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ABSTRACT
One of the applications of string similarity measures regards
identifying the same entity within one or more corpora of data,
also known as the problem of entity resolution. While a lot of
methods have been introduced for assessing the similarity of
two strings, there has not been yet a study to examine whether
these methods are appropriate, in terms of effectiveness and
fairness when applied to names of specific groups of individuals.
In this paper, we provide extensive experimental results over a
number of popular string measures which indicate that string
comparison methods fall short when applied to specific groups,
a fact leading to algorithmic bias against these groups. We also
share some thoughts and guidelines on the way we envision,
database practitioners should address such cases.

1 INTRODUCTION
Recently, the problem of algorithmic bias and fairness has drawn
significant attention [8]. There is an increasing concern about
the potential risks of data-driven approaches in decision making
algorithms [2, 8, 15, 16, 18], raising a call for equal opportunities
by design [9]. Biases can be introduced at different stages of the
design, implementation, training and deployment of machine
learning algorithms.

The problem has mainly been studied in the context of fair-
ness in classification tasks, where individuals are classified in a
positive or negative class. Example applications include, among
others, hiring, school admission, crime risk factor estimation,
and advertisement selection. There are two general approaches
to defining fairness, namely group and individual fairness [6]. A
common example of group fairness is statistical parity, where the
proportion of members in a protected class that receive positive
classification is asked to be identical to the proportion in the gen-
eral population. Individual fairness requires that similar people
are treated similarly.

In this paper, we draw attention to issues of bias in the task of
entity resolution and, in particular, to string matching for name
matching tasks. Approximate string matching forms the basis of
a variety of algorithms in many applications where the ability to
identify a word, despite of misspellings or typographical errors,
is of crucial importance.

As such, there is a significant body of work on string com-
parison methods for name matching tasks [3, 7]. There has also
been work on assessing the performance of these string matching
algorithms [4, 17]. Amongst others, Lange and Naumann [11]
consider different similarity measures for different frequencies of
names in a database. Nevertheless, to the best of our knowledge,
it is the first time that the problem of bias occurring in name
matching is examined.
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In this paper, we first provide a definition of bias in name
matching tasks. Intuitively, we consider a matching algorithm
to be negatively biased against a specific group of names, if
the mismatches occurring for names in this group exceed those
occurring on the average. Then, we examine a number of widely
used string similarity measures in terms of bias.

We provide extensive experimental evidence that there is bias
against certain race groups when applying string comparison
algorithms for name matching tasks. This kind of biased behavior
appears mainly against people with Asian origin, not intention-
ally, but as a consequence of the basic characteristic these names
have, which is short length, compared to the names of people of
other races. We then discuss approaches towards making meth-
ods for approximately matching names fair.

In brief, the contributions of this paper are outlined as follows:
• We identify the problem of bias in string comparison meth-
ods for name matching tasks.

• We propose a definition of bias for name matching tasks.
• We provide empirical evidence (in the form of extensive
experimentation) of bias in a number of string similarity
measures.

• We discuss how this problem may be addressed.
The rest of this paper is structured as follows. Section 2 in-

troduces our measure for quantifying bias in name matching
tasks, followed by a short description of the methods used in
our assessment. Next, in Section 3, we present our experimen-
tal evaluation. Finally, we conclude in Section 4, summing up
our findings, providing our vision on how bias cases for name
matching tasks should be addressed by database practitioners
and provide some thoughts for future work.

2 METHODOLOGY
In this section, we present our definition for bias in name match-
ing tasks and a brief description of the string matching methods
used in our evaluation.

2.1 Defining Bias
We need to quantitatively define the notion of bias in the context
of record matching. In general, we want to capture the fact that
for specific groups in the user population, there is unfair behavior.
Let us use U to represent the general set of users. We assume
that users are divided into m groups, Gi , ∪iGi = U , and Gi ∩

G j = ∅, for i , j, based on the value of some protected attribute,
such as, for example, race, or gender.

