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ABSTRACT
We demonstrate SparkTune, a tool that supports the evaluation
and tuning of Spark SQL workloads from multiple perspectives.
Unlike Spark SQL’s optimizer, whichmainly relies on a rule-based
model, SparkTune adopts a cost-based model for SQL queries;
this enables the accurate estimation of execution times and the
identification of cost and complexity factors in a user-defined
workload. The estimate is based on the cluster configuration,
the database statistics (both automatically retrieved by the tool)
and the resources allocated to the workload. Thus, for any given
cluster, database and workload, SparkTune is able to identify the
best cluster configuration to run the workload, to estimate the
price to run it on a cloud platform while evaluating the perfor-
mance/price trade-off, and more. SparkTune turns the cluster
tuning efforts from manual and qualitative to automatic, opti-
mized and quantitative.

1 INTRODUCTION
Over the past years, Apache Hadoop has become the most pop-
ular framework for Big Data handling and analysis. On top of
it, SQL-on-Hadoop solutions have been introduced to provide a
relational abstraction layer to the data. Among them, one of the
most popular is Apache Spark, whose SQL-based sub-system (i.e.,
Spark SQL [1]) enables SQL queries to be rewritten in terms of
Spark commands and to be executed in parallel on a cluster1.

Although these systems are largely adopted and quickly be-
coming more solid and mature, they are still limited in terms of
cost modeling features. For instance, the module in charge of
translating SQL queries to Spark commands (i.e., Catalyst [1])
mainly relies on a rule-based optimizer. The cost model intro-
duced to Catalyst in its 2.3.0 release is still very simple (e.g., as
concerns join ordering, the cost function estimates a logical cost
in terms of number of returned rows). The need for robust cost-
based models is increasing, since the possibility to evaluate a
priori the execution cost of a workload is still lacking. Very little
work has been done on this aspect: some optimizers propose
cost-based features, but they evaluate only portions of a query
[8].

Our system, SparkTune, is an application that builds on a cost
model [3] for Spark SQL to support the user understanding the
cost of a workload and gaining the required knowledge to prop-
erly optimize the execution. From a high-level perspective, Spark-
Tune allows to: i) evaluate the duration of a workload; ii) see the
cluster’s size and potential first-hand, so as to properly optimize
the allocation of resources; iii) evaluate the trade-off between the
execution time and the price to execute it on a cloud platform.
The latter point is achieved by extending the cost model with

1Spark is not necessarily tied to Hadoop, although this is its most used architecture.
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the pricing information of major cloud providers, which enables
the translation of resource consumption into actual money. On a
more technical side, SparkTune also: iv) enables the prior identi-
fication of stragglers (i.e., tasks that performs more poorly than
similar ones due to insufficient assigned resources); v) if adopted
by Spark SQL, it would enable the creation of a full cost-based
optimizer, both static and dynamic.

In Section 2 we summarize the core aspects of the cost model
(full details have been published in [3]), while Section 3 discusses
the features of SparkTune; the demonstration proposal is finally
given in Section 4.

2 COST MODEL OVERVIEW
The Spark architecture consists of a driver and a set of execu-
tors. The driver negotiates resources with the cluster resource
manager (e.g. YARN) and distributes the computation across the
executors, which are in charge of carrying out the operations on
data. Data are organized in Resilient Distributed Datasets (RDDs),
i.e., collections of immutable and distributed elements partitions
that can be processed in parallel. Partitions can either come from
a storage (e.g. HDFS) or be the result of a previous operation
(i.e., held in memory). At the highest level of abstraction, a Spark
computation is organized in jobs, which are composed of simpler
logical units of execution called stages. The physical unit of work
used to carry out a stage on each RDD partition is called task.
Tasks are distributed over the cluster and executed in parallel.

In Spark SQL, a declarative SQL query is translated in a set
of jobs by its optimizer, Catalyst, which carries out the typical
optimization steps: analysis and validation, logical optimization,
physical optimization, and code generation. Physical optimiza-
tion creates one or more physical plans and then it selects the
best one. At the time of writing, this phase is mainly rule-based:
it exploits a simple cost function only for choosing among the
available join algorithms [1].

Our cost model [3] computes the query execution time given
the physical plan provided by Catalyst. We remark that it is
not a cost-based optimizer, as the latter implements query plan
transformations to optimize the original plan, and it does so
without necessarily computing the whole cost of the query.

