents or more.

Executions and Infrastructure: We ran all experiments
over a cluster with 60 machines with a uniform configura-
tion: Intel Core i5-3570 CPU @ 3.40 GHz processors, with
8 GB of RAM, and OS Debian GNU/Linux 7 (wheezy). We
used multiple independent processes to test our approach
with different configurations. We executed each experiment
five times with different samples (i.e., five different random
samples and five different sets of initial sample queries), to
account for the effect of randomness in the results, and re-
port the average of these executions.
Evaluation Metrics: We use the following metrics:
• Average recall is the recall of the extraction process (i.e.,

the fraction of useful documents in the collection that have
been processed) at different points during the extraction
(e.g., after processing x% of the documents) and averaged
over all executions of the same configuration.

• Average precision is the mean of the precision values at
every position of the ranking [33], averaged over all the
executions of the same configuration.

• Area Under the ROC (AUC) is the area under the curve
of the true positive rate as a function of the false pos-
itive rate, averaged over all the executions of the same

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Processed Documents (%)

Av
er

ag
e

R
ec

al
l (

%
)

Random Ranking
Perfect Ranking
BAgg−IE
RSVM−IE
FC

Figure 3: Average recall for Person–Charge for dif-
ferent base ranking generation techniques.

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Processed Documents (%)

Av
er

ag
e

R
ec

al
l (

%
)

Random Ranking
Perfect Ranking
BAgg−IE
RSVM−IE
FC

Figure 4: Average recall for Disease–Outbreak for
different base ranking generation techniques.

configuration.
• CPU time measures the CPU time consumed for extract-

ing and ranking the documents.

5. EXPERIMENTAL RESULTS
We now present the results of the experimental evaluation

of our adaptive ranking approach. We tuned the configura-
tion of all components of our approach (i.e., the sampling
strategy, the learning-to-rank approach, and the update de-
tection approach) by exhaustively considering all possible
combinations over the development set and selecting the
best such combination. In the discussion below, for clarity,
we consider the configuration choices for each component
separately. Later, for the final evaluation of our approach
over the test set and against the state-of-the-art ranking
strategies, we use the best configuration according to the
development set experiments.
Impact of Learning-To-Rank Approach: To under-
stand the impact of using our learning-to-rank approach,
we first evaluate our techniques of Section 3.1, without the
adaptation step, against FC over the development set. Fig-
ure 3 shows the average recall for the Person–Charge re-
lation for the full-access scenario. (For reference, we also
show the performance of a random ordering of the docu-
ments, as well as of a perfect ordering where all useful doc-
uments are ahead of the useless ones.) Both RSVM-IE and
BAgg-IE consistently outperform FC. Interestingly, RSVM-

247

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Processed Documents (%)

Av
er

ag
e

R
ec

al
l (

%
)

Random Ranking
Perfect Ranking
BAgg−IE
RSVM−IE
FC

Figure 5: Average recall for Person–Career for dif-
ferent base ranking generation techniques.