Intuitively, we assume that there is bias against some specific
user group G, if there are more errors in the results of matching
when it comes to users inG than in the general population. There
are two cases of errors, or mismatches. The first case is when
two records are falsely reported as a match. This corresponds to
a False Positive (FP). The second case is when two records that
correspond to the same entity are not matched. This corresponds
to a False Negative (FN). This is formalized in Definition 1.
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Definition 1 (group mismatch). The mismatchM for a user
group G of size N is defined asM(G) =

∑
u∈G F P (u)+FN (u)

N , where
FP(u) and FN (u) are the false positives and false negatives when
matching names referring to user u in G.

We determine whether a name matching method is biased to-
wards a particular group by comparing its mismatch performance
for this group with its mismatch performance for all groups of
the general populationU . To this end, we define

GM(U ) =

∑
Gi ∈U M(Gi )

m
(1)

Definition 2 (name matching bias). The bias B of a string
comparison method for a group population G is defined as:

B(G) =
GM(U ) −M(G)

GM(U )
(2)

Let us now discuss the values of bias and their meanings. If
G’s mismatches are equal to the average number of mismatches
of all groups, then its bias is equal to zero. On the other hand,
if the mismatches of G are more than the average, then bias
gets a negative value, and, in this case, we consider that the
method examined is negatively biased against G. Finally, when
the average number of mismatches is greater than that ofG , then
we assume that the method is biased in favor ofG . Values close to
0 indicate low bias, while as the absolute value of bias increases,
this is an indication of increased bias, either positive or negative.

In this paper, we consider string matching algorithms applied
to names and race as the protected attribute.

2.2 Methods for Name Matching
Let us now briefly present some popular string comparison meth-
ods for name matching tasks that we use in our empirical evalu-
ation. Let us consider two strings, which, in our case, represent
names, S1 and S2.

Edit Distance. The edit distance between S1 and S2 is the min-
imum number of edit operations required to transform S1 to S2.
We use the Levenshtein edit distance [12] where an edit opera-
tion is a character insertion, deletion or replacement, and each
operation has cost equal to 1.

Jaro & Jaro-Winkler Similarities. The Jaro similarity [10] be-
tween two strings S1 and S2 is defined as:

JS(S1, S2) =

{
0, if m=0

1
3 (

m
|S1 |
+ m

|S2 |
+ m−t

m ), otherwise , where |S1 |, |S2 |

are respectively the lengths of S1 and S2, m is the number of
matchings, and t is the number of transpositions defined as fol-
lows. Two characters are considered matching, if they are the
same and within distance less than

⌊
max ( |S1 |, |S2 |)

2

⌋
−1. The num-

ber of transpositions is calculated as follows: The i-th common
character in S1 is compared with the i-th character in S2. Each
nonmatching character is a transposition.

Jaro - Winkler similarity [19] is based on Jaro similarity, favor-
ing prefix matches, as they are considered of higher importance
for name matching. It is defined as: JWS(S1, S2) = JS(S1, S2) +
l p(1− JS(S1, S2)), where l is the length of common prefixes of S1,
S2, topping at four common characters and p a scaling parameter
defaulting to 0.1.

Q-gram based methods. Q-grams are successive substrings of a
string each of lengthQ . Each string is divided into a set of distinct
Q-grams. Let N1 and N2 be the sets of Q-grams of strings S1 and

Table 1: Soundex mapping table.

a, e, h, i, o, u, w, y → 0 l → 4
b, f , p, v → 1 m, n → 5
c, д, j, k, q, s, x, z → 2 r → 6
d, t → 3

S2 respectively. There are various set comparison measures [13].
In this paper, we use the Dice coefficient and Jaccard index, where
the Dice coefficient is defined as DC(S1, S2) = 2 |N1∩N2 |

|N1 |+ |N2 |
, and the

Jaccard index as to J I (S1, S2) =
|N1∩N2 |
|N1∪N2 |

.