The cost model covers a wide class of queries that composes
three basic SQL operators: selection, join and generalized pro-
jection. The combination of these three operators determine
GPSJ (Generalized Projection / Selection / Join) queries, which
were first studied in [5] and which are the most common class of
queries in OLAP applications. Each Spark physical plan modeling
a GPSJ query can be represented as a tree whose nodes represent
tasks; each task applies operations to one or more input tables,
either physical or resulting from the operations carried out in its
sub-tree. Our cost model relies on a limited number of task types
(listed in Table 1) that, properly composed, form a GPSJ query. In
particular, a feasible tree properly composes the following task
types: table scan SC(), table scan and broadcast SB(), shuffle join
SJ(), broadcast join BJ() and group by GB(). SC() and SB() are
always leaf nodes of the execution tree since they deal with the
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physical storage where the relational tables lie. SJ() and BJ() are
inner nodes of the trees and can be composed to create left-deep
execution trees; finally GB(), if present, is the latest task to be
carried out.

The execution time is obtained by summing up the time
needed to execute the tasks of the tree coding the physical
plan of a query. In particular, the cost model is based on the
disk access time and on the network time spent to transmit
the data across the cluster nodes; CPU times for data serializa-
tion/deserialization and compression are implicitly counted by
the disk throughput. This is consistent with [9], which clearly
explains that one-pass workloads on Spark (e.g., SQL queries) are
either network-bound or disk-bound, whereas CPU can become
a bottleneck limitedly to serialization and compression costs.
Also, the cost model assumes that data always fits the executors
memory, so that data is never spilled to local disks.

Depending on its type, each task involves one or more basic
operations (such as reading, writing, and shuffling) which we
refer to as basic bricks; the cost of a task is calculated as the sum
of the cost of the involved bricks (see 1 for the usage of bricks
by the task types). In particular, each brick models the execu-
tion of an operation on a single RDD partition and considers
the resource contentions given by parallel execution. Bricks are
SQL-agnostic and require some parameters about Spark (e.g.,
network and disk read/write throughput) and about the cluster
(e.g., number of executors per rack and number of cores per ex-
ecutor) to be known. As explained in Section 3, most of these
parameters are automatically retrieved by SparkTune. In the
following, we briefly discuss the nature of each basic brick.

• Read: consists in reading an RDD partition from disk. If
the data does not reside on the executor’s node, it must be
read from another one, according to the locality principle.
The cost model exploits the known cluster configuration
to estimate the probability of such a case. When reading
from another node, both the time to transfer the data
over the network must be considered in addition to the
time to read the data from disk. Since Spark enables in-
memory pipelining of subsequent transformations that
do not require shuffling (according to the Volcano model
[4]), the overall time is computed as the maximum for
disk reading and data transmission.

• Write: consists in writing an RDD partition to the local
disk; no network data transfer is necessary.

• Shuffle read: consists in reading an RDD partition from
disk and shuffling it through the network. Similarly to
the Read brick, the overall time is computed as the maxi-
mum for disk reading and data transmission; in this case,
however, disk reading only happens on the local disk.

• Broadcast: consists in loading the whole RDD on the ap-
plication driver and in sending it to every executor. Since
the two operations cannot be pipelined, the overall cost
is determined as the sum of the two. The broadcast brick
does not involve disk reading or writing, thus the cost
only depends on network time.

Ultimately, we remark that – thanks to the known cluster con-
figuration – the cost model is able to probabilistically estimate
the amount of data to be read and/or transferred through the
network for each brick.

Example 2.1. The following GPSJ query is taken from the TPC-
H benchmark [7]; it computes the total income collected in a

Table 1: Task types characterization

Task Type Addittional params Basic bricks
SC() pred, cols, groups Read, Write
SJ() pred, cols, groups Shuffle Read, Write
SB() pred, cols Read, Broadcast
BJ() pred, cols, groups Write
GB() pred, cols, groups Shuffle Read, Write

GB(N5, {l_orderkey, o_orderdate, 
o_shippriority, l_extendedprice}, 

{l_orderkey, o_orderdate,o_shippriority},F)

SJ(N1, c_custkey=o_custkey, N2,
{o_orderkey, o_orderdate, 

o_shippriority}, { }, F)

SC(lineitem, l_shipdate >‘1995-
03-15’, {l_orderkey,

l_extendedprice}, { }, F)

SC(orders, o_orderdate<‘1995-03-
15’, {o_orderkey, o_custkey, 

o_orderdate, o_shippriority}, { }, F)
SC(customers, c_mktsegment = 
'BUILDING‘, {c_custkey}, { }, F)

SJ(N3, N4,l_orderkey=o_orderkey,
{l_orderkey, o_orderdate, o_shippriority, 

l_extendedprice}, {l_orderkey, 
o_orderdate,o_shippriority},F)

N1 N2

N3 N4

N5

N6

Figure 1: GPSJ grammar derivation for the query in Ex-
ample 2.1; node names substitute sub-expressions in the
inner nodes
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Figure 2: SparkTune’s architecture and data flow

given period and for a specific market segment grouped by single
orders and priority of shipping.
SELECT l_orderkey, o_orderdate, o_shippriority,sum(l_extprice)

FROM customer, orders, lineitem

WHERE c_mktsegment = ’BUILDING’ AND

c_custkey = o_custkey AND l_orderkey = o_orderkey AND

o_orderdate < date ’1995-03-15’ AND

l_shipdate > date ’1995-03-15’

GROUP BY l_orderkey, o_orderdate, o_shippriority

A graphical representation of the Spark physical plan chosen
by Catalyst is reported in Figure 1.

