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ABSTRACT
In recent years, differential privacy has emerged as one formal
notion of privacy. Data release based on differential privacy can
help researchers to perform statistical analysis on sensitive data
of individuals. To publish differentially private datasets, there
is a need for preserving data utility, along with data privacy.
However, the utility of differentially private datasets is often
limited, due to the amount of noise being added to the results
of queries. In this paper, we address this issue by proposing a
microaggregation-based framework that incorporates microag-
gregation and differential privacy into the data publishing pro-
cess. We formulate a new notion of stable microaggregation to
characterize a desired property of microaggregation and further
develop a simple yet effective stable microaggregation algorithm.
We experimentally verify the utility reduction of our proposed
framework on real-world datasets. The experiments show that
the proposed framework outperforms the state-of-the-art meth-
ods by providing better with-in cluster homogeneity and also
reducing noise added into differentially private datasets signifi-
cantly.

1 INTRODUCTION
Publishing data about individuals often poses a privacy threat
because data may contain the sensitive information about indi-
viduals, e.g., medical history, and publishing them would intrude
upon individual privacy. Thus, to preserve data privacy of individ-
uals, various anonymization techniques have been proposed for
data publishing, such as k-anonymity and its extensions [10]. Par-
ticularly, with the emerging of differential privacy in recent years
[3, 5], a number of works have considered to release differentially
private datasets [6, 11]. Such differentially private datasets can
guarantee differential privacy controlled by a privacy parameter
ε in a robust statistical way.

Broadly speaking, there are two common methods used for
generating ε-differentially private datasets in the literature: one
is based on differential privacy compliant histograms [11] and
the other is based on record perturbation [9]. Histogram-based
approaches have some limitations, including: being limited to his-
togram queries and the exponential growth of the number of his-
togram bins with the number of attributes [8]. On the other hand,
record perturbation based approaches require a large amount of
noise being added into the results of queries [9], though these ap-
proaches are not limited to histogram queries and allow dealing
with any type of attributes.

Nevertheless, when generating differentially private datasets,
there always is a trade-off being made between privacy and util-
ity of published data. Ideally, we want to preserve the privacy
of individuals while still maintaining the usefulness of data for
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performing statistical analysis. The utility of ε-differentially pri-
vate datasets is however limited due to the amount of noise being
added to guarantee differential privacy. To enhance the utility of
ε-differentially private datasets, in [9] a microaggregation-based
mechanism, i.e., insensitive microaggregation, has been proposed.
It uses microaggregation to achieve k-anonymity in which a cer-
tain correspondence between clusters in the microaggregated
datasets of two neighboring datasets is imposed. In doing so,
the noise added to guarantee differential privacy can be greatly
reduced. However, insensitive microaggregation still has the lim-
itations: (1) it yields worse within-cluster homogeneity due to a
total order relation required for the distance function [9], and (2)
the minimum cluster size k grows with the size n of the dataset
and one thus needs k ≥

√
n to reduce noise.

Contributions. In this paper, we consider the problem of gener-
ating ε-differentially private datasets by incorporating microag-
gregation into the data publishing process. Our work makes the
following contributions:
• We present a microaggregation-based framework for gen-
erating ε-differentially private datasets and formulate a
novel notion of stable microaggregation to characterize the
correspondence of clusters in microaggregated datasets.
• We propose a stable microaggregation algorithm that can
ensure the correspondence of clusters in the microaggre-
gated datasets of two neighboring datasets.
• We experimentally verify the utility reduction of our pro-
posed framework on two real-world datasets containing
numerical data. It shows that our algorithm can effectively
enhance the utility of released data by providing better
within-cluster homogeneity and reducing the amount of
noise, in comparison with the state-of-the-art methods.