IE performs better in early phases of the extraction, while
BAgg-IE performs better in the later phases, which agrees
with our intuition from Section 3.1: RSVM-IE is at its core
a ranking optimization technique, while BAgg-IE is based
on classifiers. BAgg-IE separates useful from useless doc-
uments, thus obtaining high-accuracy in the middle of the
extraction process, which in turn leads to high recall later
on. We observed similar results for most of the relations
(e.g., Figures 4 and 5 show the results for Disease–Outbreak
and Person–Career respectively). However, RSVM-IE per-
forms better than BAgg-IE for sparse relations, so RSVM-
IE is preferable for such relations even in later phases of the
extraction process (see Figure 4). Overall, even without an
adaptation step, our techniques outperform the state-of-the-
art ranking technique FC.
Impact of Sampling Strategies: To understand the im-
pact of different sampling techniques to learn the initial
ranking model, we compared RSVM-IE and BAgg-IE using
the SRS and CQS sampling techniques (Section 4). Fig-
ure 6 shows the average recall for the Man Made Disaster–
Location relation in the full-access scenario for RSVM-IE,
both without the adaptation step (denoted with keyword
“Base” in the plot) as well as with adaptation (denoted with
keyword “Adaptive”). (The results for BAgg-IE were anal-
ogous; see Figure 7.) Using CQS, a sophisticated sampling
technique, has a generally positive impact relative to using
the (simpler) SRS strategy. The only exceptions were the
dense relations, namely, Person–Organization and Person–
Career, for which a simple random sample typically includes
a wide variety of useful documents, thus leading to high-
quality models.
Impact of Adaptation: We claimed throughout this pa-
per that refining the document ranking along the extraction
process significantly improves its efficiency. To support this
claim, Figure 6 shows the average recall of RSVM-IE for the
Man Made Disaster–Location relation for the full-access sce-
nario. (The results for BAgg-IE are analogous, although the
difference between the sampling techniques is higher than
for RSVM-IE; see Figure 7.) These results show that by
adapting the ranking model learned by RSVM-IE and, corre-
spondingly, the document ranking, we significantly improve
the efficiency of the extraction process. For example, Figure
6 shows that the adaptive versions of RSVM-IE can reach
70% of the useful documents after processing only 10% of

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Processed Documents (%)

Av
er

ag
e

R
ec

al
l (

%
)

Random Ranking
Perfect Ranking
Base SRS RSVM−IE
Base CQS RSVM−IE
Adaptive SRS RSVM−IE
Adaptive CQS RSVM−IE

Figure 6: Average recall for Man Made Disaster–
Location with different sampling techniques for the
base and adaptive versions of RSVM-IE.

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Processed Documents (%)

Av
er

ag
e

R
ec

al
l (

%
)

Random Ranking
Perfect Ranking
Base SRS BAgg−IE
Base CQS BAgg−IE
Adaptive SRS BAgg−IE
Adaptive CQS BAgg−IE

Figure 7: Average recall for Man Made Disaster–
Location with different sampling techniques for the
base and adaptive versions of BAgg-IE.

the collection, whereas the base (non-adaptive) versions only
reached 40% and 50% of the useful documents, for SRS and
CQS, respectively. This same behavior was replicated by
almost all relations. Additionally, as shown in Figure 6,
the sampling technique does not have a significant impact
anymore when we incorporate the adaptation step. Nev-
ertheless, we observed that the results of average precision
and AUC (see Table 2) are generally better for CQS than for
SRS, since CQS leads to processing more useful documents
at early stages of the extraction process.

Finally, we evaluated the number of new features incorpo-
rated into the ranking model during the adaptation step. In
early stages of the extraction process, an average of 200 (or
about 25% of the total number of features in the previous
models) are incorporated; a similar number of features is
removed in each adaptation step. However, in later stages,
this behavior changes as the models become more stable.
Specifically, the number of incorporated and removed fea-
tures drops to 10 after each adaptation step. These results
show that while the initial adaptation steps significantly
impact the ranking model, the later ones are insignificant.
Therefore, it is important to properly schedule the adapta-
tion step to avoid insignificant updates to the ranking model.
Impact of Update Detection: To evaluate the update
detection techniques that we introduced in Section 3.2, we
fix the document sampling to SRS, and evaluate the tech-

