
A Map Search System based on a SpatialQuery Language
Yuanyuan Wang

Yamaguchi University, Japan
y.wang@yamaguchi-u.ac.jp

Panote Siriaraya
Kyoto Sangyo University, Japan

spanote@gmail.com

Haruka Sakata
Kyoto Sangyo University, Japan
g1544647@cc.kyoto-su.ac.jp

Yukiko Kawai
Kyoto Sangyo University/Osaka

University, Japan
kawai@cc.kyoto-su.ac.jp

Keishi Tajima
Kyoto University, Japan
tajima@i.kyoto-u.ac.jp

ABSTRACT
We propose a novel query language that can express complex
spatial queries in a concise and intuitive way for map search. The
proposed language can express conditions on the range, direction,
and time distance within their spatial search queries. In this
language, we introduce several spatial operators, such as “space
character” operator which is used to represent the geographical
distance between matching objects in a concise and intuitive way
as well as arithmetic and directional operators which enables the
combination and manipulation of spatial areas. We also show
how a map search system supporting this query language can
be implemented, and describe several applications created using
this system to highlight how the query language can be put into
practice. These applications include a web interface which allows
developers to embed a function of spatial search by our query
language into their systems. In addition, we developed a mobile
Android application that allows nonprofessional users to easily
search for nearby venues and routes by using the proposed query
language. Finally, we outline the results of a study carried out to
evaluate the potential usefulness of our proposed search system.

1 INTRODUCTION
Inmap search systems, keyword-based queries arewidely adopted
due to their ease of use. Such queries are however inadequate
when more complex requests are needed. For example, consider
the case where a software tool would need to be developed to
help identify appropriate locations for real estate development.
Such a software needs to deal with search requests which contain
multiple constraints and spatial conditions. For instance, those
interested in constructing a family-friendly apartment building
would search for vacant locations that have many schools and
playgrounds within traveling distance, but are far enough away
from inappropriate locations or noisy public spaces.

In map search systems with simple keyword-based queries,
such a search task requires multiple query transactions by user
operations. For example, to find a good apartment for a family,
the transactions need to (1) search for apartments by using a
keyword query, (2) also identify schools on the map, (3) limit
the query result to those within 4km from the found schools,
and (4) also exclude those which are within 200m from some
inappropriate locations. The same is true for various complex
requests such as “Finding all the restaurants located between
two famous tourist landmarks” (when developing an application
for tourism) or “Finding all the shops located next to parks in
a city” (for location-based recommender systems). As shown in

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Examples of map search using spatial operators.

these examples, it is difficult to process complex search requests
using simple keyword-based queries. Systems only supporting
such keyword-based queries require multiple steps including
non-textual interactions to process them.

On the other hand, there have been much research on spatial
logic or algebra. In a spatial database of PostGIS1, the spatial
search task with location queries can be run in SQL, and they can
represent complex spatial conditions in queries, but they require
users to learn and understand the progrmming-language-like
syntax, and as a result, they are too complicated for general users
in many applications. They are, therefore, impractical for the use
in such systems.

The goal of this research is to design a simple spatial query
language which can represent such complex queries within a
single query statement with a concise, and more intuitive syntax
so that users can easily specify complex queries. Our language
uses 10 spatial operators to represent conditions on directions,
ranges, angles, and time distance, which allow users to incorpo-
rate spatial conditions and manipulation of spatial areas within
their keyword-based-like queries. Fig. 1 shows examples of map
search carried out by queries including spatial operators in our
language, such as ([^] [-] [*]). For example, Fig. 1 (c) shows the
result of a query (“my house”␣0.5km␣“pizza parlor”) * (“friends
house”␣0.5km␣“pizza parlor”).

2 RELATEDWORK
As explained in Section 1, there have been much research on spa-
tial databases based on region algebra or region logic. However,
most current commercial location-based services such as Google
Maps or Bing Maps are designed mainly to help general users
to execute two types of simple tasks: (1) find certain places and
locations within a specified geographical area and (2) find the
best route (e.g., shortest distance, most economical) between two
given locations. Recent academic research in this domain also
mainly focus on similar problems, such as locating comfortable,
aesthetically pleasing or safe routes [2] and personalizing the
search results by identifying locations which better match the
latent interests of users [5].
1https://postgis.net/

Demonstration

 

 

Series ISSN: 2367-2005 578 10.5441/002/edbt.2019.60

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.60


Table 1: Spatial operators by using the space-key

Operator ␣* ␣^ ␣_ ␣@ ␣[x-y] ␣$ ␣#
Processing Surrounding Direction (north/up) Direction (south/down) Angle Range Size Time

Figure 2: (a) Union (b) Difference (c) Intersection (d)Within (e) Distance (f) Direction (north) (g) Angle (90 degree) (h) Range

Because most of the current commercial systems are focusing
on general users executing these types of tasks, they use simple
keyword-based queries instead of complicated query languages.
For example, if users need to search for restaurants in London,
they would simply input a query such as “Restaurants in London”.
For users who need more complex and precise search requests,
however, such search systems are inadequate. Although various
API systems2 3 have been created to provide access to the more
advanced features of the location search systems, they are often
limited to single-process tasks (finding locations within a specific
distance, geo-coding a specific location name, etc.). Therefore, in
this paper, we propose a novel query language to enhance the
existing API systems, which allows users to express conditions
on distance, space and time distance towards objects matching
the query keywords through the use of spatial operators.