Related work. Among early works on data anonymization, k-
anonymity [10] is a privacy model widely applied to guarantee
data privacy of individuals. The popularity of k-anonymity has
led to various attempts to address the limitations of k-anonymity
[10]. On the other hand, differential privacy [3, 5] is a recent
privacy notion that allows statistical analysis of sensitive data
while providing strong privacy guarantees. A number of works
[8, 9] have combined k-anonymity and differential privacy to
enhance the utility of data release. One of these works used mi-
croaggregation to achieve k-anonymity, which can reduce the
amount of noise added to differentially private datasets [2]. Mi-
croaggregation [1] is a family of anonymization algorithms that
group similar (homogeneous) records into clusters, then replace
each record with its cluster representative. MDAV [2] is the most
widely used microaggregation algorithm. The target of a mi-
croaggregation algorithm is to yield minimum information loss
by maximizing with-in cluster homogeneity. However, the exist-
ing works, including MDAV [2] and insensitive microaggregation
[9], either produce a low degree of with-in cluster homogeneity
or fail to reduce the amount of noise independent of the size of a
dataset. Our work in this paper can alleviate both issues.
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2 PROBLEM FORMULATION
Let D be a class of possible datasets. A dataset X ∈ D consists
of a set of records, each ri ∈ X being associated with a set of
attributes A. Each individual has only one record in a dataset X .

Definition 2.1. (Neighboring datasets) Two datasets X , Y ∈ D
are said to be neighboring, denoted as X ∼ Y , if |X | = |Y | = n,
but X and Y differ in one record.

Given a dataset X , we want to generate Xε (an anonymized
version of X ) that can provide ε-differential privacy guarantee
for protecting the privacy of individuals’ records in X .

Definition 2.2. (Differentially private datasets) A randomized
mechanismK : D → D provides ε-differentially private datasets,
if for each pair of neighboring datasets X ∼ Y , and all possible
outputs Dε ⊆ ranдe(K), it holds

Pr [K(X ) ∈ Dε ] ≤ eε × Pr [K(Y ) ∈ Dε ] (1)

where ε > 0 is the differential privacy parameter. Smaller values
of ε provide stronger privacy guarantees [4].

ε-differential privacy [3] was originally proposed as a privacy
model to protect the responses of interactive queries to a dataset.
A query is a function f that extracts data against records in
the dataset. A standard way for achieving ε-differential privacy
is by adding random noise to the true response of f , and the
random noise is calibrated according to the sensitivity (∆) of f ,
e.g. L1-sensitivity [5]. For numerical data, the addition of noise
can be drawn from a Laplace distribution by first computing
the answer f (X ) and then generating the noisy answer f (X ) =
f (X ) + Lap(∆(f )/ϵ) to provide ε-differential privacy. Although
ε-differential privacy was not initially adapted for the purpose of
generating anonymized datasets, but later in [7, 8] differentially
private datasets were generated by considering data publishing as
the answers to subsequent queries for each record in the dataset.

The L1-sensitivity of f measures the maximum variation in
the query f between two neighboring datasets X ∼ Y as follows.

Definition 2.3. (L1-sensitivity) The L1-sensitivity of a query
f : D → Rd is the smallest number ∆(f ) such that for all
neighboring datasets X ∼ Y ∈ D

∥ f (X ) − f (Y )∥1 ≤ ∆(f ), (2)

where ∥.∥1 denotes the L1-norm.

Given a dataset X , a microaggregated dataset X is created
by a microaggregation algorithmM in two stages. First, X is
partitioned into a set of clusters CX , such that each cluster in
CX has at least k records, where k is a preset constant value, and
the records within each cluster are as similar as possible (homo-
geneous). Second, it aggregates each cluster in CX by replacing
each record with the representative record of the cluster.

In this paper, we aim to generate ε-differentially private datasets
by using microaggregation for improving data utility. As illus-
trated in Figure 1, a microaggregated dataset X resulting from
runningM over X is added between X and Xε to increase utility
ofXε . In doing so, the original query f is approximated by f ◦M,
since f is run on the microaggregated dataset X rather than the
original dataset X . This thus introduces two kinds of errors: one
is the random noise, which depends on the sensitivity ∆(f ) of
query f to guarantee ε-differential privacy, and the other one is
due to computing f over X instead of X . As will be discussed in
Section 4, the first kind of error is much larger than the second
kind of error in terms of the information loss in ε-differentially

Figure 1: Problem setting.

private datasets. To increase the overall utility, the key challenge
is how to reduce ∆(f ◦M) such that ∆(f ◦M) ≤ ∆(f ).