248

Base SRS Base CQS Adaptive SRS Adaptive CQS
Rel. A. Precision AUC A. Precision AUC A. Precision AUC A. Precision AUC
PO 33.6±0.9% 76.7±1.0% 37.9±1.0% 77.7±0.9% 44.2±0.3% 82.7±0.1% 43.6±0.3% 82.7±0.1%
DO 2.3±1.1% 88.2±2.2% 3.1±0.6% 87.9±0.9% 3.0±1.0% 97.0±0.1% 3.8±0.6% 97.1±0.1%
PC 80.2±0.4% 86.9±0.2% 79.2±0.5% 86.5±0.4% 84.2±0.2% 89.9±0.1% 84.1±0.2% 89.9±0.1%
ND 6.1±1.1% 64.0±3.5% 13.1±0.9% 64.3±3.2% 10.2±0.9% 85.5±0.2% 16.4±0.8% 85.4±0.2%
MD 7.3±1.8% 67.4±3.2% 13.6±1.2% 76.6±3.6% 12.9±1.4% 88.6±0.2% 17.2±0.8% 89.2±0.1%
PH 28.6±0.7% 89.7±1.4% 28.1±1.1% 87.3±1.6% 33.0±0.6% 95.5±0.0% 33.4±0.6% 95.4±0.0%
EW 6.6±4.0% 79.5±8.6% 10.2±0.8% 84.6±1.4% 9.4±3.2% 94.9±0.5% 12.6±0.6% 95.3±0.1%

Table 2: Comparison of the impact of different document sampling techniques on the ranking quality for all
the relations with the base and adaptive versions of RSVM-IE for the full-access scenario.

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Processed Documents (%)

Av
er

ag
e

R
ec

al
l (

%
)

Random Ranking
Perfect Ranking
Wind−F RSVM−IE
Feat−S RSVM−IE
Top−K RSVM−IE
Mod−C RSVM−IE

Figure 8: Average recall for Election–Winner for
different update methods with RSVM-IE.

niques according to their impact on the extraction process,
distribution of updates, and overhead. Figure 8 shows the
results of RSVM-IE for the Election–Winner relation for the
full-access scenario. (The behavior for the other relations is
analogous.) The Feat-S technique performed poorly in com-
parison to others, because Feat-S stops performing updates
when the features observed in the data stabilize with respect
to its kernel-based definition of shifting. For this reason,
Feat-S misses late updates that prioritize other still poorly
ranked useful documents. In addition, we observe that both
Top-K and Mod-C produce consistently better results than
Wind-F, especially at early stages of the extraction process,
thus leading to high recall early in the extraction process.
Overall, we show that both Top-K and Mod-C are robust
alternatives for update detection in terms of ranking quality.
We also studied the distribution of updates across the ex-

traction process, to understand the behavior of Top-K and
Mod-C. Figure 9 shows the number of updates that each
technique performs at different stages of the extraction pro-
cess. Top-K and Mod-C tend to update much more fre-
quently in early stages, where almost all documents carry
new evidence of usefulness, than in later stages. For in-
stance, most of the updates are performed while process-
ing the first 10% of the collection. This behavior leads to
ranking models that stabilize soon, since they are able to
overcome the usual lack of training data in the initial docu-
ment samples. Interestingly, despite the density of updates
early in the process, the overall number of updates of Top-K
and Mod-C remains smaller than that of Wind-F, since our
techniques avoid unnecessary updates in late phases of the
extraction process.
Additionally, we observed the percentage of features that

are added to and eliminated from the models: the adap-

0

10

20

30

40

50

Wind−F Feat−S Top−K Mod−C

N
um

be
r O

f U
pd

at
es

 Processed
 Documents (%) 10 20 30 40 50 60 70 80 90 100

Figure 9: Distribution of updates for different
techniques over the Election–Winner relation with
RSVM-IE. (Darker shades represent earlier stages
of the extraction process.)

Update Technique CPU Time per Document
Wind-F 0.01±0.00 ms
Feat-S 5.72±0.29 ms
Top-K 1.89±0.71 ms
Mod-C 0.32±0.10 ms

Table 3: Average CPU time to perform update de-
tection after processing each document.

tation steps triggered by Top-K and Mod-C incorporate a
consistent percentage of new features (i.e., about 10% per
adaptation step) throughout the extraction process. This
behavior significantly differs from that of Wind-F, which in-
corporates a large fraction of new features in early phases of
the extraction process but only a small fraction of features
later on: Top-K and Mod-C only perform an update when
it will have a significantly positive impact on the model.