3 THE SYSTEM
SparkTune is implemented as a web application on a classic
WAMP stack (Windows, Apache, MySQL, PHP) and it is publicly
available at http://semantic.csr.unibo.it/sparktune. We plan to
release SparkTune as a standalone application in the near future.
The architecture of the system is sketched in Figure 2, where the
flow of data is also indicated.
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3.1 Environment setup
The system enables registered user to setup their own environ-
ment in order to define custom scenarios and run user-specific
analyses. The setup of the environment can be done either man-
ually or in an automatic fashion. The information required by
the system is the following:

• Cluster configuration, such as the number of nodes and
racks, the number of cores per node, HDFS’s replication
factor, hardware statistics. Automatic retrieval of these
data is enabled by providing credentials for an SSH con-
nection to one of the cluster’s nodes. Most parameters
are obtained through calls to the Hadoop’s APIs, while
Spark jobs are run to infer the read and write through-
put of the disk, as well as the intra-rack and inter-rack
network throughput. Both throughput values are inferred
as a function of the number of concurrent processes that
require disk access and network data transfer.

• Database statistics. Automatic retrieval of these data is
enabled by providing credentials to access the Hive Metas-
tore. For any of the available database, the user can trigger
the retrieval of the name, size, and statistics for every table
and attribute.

• One or more workloads, meant as sequences SQL queries
to be manually provided by the user; then, the system
automatically retrieves from Spark the physical plan.

These data are stored in the Metadata repository. Each user
can setup multiple clusters, databases, and workloads. The ver-
sions of Spark currently supported are 1.5 and 2.2.

3.2 Analyses
The system provides four kinds of analysis and simulation. Each
of them requires to define a specific environment (i.e., to select
a cluster, a database, and workload among the ones provided
in the setup), possibly requests additional parameters (e.g., the
number of executors to be allocated for each node), and outputs
a detailed report depending on the kind of analysis. Figure 3
shows examples of such reports, which are fully discussed in the
following.

Workload analysis. The goal is to provide an in-depth anal-
ysis of the complexity and cost of executing the workload on
a cluster with a specific configuration (i.e., the number of ex-
ecutors and the number of cores per executor must be defined
by the user). First of all, SparkTune runs each query’s physical
plan in the workload on the cost model to estimate the total
execution time of the workload. Secondly, it provides full details
about every task of every query (including the amount of data
read/written, the time to read/write data from disk or to transfer
it across the network). On the one hand, this greatly helps the
identification of stragglers: Figure 3.1 shows the report of a single
query, which presents the tasks in the execution tree colored on
a red gradient (the harder the red, the higher the percentage of
time required by the task w.r.t. to the query). On the other hand,
it helps understanding which factors mainly impact on the cost
of each task/query: below the execution plan in Figure 3.1, the
total estimated time of the query is split among disk read time,
disk write time, and network time; then, by clicking on a task in
the tree, a pop-up as the one in Figure 3.2 shows the same data
for each task — together with other detailed information (e.g.,
the amount of data read/written/transferred, the cardinality of
the involved table(s), etc.).

Cluster analysis. The goal is to optimize the allocation of
resources by understanding the impact of the configuration pa-
rameters on the performance. The total execution time of the
workload is calculated for every configuration potentially avail-
able within the boundaries set in the cluster setup2. The results
are presented in a 3D surface graph (Figure 3.3), showing the
execution time by the number of executors and the number of
cores. This graph emphasizes how the increase of executors and
cores progressively reduces the execution time; more specifically,
it shows which of the two factors has the greatest impact in the
time reduction for the given workload.

Performance analysis. The goal is to provide a what-if analy-
sis that shows the potential impact of enhancing the performance
of the cluster (in terms of disk throughput and network through-
put) on the execution time of a workload. Given a specific cluster
and its configuration, the system estimates the execution time
by progressively improving the disk and/or network throughput
in steps of 20% (i.e., 120% w.r.t. to the current throughput, 140%,
etc.). The results are presented in a 3D surface graph (Figure
3.4), which helps understanding which factor (disk or network)
is most critical in determining the execution time. Noticeably,
the increase in disk throughput is assumed in the same measure
for both reading and writing.