3 PROPOSED FRAMEWORK
In this section we present the details of the proposed framework.

3.1 Stable Microaggregation
Given X ∼ Y that only differ in a single record, their microag-
gregated datasets X and Y however may generate considerably
different clusters, leading to a much larger ∆(f ◦M) than ∆(f ).
Suppose that we modify a record x in X to x ′ in Y , i.e., X ∼ Y .
As depicted in Figure 2, a microaggregation algorithmM (e.g.
MDAV [2]) with k = 4 can generate CX and CY over X and Y ,
respectively. Although X and Y only differ in one record, the
clusters in CX and CY are completely unrelated. The maximum
variation between one cluster from CX and another unrelated
cluster from CY is ∆(f ). Since there are n/k clusters in CX and
CY , ∆(f ◦M) = n/k × ∆(f ), which can be significantly higher
than ∆(f ) when the datasets are large, i.e., n is large.

Figure 2: Clusters CX and CY generated byM over X ∼ Y .

To address the above issue, the notion of insensitive microag-
gregation was proposed [9]. A microaggregation algorithmM
is said to be insensitive if, for every pair of neighboring datasets
X ∼ Y , there is a bijection between CX and CY such that each
pair of corresponding clusters differs at most in a single record.
This implies that the maximum variation between each pair of
corresponding clusters is reduced to 1/k × ∆(f ). Since there are
stilln/k clusters, ∆(f ◦M) isn/k×∆(f )/k . As a result, insensitive
microaggregation may greatly reduce sensitivity as compared
with n/k × ∆(f ) for standard microaggregation.

However, insensitive microaggregation still has some limi-
tations. First, to achieve ∆(f ◦ M) ≤ ∆(f ) as desired, (n/k ×
∆(f )/k) ≤ ∆(f ) must hold. Therefore, one needs k ≥

√
n in

order to reduce added noise in comparison with directly apply-
ing K over X [8]. For large datasets, k thus needs to be large
enough for reduced sensitivity. Second, as noted in the work [8]
and will also be discussed in Section 4, the clusters generated by
insensitive microaggregation are often less homogeneous than
the clusters generated by standard microaggregation, such as
MDAV [2]. This is because, to ensure the insensitive property,
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the distance function used by insensitive microaggregation al-
gorithms must be consistent with the total order relation ≤X
[9]. To alleviate these limitations, we define the notion of stable
microaggregation.

Definition 3.1. (Stable microaggregation) LetM be a microag-
gregation algorithm, CX = {c1, ..., cn } be the set of clusters that
results from runningM on X , and CY = {c ′1, ..., c

′
n } be the set

of clusters that results from runningM on Y .M is stable if, for
every pair of neighboring datasets X ∼ Y , there is a bijection
between CX and CY such that at most two pairs of corresponding
clusters in CX and CY differ in a single record.

Since stable microaggregation affects at most two pairs of
corresponding clusters inCX andCY , ∆(f ◦M) is further reduced
to (2 × ∆(f )/k) as compared to (n/k × ∆(f )/k) for insensitive
microaggregation. Thus, when k ≥ 2, the addition of noise can
always be reduced in comparison with directly applying K over
X , regardless of the size of a dataset.