Finally, to evaluate the impact on efficiency of the update
detection techniques, we calculated the overhead per docu-
ment in terms of average CPU time, which we summarize
in Table 3. As expected, Wind-F incurs negligible over-
head (roughly 0.01 ms per document), since it only keeps a
counter of the processed documents, whereas Feat-S incurs
the highest overhead (5.72 ms per document). Our two tech-
niques, Top-K (1.89 ms per document) and Mod-C (0.32 ms
per document), exhibit a substantial difference in terms of
efficiency, since the overhead of Top-K is dominated by the
use of the binary classifier, as we discussed in Section 3.2. In
conclusion, and considering also the quality results, Mod-C
consistently outperforms the other techniques.
Scalability of our Approach: To understand how our

249

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

10 20 30 40 50 60 70 80 90 100
Collection Size (%)

C
PU

 T
im

e
(m

)

Technique BAgg−IE RSVM−IE

Recall 0.25 0.5 0.75 1

Figure 10: Average CPU time of our techniques as
a function of the collection size for different target
recall values, for the Natural Disaster–Location re-
lation.

10 20 30 40 50 60 70 80 90 100
0
2
4
6
8

10
12
14
16

Collection Size (%)

C
PU

 T
im

e
(m

)

BAgg−IE
RSVM−IE

Figure 11: Average CPU time to find a target num-
ber of documents (i.e., the number of useful doc-
uments in the subset with 10% of the collection)
for the Person–Organization Affiliation relation, as
a function of the collection size.

strategies scale with the document collection size, we pro-
duced 10 subsets of the test collection with different sizes
(from 10% to 100% of the total collection) and we measured
(i) the time overhead for producing the ranking and (ii) the
extraction time needed to reach a (fixed) target number of
useful documents in each subset. Figure 10 shows how the
size of the collection affects the CPU time needed to per-
form the ranking and extraction tasks with our techniques
for the Natural Disaster–Location relation: the CPU time
needed to perform an extraction task with our techniques
grows approximately linearly with the collection size, which
is desirable. Additionally, Figure 11 shows—for the Person–
Organization Affiliation relation—that the time needed to
find and process a target number of useful documents signif-
icantly drops as we increase the size of the collection. In this
figure, the target number of useful documents corresponds
to that in the subset of the collection that only contains 10%
of the documents. As shown, the time becomes almost con-
stant when the number of useful documents in the subset is
large enough for the ranking to reach the target number at
very early phases of the extraction process.
Comparison with State-of-the-Art Ranking Strate-

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Processed Documents (%)

Av
er

ag
e

R
ec

al
l (

%
)

Random Ranking
Perfect Ranking
BAgg−IE
RSVM−IE
FC
A−FC

(a) Disease–Outbreak

0 10 20 30 40 50 60 70 80 90 100
0

10
20
30
40
50
60
70
80
90

100

Processed Documents (%)

Av
er

ag
e

R
ec

al
l (

%
)

Random Ranking
Perfect Ranking
BAgg−IE
RSVM−IE
FC
A−FC

(b) Person–Career

Figure 12: Average recall for different ranking ap-
proaches in the full-access scenario.

gies: We now compare our best performing ranking ap-
proaches with the state-of-the-art approaches discussed in
Section 4. We selected the best configuration for RSVM-IE
and BAgg-IE according to the previous experiments, which
involve CQS sampling and Mod-C update detection. Then,
we ran this configuration over the test set to compare with
FC and A-FC. We performed this experiment in the search
interface access scenario as well, with similar conclusions.
We compare the techniques on ranking quality and efficiency.

Table 4 shows the average precision and AUC of the four
techniques that we compare, for all relations and over the
full access scenario: RSVM-IE and BAgg-IE generally out-
perform the FactCrawl baselines by a large margin, and
RSVM-IE consistently outperforms BAgg-IE. Interestingly,
our adaptive version of FactCrawl, A-FC, does not exhibit
the same significant improvement compared to FC that we
observed between the adaptive and base versions of RSVM-
IE and BAgg-IE above: A-FC is unable to properly model
the usefulness of the documents when new features emerge,
since it only relies on a small number of features.