Soundex. Soundex, based on English language pronunciation,
is the oldest (patented in 1918 [14]) and best known phonetic en-
coding algorithm. It keeps the first letter of a string and converts
the rest into numbers according to Table 1. All zeros (vowels
and ‘h’, ‘w’ and ‘y’) are then removed and sequences of the same
number are merged to a single one. The final code is the original
first letter and three numbers (longer codes are stripped off, and
shorter codes are padded with zeros).

3 EXPERIMENTAL EVALUATION
In this section, we present the findings of our empirical assess-
ment.

3.1 Experimental Setup
For our evaluation, we use data from the US Census Bureau1,
list of names. This list contains 162253 distinct names and the
frequency of appearance of each of these names in several race
groups in the agency’s database. We selected three of the most
popular of these race groups. These are the groups of names from
people characterized as White, Afro-americans and those with
Asian or Pacific origin. Since people of different races may have
the same name, we keep only those names for which at least
90% of the people having these names belong to a single group.
Then, we extracted the 50 most common names from each of
these groups. The statistics of the dataset used in this study are
depicted in Table 2.

Since our aim is to assess the effectiveness of string similar-
ity methods for name matching tasks, we need alternative or
erroneous versions of the names that we have extracted, for
matching them with their original versions. For this purpose,
we have employed the data corrupter from the German Record
Linkage center [1]. This was configured to perform one random
edit operation (insertion, deletion or replacement) in each of the
names we have extracted, so as to produce 1 error for each of
them, as it is rather unusual for a word to have more than one or
two typographical errors [5].

Then, we perform record linkage between the original and the
corrupted version of the datasets using each of the string com-
parison methods presented earlier. For each of these methods, we
perform the same experiment 10 times. The matching thresholds
used for each method are illustrated in Table 3.

For the Levenshtein distance, the minimum difference between
two strings is equal to 1, meaning one modification. Jaro, Jaro-
Winkler, Dice are Jaccard are similaritymeasures returning values
between 0, for total dissimilarity, and 1 for absolute similarity.
Finally, we desire codes produced by Soundex to totally coincide,
since its representation contains approximation characteristics.

1Available at https://www.census.gov/topics/population/genealogy/data/2010_
surnames.html
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Table 2: Statistics of the dataset.

Race
Group

Average occurrences per
name in top-50

Average occurrences per
name in group

Number of distinct
names in group

Asian 68861.44 964.1 2897
Black 3027.06 272.52 2364
White 91959.86 681.72 100688

We built a testbed using Anaconda Python 3.5 and conducted
our experiments on Ubuntu 18.04 LTS, powered by an Intel i5
processor with 8 GBs of RAM. The results of our assessment are
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Figure 1: Length distributions for the top-50 names.

illustrated in Figure 2. In all plots, the horizontal axis is used to
display the various thresholds used in our evaluation, while the
vertical axis represents bias. In each plot, the results for all races
are illustrated using error bars, displaying the minimum, average
and maximum measurement.

3.2 Discussion of the Results
Figure 2 indicates that all measures treat names from different
groups differently, that is, all measures exhibit some form of
bias. As a first step to interpret this bias, we seek to identify
similar characteristics in each of the group of names. As such, we
measure the lengths of the names in each group. These results
are illustrated in Fig. 1. As we can see, the shortest names belong
to people whose race is characterized as Asian.

We will now attempt to associate the length of these race
groups with the behavior of the string comparison methods. As
we can observe from Fig.2(a), the Levenshtein distance method
performs worse for names with Asian origin than for names
associated with people of White or African race. For the Asian
group, the Levenshtein distance incurs negative bias lower than
-1.67 when considering as matching names featuring an edit dis-
tance equal to 2, which is the lowest score in our evaluation. We
speculate that, the reason for this behavior is the shorter length
of the Asian names, as opposed to the other two groups, causing
more ambiguous matches. The method seems to be slightly bi-
ased in favor of both the other two groups, with the White group
receiving higher positive bias between the two.