While the use of operators in keyword-based queries for map
search is not common, the use of operators in keyword-based
queries can be found in other domains. In document search, prox-
imity operators have been proposed as a way to limit search
results to those that contain the keywords in a specific order
or within a specific distance [3]. Also in video database domain,
Pradhan et al. [4] proposed operators which allow users to rep-
resent constraints on pairs of matching objects to be joined. In
graph database domain, Cypher4 is a declarative query language
that allows users to state what actions they want performed upon
their graph data without requiring them to describe (or program)
exactly how to do it.

3 THE SPATIAL QUERY LANGUAGE
A description of our proposed spatial query language is described
in this section. Overall, there are twomain rules which are used to
define the syntax for a spatial search unit in our query language.

Rule 1: The syntax of the most primitive unit of spatial queries
is defined as follows: “A␣spatial length␣α” A and α are key-
words, with A denoting the location of the origin for the
spatial search for the object with the property α . It is per-
missible to either denote the spatial length by using a unit
distance (i.e., 200m, 3 minutes) or by using continuous spaces.
When continuous space is used, the spatial length would rep-
resent the N nearest locations with the property α , where N
is represented by the number of continuous spaces.

2https://www.microsoft.com/en-us/maps/choose-your-bing-maps-api
3https://cloud.google.com/maps-platform/
4https://neo4j.com/cypher-graph-query-language/

(Example) : A␣800m␣α denotes a query statement to iden-
tify the α objects which exists inside the region 800m from
the origin point A.

(Example) : A␣␣␣α denotes a query statement to identify
the nearest 3 α objects from the origin point A.

Rule 2: The keywords (e.g., A and α ) used in the primitive
unit of the spatial query would be encapsulated within a
double quotationmark (e.g., “Tokyo tower” or “Grand Central
Terminal, New York” for A or “pizza shop” or for α ).

In addition, various spatial, directional and distance operators can
be used to impose conditions when conducting a spatial search.
Rule 3: Each primitive spatial search Unit can be combined

with other units through the use of spatial, directional and
distance operators in a mathematical equation format.
(Example) : (A␣800m␣α ) + (B ␣300m␣α )

3.1 Spatial Operators
The standard set operators can also be used as spatial operations
for the query unit defined previously. These include the union
[+], difference [-], and intersection [*]. Users can use such opera-
tions to manipulate the spatial region they wish to search into.
Examples of queries including these operators are as follows:
Union calculation (Ex.1) : (A␣3km␣α )+(B␣3km␣α )

denotes the union of the spatial regionwithin 3km from point
A AND the spatial region within 3km from point B (see Fig.
2 (a)).

Difference calculation (Ex.2) :(A␣3km␣α )-(B␣3km␣α )
denotes the spatial region within 3km from point A which is
NOT within 3km from point B (see Fig. 2 (b)).

Intersection calculation (Ex.3) :(A␣3km␣α )*(B␣3km␣α )
denotes the spatial region that is within 3km from point A
which is ALSO within 3km from point B (see Fig. 2 (c)).

All set operators (+, -, *) can be used to search for objects with the
properties identified in the query unit. For example, the aforemen-
tioned (A␣3km␣α )*(B␣3km␣α ) query would search for objects
with the property α which is located within the spatial region
that is the result of the intersection between 3km from points A
and B.

3.2 Directional and Distance Operators
Table 1 shows the 7 spatial operators which can be used to further
denote distance and direction within our spatial query. Exam-
ples of four expressions which use these operators are described
below:
Distance operation (Ex.4) : A␣3km␣α

579



retrieves the objects α which are within 3km from point A
(Fig. 2(d)).

Within operation (Ex.5) : A␣*3km␣α
retrieves the objects α that are 3km away from point A (Fig.
2 (e)).

Direction operation (Ex.6) : A␣^3km␣α
retrieves the objects α which are to the north of, and within
3km from, point A (see Fig. 2 (f)).

Angle operation (Ex.7) : A␣3km@90␣α
retrieves the objects α which exist within 3km in the 90 degree
counterclockwise direction from point A (see Fig. 2 (g)).