Algorithm 1: Stable Microaggregation Algorithm
Input: X ∼ Y where r := X − Y and r ′ := Y − X

M : a standard microaggregation algorithm
Output: X , Y

1 CX ← {c1, ..., cn } generated byMp over X
2 CY ← replace(CX , r , r

′)

3 D,L := ϕ

4 foreach ci ∈ CX do
5 D := D ∪ {(dist(r ′, rci ), ci )}

6 dmin , cmin ← Fmin (D)

7 if r ′ ∈ cmin then
8 Y ←Ma (CY )

9 else
10 ci := c(r ′)
11 D := D − {(Gdist (D, ci ), ci )}

12 foreach c j ∈ CX \ {ci } do
13 dj ← Gdist (D, c j )

14 D := D − {(dj , c j )} ∪ {(dist(rci , rc j ) + dj , c j )}

15 dmin , cmin ← Fmin (D)

16 foreach ri ∈ cmin do
17 swap(CY , r

′, ri )

18 Y i ←Ma (CY )

19 L := L ∪ {(Iloss (Yi ,Y i ),Y i )}

20 Y ← Fmin (L)

21 X ←Ma (CX )

22 Return X ,Y

3.2 Algorithm Description
Our proposed stable microaggregation algorithm is described in
Algorithm 1. Given X ∼ Y , we start with partitioning the dataset
X into CX byMp , i.e., the partition function of a microaggre-
gation algorithmM. Then we replace the record r ∈ CX with
r ′ and initialize D and L (Lines 1-3). For each cluster ci ∈ CX ,
by means of function dist(), we compute distance between r ′

and rci , where rci is the representative record of ci . Then, we
compute dmin , i.e., the minimum distance in D, and cmin , i.e., the
cluster in CX with dmin , by means of Fmin function (Lines 4-6).
If r ′ is in the cluster cmin of CY , then we aggregate CY byMa

Figure 3: Proposed framework to generate ε-differentially
private datasets via stable microaggregation.

that is the aggregation function of the microaggregation algo-
rithmM (Lines 7-8). In this case, only one pair of corresponding
clusters in CX and CY is affected. Otherwise, for each cluster
c j ∈ CX \ {ci } where r ′ ∈ ci , we compute the distance between
the representative records of clusters ci and c j , i.e., rci and rc j . We
proceed with updating D by summing up both distances of the
corresponding clusters, excluding the distance of ci obtained by
function Gdist (Lines 10-14). In order to get the cluster c j that is
of the minimum distance from ci , we finddmin , i.e., the minimum
distance, and cmin , i.e., the cluster c j ∈ CX with dmin from D, by
means of Fmin function. After that, we swap r ′ in ci of CY with
each record ri in cmin of CY , and compute CY with the minimum
information loss by function Iloss (Lines 15-20). In this case, at
most two pairs of clusters differ at most in a single record. The
algorithm terminates by returning the microaggregated datasets
X and Y that have the minimum information loss.

A high-level description of our proposed framework is pre-
sented in Figure 3, in which stable microaggregation is applied
to generate X and Y by running Algorithm 1 over X ∼ Y . Then
ε-differentially private datasets Xε and Yε are generated by ap-
plying K over X and Y , respectively.

4 EXPERIMENTS
We evaluated the proposed framework to study how stable mi-
croaggregation enhances the utility of differentially private datasets.

Datasets.We used two datasets in the experiments: (1) CENSUS
dataset1 contains 1,080 records [2, 8, 9]. As in [9] we took 4 nu-
merical attributes FEDTAX (Federal income tax liability), FICA
(Social security retirement payroll deduction), INTVAL (Amount
of interest income) and POTHVAL (Total other persons income).
(2) EIA dataset1 contains 4,092 records [1]. We took 4 numerical
attributes attributes RESREVENUE (Revenue from sales to resi-
dential consumers), RESSALES (Sales to residential consumers),
TOTREVENUE (Revenue from sales to all consumers), and TOT-
SALES (sales to all consumers).

Following [9], we consider the sensitivity of an attribute to be
the difference between the lower bound (i.e. 0) and upper bound
(1.5 × the maximum value) of the attribute. For both CENSUS
and EIA datasets, the value of k is set to between 2 and 100.