As shown in Fig 2(b), Jaro also exhibits a continuous negative
bias for the Asian group and a positive bias towards the African
group. For the White names dataset, however, the situation is
somewhat mixed. For matching threshold equal to 0.7, the bias
is negative, then it becomes almost zero for threshold equal to

0.8 and it turns positive for a threshold equal to 0.9. This occurs
because as we increase the threshold, the number of false posi-
tive matches drops, while the number of false negative matches
remains merely unchanged. For Jaro-Winkler (Fig. 2(c)) the nega-
tive bias against Asian names is evident, again, as the positive
bias in favor of African names. In this case, however, the method
seems to also be negatively biased against White names as well.

Let us now consider the case of breaking names into sets of
Q-grams. For the Dice coefficient 2(d), we observe that the bias
for all groups tends to converge to zero, when we use a high
matching thresholds equal to 0.9. This is because, there are zero
matches in most cases. As such, the number of false negatives is
almost the same for each case and the number of false positives
is the factor affecting the bias for each method. Examining each
group individually now, it is evident that, again, there is negative
bias towards the Asian group. The other two groups exhibit
similar behavior, with the African one receiving more positive
bias. The use of the Jaccard index (Fig. 2(e)) results in a similar
behavior. Again, the Asian dataset is far below average, while
the other two are very close and slightly positive. In both cases,
however, the incurred bias is much lower than in the previous
methods.

Table 3: Comparison methods and threshold values used.

Method Threshold values
Levenshtein 1, 2, 3

Jaro, Jaro-Winkler, Dice, Jaccard 0.7, 0.8, 0.9
Soundex 1

Finally, we consider the use of Soundex, which has been specif-
ically designed for name matching tasks. In this case, a threshold
is not used for matching, and there is a match when two pho-
netic codes coincide. The results for this case are illustrated in
Figure 2(f). As we may see, again, the results are similar with the
previous cases. The Asian names exhibit negative bias, exceeding
-0.5, while African names score very close to +0.5. White names
are very close to the average case, slightly positively biased, nev-
ertheless. A reason for this behavior is that, Soundex does not
consider vowels. As such, since Asian names are usually short
having similar vowels, it is very easy for the algorithm to be led
to false positives.

Summarizing, regardless of the string similarity measure used,
there is significant evidence that there is negative bias when
matching names of people belonging to the Asian race, while
there is positive bias when matching names of people belonging
to the African race. Depending on the method used, White names
may be either positively or negatively biased, falling, in most
situations, within the average case. Besides this general behavior,
some of the string measures are better than others in terms of the
volume of bias, with the Q-gram Jaccard method outperforming
the others by exhibiting the smaller bias.
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(c) Bias - Jaro-Winkler
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Figure 2: Bias of the string comparison methods.

4 CONCLUSIONS, THOUGHTS AND
FUTUREWORK

Bias of this or some other form may be present in different steps
of entity resolution and a lot of work is needed to formalize, detect
and remedy it in the many different algorithms and techniques
around this important task.

Our preliminary studies have revealed that, even in the basic
task of name matching, there may be bias, in the sense that the
quality of the results varies based on the group an individual
belongs to. In this case, bias is not malicious, but rather a side
effect of the data values (names) of the attributes of individuals
belonging to specific groups. For name matching, we believe
that we provide some useful insight to database practitioners
for handling such situations. To this end, considering a single
threshold for matching names from all origins, does not yield
correct results for the Asian names, therefore this is a factor
of concern. A first measure to alleviate this issue would be to
consider the lengths of the names, or race information, if available,
in cases of name matching tasks and maybe perform this task
separately for this class of names.

For the future, there are many additional steps to be taken, as
our study focuses on a very specific task, namely string match-
ing based on names. We aim at performing further experiments
considering data from more distinct groups which are going to
be addressed as hidden parameters and examining deeper the
structures of the names of each case, in order to reveal more
factors that cause algorithmic bias in name matching tasks.
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