To understand the effects of the relation characteristics,
we studied the performance of the techniques over both
sparse (Figure 12a) and dense (Figure 12b) relations. The
performance gap is more evident for sparse relations than
it is for dense relations: The vocabulary around mentions
of sparse relations tends to be reduced and specific, which
makes it easier to model and prioritize the useful docu-
ments. Conversely, dense relations are scattered across di-
verse documents, thus co-occurring with a large variety of
words, which makes it difficult to select a set of features that

250

BAgg-IE RSVM-IE FC A-FC
Rel. A. Precision AUC A. Precision AUC A. Precision AUC A. Precision AUC
PO 40.5±0.9% 78.2±0.6% 45.7±0.3% 82.4±0.1% 29.0±0.9% 68.9±0.5% 30.5±0.6% 71.9±0.8%
DO 3.5±1.3% 89.7±0.3% 8.3±0.2% 98.2±0.1% 1.5±0.4% 71.5±11.4% 1.6±0.4% 78.8±5.4%
PC 79.2±0.4% 83.7±0.4% 85.1±0.1% 88.6±0.1% 66.3±1.1% 76.3±0.4% 63.2±1.0% 72.9±0.5%
ND 10.2±1.4% 78.4±0.5% 18.9±0.6% 85.8±0.1% 6.0±0.4% 67.8±1.5% 7.1±0.4% 72.9±0.2%
MD 10.8±2.1% 81.4±1.2% 17.0±0.1% 88.0±0.0% 3.8±0.4% 67.1±1.7% 4.1±0.4% 69.9±1.5%
PH 22.3±2.6% 90.5±2.1% 33.8±0.3% 95.1±0.0% 10.0±1.5% 74.6±2.8% 11.0±1.2% 78.9±1.5%
EW 9.6±0.6% 90.2±0.2% 15.5±0.3% 95.4±0.1% 2.4±0.2% 78.1±1.5% 2.6±0.2% 80.5±1.3%

Table 4: Comparison of the rankings generated by different techniques for the full-access scenario.

0 10 20 30 40 50 60 70 80 90 100
0

9,300
18,600
27,900
37,200
46,500
55,800
65,100
74,400
83,700
93,000

Useful Document Recall (%)

C
PU

 T
im

e
(m

)

Random Ranking
BAgg−IE
RSVM−IE
FC
A−FC

(a) Natural Disaster–Location

0 10 20 30 40 50 60 70 80 90 100
0

33
66
99

132
165
198
231
264

Useful Document Recall (%)

C
PU

 T
im

e
(m

)

Random Ranking
BAgg−IE
RSVM−IE
FC
A−FC

(b) Person–Organization Affiliation

Figure 13: CPU time to obtain a target recall value.

precisely identifies useful documents. Regardless, RSVM-IE
and BAgg-IE still outperform the other techniques, since
they are able to handle feature spaces of variable sizes.
We evaluate efficiency by measuring the time—including

both ranking and extraction time—that each technique re-
quires to achieve different values of recall. We show the re-
sults for two relations that exhibit substantially different ex-
traction times according to their respective information ex-
traction system: (i) Natural Disaster–Location, which takes
an average of 6 seconds per document (Figure 13a); and (ii)
Person–Organization Affiliation, which takes an average of
0.01 seconds per document (Figure 13b). RSVM-IE outper-
forms the others, in agreement with our earlier findings. The
results for Person–Organization Affiliation are, in contrast,
slightly different. For this fast extraction task, the overhead
of the ranking technique can be problematic since it may
easily become larger than the extraction time per se. We
can observe such behavior for A-FC, which is less efficient
than a random ranking technique with no overhead: A-FC

(and, correspondingly, FC) relies on features that are expen-
sive to compute [7], which is problematic for the adaptive
case. However, the other techniques behave similarly as for
the more expensive relations, with RSVM-IE resulting in the
most efficient extraction process. Interestingly, for extrac-
tion tasks that incur lengthier extraction time, as is the case
for Natural Disaster–Location, the quality of the ranking has
a higher impact on efficiency than for other extraction tasks.