Evaluation measure. We used the measure IL1s [12] to com-
pute the information loss between the original and differentially
private datasets. Formally, for each record ri ,

IL1s =
1
|A| · n

n∑
i=1

|A |∑
j=0

|xi j − x
′
i j |

√
2Sj

(3)

where |A| is the number of attributes, n is the number of records
in the dataset, xi j is the value of attribute aj ∈ A for record ri in
the original dataset, x ′i j is the value of attribute aj ∈ A for record

1http://neon.vb.cbs.nl/casc/CASCtestsets.htm
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Figure 5: Evolution of IL1s using S-MDAV, I-MDAV and ε-
DP for different values of k and ε in CENSUS.

ri in the corresponding differentially private dataset, and Sj is
the standard deviation of attribute aj ∈ A in the original dataset.

Baseline Methods.We considered the following baseline meth-
ods: (1) MDAV, which is a standard microaggregation algorithm
[2], (2) I-MDAV, which is an insensitive microaggregation al-
gorithm proposed in [9], and (3) ε-DP, which is a standard ε-
differential privacy algorithm in which noise is added using the
Laplace mechanism [5]. We use S-MDAV to refer to our pro-
posed stable microaggregation algorithm, which extends MDAV
in partitioning and aggregation.
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Figure 4: Evolution of IL1s using MDAV and I-MDAV for
different values of k: (a) CENSUS and (b) EIA.

Experimental results. We first conducted experiments to com-
pare the information loss of microaggregated datasets that are
generated by MDAV and I-MDAV under varying k between 2 to
100. The results are shown in Figure 4. We observe that, for both
CENSUS and EIA datasets, the information loss of microaggre-
gated datasets is less with MDAV as compared to I-MDAV. This is
because the clusters generated by MDAV are more homogeneous
than the clusters generated by I-MDAV. As we used MDAV in
our algorithm S-MDAV to generate the clusters in CX as well as
most of the clusters in CY , S-MDAV decreases the sensitivity of
f ◦M and thus reduces the errors caused by microaggregation.

Then, to verify the overall utility of ε-differentially private
datasets, we conducted experiments to compare the information
loss between the original and ε-differentially private datasets gen-
erated by using our algorithm S-MDAV and the baseline methods
I-MDAV and ε-DP. Figures 5 and 6 present our experimental
results. For ε-DP, we used the following privacy parameters
ε = [0.01, 0.1, 1.0, 10.0], which cover the range of differential
privacy levels widely used in the literature [4, 7, 8]. For each
parameter setting of ε , we ran 3 times and take the average result.
The information loss for ε-DP is displayed as horizontal lines, as
ε-DP does not depend on k .
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Figure 6: Evolution of IL1s using S-MDAV, I-MDAV and ε-
DP for different values of k and ε in EIA.

Regarding the evolution of IL1s values shown in Figures 5 and
6, we can see that, for every value of ε , I-MDAV is only able to
achieve ∆(f ◦ M) ≤ ∆(f ) if k ≥

√
n, i.e., (k =

√
1, 080 ≈ 33 for

CENSUS and k =
√
4, 092 ≈ 64 for EIA). This is consistent with

the previous discussion in Section 3. Nonetheless, this also means
that for large datasets I-MDAV requires k to be enough large in
order to effectively reduce ∆(f ◦ M), i.e., the size of k grows
with the size of a dataset n. In contrast, for S-MDAV, as stated
in Section 3, one needs k ≥ 2 to reduce ∆(f ◦M) as compared
to ε-DP. As the experiments show that our proposed algorithm
S-MDAV leads to less information loss for every value of ε as
compared to I-MDAV and ε-DP in both CENSUS and EIA datasets.
This is because the sensitivity ∆(f ◦M) is significantly reduced
when S-MDAV is used for microaggregation.

We have also noticed that by approximating a query f to f ◦M
via microaggregation, the errors caused by random noise that
depends on the sensitivity of f ◦M dominate the impact on the
utility of differentially private datasets generated via microag-
gregation, compared to the errors existing between the original
and microaggregated datasets.
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