3.3 Range, Size, and Time Operators
Our proposed spatial query language also includes a variety of
range operators which allows users to more accurately specify
the desired search range within their query (see Table 1). For
example:
Range operation (Ex.8) : A␣[1km-3km]␣α

retrieves the objects α in the region from 1km to 3km from
point A (see Fig. 2 (h)).

In addition, size [$] and time operators [#] can be used to for-
mulate search queries. The size operator $ extracts the size of
the corresponding property of object α and uses it as a unit of
measure (i.e., 1 city block = 0.5km). The same is true for time
operations depend on the context (i.e., using A␣#3min to find
venues which are 3 minutes walking distance from point A, when
a user selects a “walking” direction).

4 SPATIAL SEARCH SYSTEM
In this section, we explain the structure of our search system. The
system consists of three main components: (1) an Input/Output
component that processes user requests and outputs them to the
appropriate format; (2) an interpreter component that parses and
processes queries and (3) the data processing program component
to link the search system to appropriate data sources.

Users of our system would send an HTTP request to the
server with details of the spatial query as parameters. The query
specified by the client is then passed to the interpreter and the
data processing components. These components would parse
the query, process the request and send the results back to the
Web In/Output Processing component which would transmit the
results back to the client as an HTTP response in a data format
such as JSON or XML.

The role of the interpreter component is to process the spatial
operators sent as the request. This component consists of a query
parser, a spatial data converter, and a spatial data calculator. For
the parser, the role is to analyze the user query and determine the
appropriate operations and procedures to process it. For example,
the following query: (A␣^3km␣α ) + (B␣^3km␣α ) would be pro-
cessed by the parser into the following steps: Var1= A␣^3km␣α
(step 1), Var2= B␣^3km␣α (step 2), and Result=Var1+Var2 (step
3).

These steps would then be processed by the interpreter. Each
spatial variable is sent to the data converter to convert the el-
ements (such as A␣^3km or B␣^3km) in the query to spatial
regions which represents the correct distribution of those ele-
ments. The conversion program would access information pro-
vided by the data processing component to calculate the ap-
propriate regions. For example, when processing the element
“A␣^3km␣shops”, the data processing component would calculate
the geographical location of point A as well as the geographical

Figure 3: Spatial query language demo application 5.

locations of shops within a 3km radius. After the data has been
converted, the spatial operators are then processed. For exam-
ple, if the request query contains the intersection operator [*],
it would calculate the region which is the overlap between the
converted A␣3km and B␣3km regions. After all the calculations
have been completed, the result is sent back to the client in the
appropriate data type (JSON or XML etc.) as specified by the data
processing component.

A prototype of the search system engine was implemented
as a RESTFUL web service using nodeJS. The current system
supports spatial map search, with the input being the requested
as a spatial query (an HTTPS GET request) and the output is an
array of locations which match the spatial query (returned using
the JSON data format) together with details such as the name
of the place and the address. The equation expression within
the spatial query was parsed using the Shunting-yard algorithm.
Google Maps API was used in the data processing proportion to
identify the various locations specified in the primitive spatial
query unit (i.e., “times square”) and their geographical positions.
The system could also later be easily adapted to utilize other
data sources such as Open Street Map data or a customized SQL
database as well.

5 DEMONSTRATION APPLICATIONS
To highlight how the system could be useful in practice, a number
of web applications were created which utilized our proposed
spatial search query language and would be shown during the
demonstration. The first application was a web interface for our
search system engine which users could use to test the query
language or search for locations using spatial equations3. Users
would be able to use the spatial, range and directional opera-
tions described in Section 3 as well as mathematical expressions
such as brackets to compose their search queries. After clicking
the search button, the system would send the user’s query to
the search system server and would then render the search re-
sults received from the server onto the map. For example, Fig.
3 shows the results of the query: ((“Times Square”␣700m␣“rest-
aurant”)*(“Grand Central”␣1km␣“restaurant”))*(“Pennsylvania
station”␣1km␣“restaurant”), which aims to identify all restau-
rants located within 700m of Times Square and 1km from Grand
Central and Pennsylvania station. One potential use-case for such
a query is for example to identify potential meeting places for
three users based on their starting locations (For example, when
one user works near Times Square and the other near Grand
Central and the final near Pennsylvania station and the system

5http://yklab.kyoto-su.ac.jp/~sakata/spatialQueryDemo

580



Figure 4: Space-key search application for novice users.

would need to find a restaurant that is equally near to all three
of their workplaces for them to meet for lunch). The web inter-
face system also provides an instruction page where the various
operators in our query language are explained and a number
of examples shown (see Fig. 3). Users could click on the “try it”
button to examine the search results of the examples and could
also freely modify the example equations.