Cost analysis. The goal is to evaluate the price of executing a
workload on a cloud infrastructure. Tomake such an estimate, we
extended our cost model with the pricing information obtained
from cloud providers Amazon AWS (http://aws.amazon.com) and
Google Cloud (http://cloud.google.com); this enables the transla-
tion of the time usage estimates of every core and every executor
to the amount of USD (United States Dollars) to be paid to the
provider for the execution of the workload. Similarly to the Clus-
ter analysis, the system exhaustively calculates the total execu-
tion time of the workload in every possible configuration (within
the upper bounds set in the cluster setup), but it is eventually
translated to USD. Ultimately, two results are presented. The first
one (left-hand side of Figure 3.5) is a mere cost analysis, showing
the price obtained with the different cluster configurations by
means of a 3D surface graph; this enables the identification of
the cheapest cluster configuration, as well as the understanding
of which factor (i.e., number of executors or number of costs) is
the most expensive. The second one (right-hand side of Figure
3.5) is an evaluation of the trade-off between execution time and
price; it is shown as a 2D chart, pinpointing each cluster config-
uration in the 2D surface represented by the execution time and
the price. This chart allows an immediate identification of the
ideal cluster configurations, which minimize both the time spent
and the money to be paid. For the sake of completeness, we note
that the price estimate only considers the consumption of the
cluster’s resources for the estimated time; it does not consider
the price of the disk, which is required to store the database.

Example 3.1. The reports in Figure 3 pertain to a workload
of 8 queries from the TPC-H benchmark on our 11-node cluster.
Workload analysis. Figure 3.1 represents the execution tree of
the query in Example 2.1 and shows that the overall time (5.61
min) is mostly due to two tasks (nodes 1 and 5). Given Spark’s
in-memory pipelining, the “affected time” voice indicates the
portion of the time spent reading/writing/transferring data (i.e.,

2We adopt this naive approach for the purpose of showing a full report to the user.
A cost-based optimizer that only looks for an optimal configuration could apply
some heuristics to avoid an extensive research [2].
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Figure 3: Screenshots of the various functionalities of SparkTune, discussed in Section 3

“worked time”) that actually contributed to determining the over-
all query time. Figure 3.2 shows the details of node 5 in Figure
3.1; it is the scan of the Lineitem table and it shows that the
task is mostly disk-bound. Cluster analysis. Figure 3.3 clearly
shows that, for the given workload, the performance gain due to
increasing the number of executors is superior to the one due to
increasing the number of cores per executor. Performance analy-
sis. Figure 3.4 further confirms that the workload is disk-bound;
indeed, improving the network throughput would have little to
no impact on the execution time, as opposed to the adoption of
more performing disks. Cost analysis. The prices shown in Figure
3.5 refer to to Amazon AWS; interestingly, the left chart shows
that the cheapest configurations are those with a low number of
cores. This indicates that the higher core-power would not be
adequately put to use, as it does not correspond to a significant
reduction in time (as the Cluster analysis also anticipated). Ulti-
mately, this is confirmed by the right chart, which shows a high
disproportion between the price required to reduce the execution
time of the cheapest configured and the time actually saved.

4 DEMO PROPOSAL
In the demonstration we will show how cluster tuning can be au-
tomatized and optimized adopting a cost-based approach. First,
we will demonstrate the automatic retrieval of data for the envi-
ronment setup, either on our own cluster or on a cluster owned by
someone in the audience (provided their willingness to grant its
access). Then, we will develop with the audience an experience to
showcase the various functionalities of the system and to under-
stand their value from the perspective of different professional
figures. In particular, two distinct scenarios will be simulated
for data scientists (which will be interested in analyzing work-
loads from a more technical angle) and data architects (which
will be interested in an analyzing the same workloads from a
different, higher-level perspective). With data scientists we will
mainly focus on SparkTune’s Workload and Cluster analyses
to answers several questions, such as: “What are the reasons for
the poor performance of this workload?”, or “How can I reallocate

the resources to speed up the execution of the workload without
exceeding my budget?”. Differently, with data architects we will
mainly focus on SparkTune’s Cost and Performance analyses
to address issues related to the design and deployment of the
infrastructure; in particular, we will answer questions such as
“Which cloud provider will let me run this workload at the lowest
price and at a reasonable performance?”, or “What kind of scale-up
or scale-out improvements can I bring to the cluster to improve its
performance?”. The demo will put the audience in the shoes of
one of these figures and we will develop a simulation aimed at
answering the aforementioned questions.

Our real cluster that we use as a reference consists of 11 nodes
with 8 cores per node. SparkTunewill be configuredwith different
benchmark databases, including the well-known TPC-H [7] and
the Big Data Benchmark [6]. We will define different workloads
on each database, in order to present scenarios that require the
exploitation of the different features of SparkTune.
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