Overall, our experiments show that RSVM-IE outperforms
all other techniques in all settings and extraction tasks.
More specifically, RSVM-IE produces better rankings, while
incurring very little overhead. Finally, when combined with
Mod-C, RSVM-IE achieves much lower extraction times than
the alternative strategies that we studied. Indeed, even with
fast information extraction systems, adaptively ranking doc-
uments with RSVM-IE remained the best choice. Addition-
ally, we evaluated the scalability of our techniques and con-
firmed that as the size of the collection grows, so does the
positive impact of our approach, making it a substantial step
towards scalable information extraction.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented an adaptive, lightweight doc-

ument ranking approach for information extraction. Our
approach enables effective and efficient information extrac-
tion over large document collections. Specifically, our ap-
proach relies on learning-to-rank techniques that learn in a
principled way the fine-grained characteristics of the useful
documents for an extraction task of interest. Our techniques
incorporate (i) online learning algorithms, to enable a princi-
pled, efficient, and continuous incorporation of new relevant
evidence as the extraction process progresses and reveals the
real usefulness of documents; and (ii) in-training feature se-
lection, to enable the learning of ranking models that rely
on a small, discriminative set of features. Our experiments
show that our approach exhibits higher recall and precision
than state-of-the-art approaches, while keeping the overhead
low. Overall, our document ranking approach is a substan-
tial step towards scalable information extraction.

As future work, we plan to study how to estimate the
recall of the alternative document ranking approaches for
an information extraction task of interest. Through such
estimates, we could in turn estimate the extraction cost,
as a function of the number of processed documents, to
achieve a target recall value with each ranking approach.
We could then explore the recall-extraction cost tradeoff in
a robust, quantitative manner, and substantially enhance
recent optimization efforts for information extraction pro-
grams (e.g., [31]) by integrating our approach as an alter-
native document selection technique. As another direction
for future work, we plan to continue studying our document

251

ranking approaches along other dimensions, so that, for ex-
ample, we can characterize ranking models according to the
diversity of the tuples that they tend to produce. Finally, we
aim at exploring parallelization approaches that, combined
with the ranking-based approach described in this paper,
can further speed up the execution of information extrac-
tion systems over large volumes of text data.
Acknowledgments: This material is based upon work sup-
ported by the National Science Foundation under Grant
IIS-08-11038 and by Fundação para a Ciência e a Tecnolo-
gia, under Projects UID/CEC/50021/2013 and EXCL/EEI-
ESS /0257/2012 (Datastorm), and Ph.D. Grant SFRH/BD
/61393/2009. This work was also supported by the Intel-
ligence Advanced Research Projects Activity (IARPA) via
Department of Interior National Business Center (DoI/NBC)
contract number D11PC20153. The U.S. Government is au-
thorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, ei-
ther expressed or implied, of IARPA, DoI/NBC, or the U.S.
Government.

7. REFERENCES
[1] E. Agichtein and L. Gravano. Snowball: Extracting

relations from large plain-text collections. In
ACM-DL, 2000.

[2] E. Agichtein and L. Gravano. Querying text databases
for efficient information extraction. In ICDE, 2003.

[3] B. Bai, J. Weston, D. Grangier, R. Collobert,
K. Sadamasa, Y. Qi, O. Chapelle, and K. Weinberger.
Learning to rank with (a lot of) word features.
Information Retrieval, 13(3):291–314, 2010.

[4] M. Banko, M. J. Cafarella, S. Soderland,
M. Broadhead, and O. Etzioni. Open information
extraction from the web. In IJCAI, 2007.

[5] P. Barrio, G. Simões, H. Galhardas, and L. Gravano.
REEL: A relation extraction learning framework. In
JCDL, 2014.

[6] C. M. Bishop. Pattern recognition and machine
learning. Springer-Verlag, 2006.

[7] C. Boden, A. Löser, C. Nagel, and S. Pieper.
FactCrawl: A fact retrieval framework for full-text
indices. In WebDB, 2011.

[8] L. Bottou. Large-scale machine learning with
stochastic gradient descent. In COMPSTAT, 2010.

[9] L. Breiman. Bagging predictors. Machine Learning,
24:123–140, 1996.

[10] S. Brin. Extracting patterns and relations from the
world wide web. In WebDB, 1998.

[11] R. C. Bunescu and R. J. Mooney. Subsequence kernels
for relation extraction. In NIPS, 2005.

[12] J. Chen, D. Ji, C. L. Tan, and Z. Niu. Relation
extraction using label propagation based
semi-supervised learning. In COLING/ACL, 2006.

[13] A. Ekbal and S. Bandyopadhyay. A Hidden Markov
Model based named entity recognition system:
Bengali and Hindi as case studies. Lecture Notes in
Computer Science, 4815:545–552, 2007.

[14] Y. Fang and K. C.-C. Chang. Searching patterns for

relation extraction over the web: Rediscovering the
pattern-relation duality. In WSDM, 2011.

[15] C. Giuliano, A. Lavelli, and L. Romano. Exploiting
shallow linguistic information for relation extraction
from biomedical literature. In EACL, 2006.

[16] A. Glazer, M. Lindenbaum, and S. Markovitch.
Feature shift detection. In ICPR, 2012.

[17] I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. The Journal of Machine
Learning Research, 3:1157–1182, 2003.

[18] R. Herbrich, T. Graepel, and K. Obermayer. Large
margin rank boundaries for ordinal regression. In
Advances in Large Margin Classifiers. MIT Press,
2000.

[19] P. G. Ipeirotis, E. Agichtein, P. Jain, and L. Gravano.
To search or to crawl?: Towards a query optimizer for
text-centric tasks. In SIGMOD, 2006.

[20] T. Joachims. Text categorization with support vector
machines: Learning with many relevant features. In
ECML, 1998.

[21] T. Joachims. Optimizing search engines using
clickthrough data. In SIGKDD, 2003.

[22] R. Kumar and S. Vassilvitskii. Generalized distances
between rankings. In WWW, 2010.

[23] T.-Y. Liu. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval,
3:225–331, 2009.

[24] C. D. Manning, P. Raghavan, and H. Schütze.
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[25] A. McCallum, D. Freitag, and F. C. N. Pereira.
Maximum entropy Markov models for information
extraction and segmentation. In ICML, 2000.

[26] A. McCallum and W. Li. Early results for named
entity recognition with conditional random fields,
feature induction and web-enhanced lexicons. In
CONLL, 2003.

[27] C. J. V. Rijsbergen. Information Retrieval.
Butterworth-Heinemann, 2nd edition, 1979.

[28] E. Sandhaus. The New York Times Annotated
Corpus. In Linguistic Data Consortium, 2008.

[29] D. Sculley. Large scale learning to rank. In NIPS
Workshop on Advances in Ranking, 2009.

[30] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos:
Primal Estimated sub-GrAdient SOlver for SVM. In
ICML, 2007.

[31] G. Simões, H. Galhardas, and L. Gravano. When
speed has a price: Fast information extraction using
approximate algorithms. In PVLDB, 2013.

[32] Y. Tsuruoka, J. Tsujii, and S. Ananiadou. Stochastic
gradient descent training for L1-regularized log-linear
models with cumulative penalty. In ACL, 2009.

[33] A. Turpin and F. Scholer. User performance versus
precision measures for simple search tasks. In SIGIR,
2006.

[34] C. Whitelaw, A. Kehlenbeck, N. Petrovic, and
L. Ungar. Web-scale named entity recognition. In
CIKM, 2008.

[35] H. Zou and T. Hastie. Regularization and variable
selection via the Elastic Net. Journal of the Royal
Statistical Society, Series B, 67:301–320, 2005.

252