Furthermore, another application which utilized our proposed
query language (only using the “space-key” for a more simple
and intuitive search) would also be shown during the demon-
stration. This application was conceptualized by looking at how
non-professional common users generally used location-based
mapping services. Although route navigation was a commonly
used feature, users also generally used location-based services to
quickly identify different types of nearby venues and then find
out how they could travel to such locations. Therefore, we de-
veloped an android application (“space-key search” application)
which utilized the primitive unit of our spatial query language to
allow users to search for nearby venues (users are able to search
for nearby locations using only the space-key). For example, the
user would enter the query “Current Location␣␣␣␣␣Restaurants”,
to find the four nearest restaurants to them on auto adjust map
zooming (see Fig. 3). Clicking on the markers would show details
of the venue (the address, review scores etc.) as well as a link
with the details of the route to the store. The application itself
could be downloaded from Google play store6. A mobile web
version of this application 7 was also developed for evaluation
and demonstration purposes (Fig. 4 shows screen-shots of the ap-
plications). A demonstration video of the applications discussed
in the paper which would be presented at the conference could
be viewed from the following link 8.

6 USER STUDY
A user evaluation study was also carried out to evaluate the po-
tential usefulness of our proposed query language. The main aim
was to determinewhether such an equation based query language
would be feasible for developers to learn and use. 15 students
from a university-level computer science course were recruited
and asked to carry out a series of location search tasks. Each
participant was asked to use both our proposed query language
through the web interface system which was developed (spatial

6https://play.google.com/store/apps/details?id=com.kawaiLab.spatialQuery
7https://yklab.kyoto-su.ac.jp/~sakata/simple/spatialQuary/
8 http://yklab.kyoto-su.ac.jp/SpatialDEMO/Spatial_demo_movie.mp4

language condition) as well as through the Google Maps system
(Google map system) to complete 5 search assignments. Each
search assignment consisted of a task to search for places (e.g.,
pizza parlors) near a specific location (e.g., The White House).
For example, one task consisted of trying to find the number of
pizza parlors located within 500m of Times Square. In another
task, participants were asked to find the number of pizza parlors
located within 700m of Times Square which is also located 1000m
from Empire State Building. Written instructions and examples
were provided to help participants complete the tasks and intro-
duce the various spatial operators. An objective measurement
of performance was obtained by measuring the time users spent
on each task. To measure subjective user experience, the System
Usability Scale (SUS) was used [1], which involved the rating of
perceived effectiveness, efficiency, and satisfaction.

Overall, participants rated a higher SUS score for the spatial
language condition (Mean=70.17, SD=13.09) than the Google map
condition (Mean=24.46, SD=10.61) (t(13)=7.24, p<0.001)). In ad-
dition, participants were able to complete the tasks using less
time (seconds) in the spatial language condition (Mean=82.27,
SD=28.18) then theGooglemaps condition(Mean=180.86,SD=49.25)
(t(13)=-8.219, p<0.001). Therefore, it seems that at least for search
tasks which involve the combination and manipulation of spatial
regions, the proposed map search system could indeed be useful.

7 CONCLUSION
In this paper, we proposed a novel query language for spatial
search which can be used to express complex queries in a text
equation format. We implemented a prototype of our proposed
system and developed two applications (a web based application
and a mobile application) to showcase how the query language
could be put into practice. In addition, we conducted a user study,
The results of which highlights the potential usefulness of our
query language.

In the future, we look to expand our query language to other
search domains such as text and video search. Although we
have shown how our language could be used in map search,
our proposed query language could easily be applied to spatial
search within documents and videos as well. For example, a query
searching for text within a document that contains the word “B”
and is within 5 sentences from the word “A” is expressed by
“A␣5sentences␣B”.

ACKNOWLEDGMENT
The work in this paper is partially supported by JSPS KAKENHI
Grant Numbers 16H01722, 15K00162, 17K12686.

REFERENCES
[1] John Brooke. 1996. SUS-A quick and dirty usability scale. Usability evaluation

in industry 189, 194 (1996), 4–7.
[2] Jaewoo Kim, Meeyoung Cha, and Thomas Sandholm. 2014. SocRoutes: Safe

Routes Based on Tweet Sentiments. In Proceedings of the 23rd International
Conference on World Wide Web (WWW ’14 Companion). ACM, New York, NY,
USA, 179–182. https://doi.org/10.1145/2567948.2577023

[3] Elsevier Newsletter. 2015. How Can I Search Literature with Reduced Noise?
Utilization of “Proximity Operator” in ScienceDirect & Scopus. (August 19
2015).

[4] Sujeet Pradhan, Keishi Tajima, and Katsumi Tanaka. 2001. A query model to
synthesize answer intervals from indexed video units. IEEE Transactions on
knowledge and data engineering 13, 5 (2001), 824–838.

[5] Hongzhi Yin, Yizhou Sun, Bin Cui, Zhiting Hu, and Ling Chen. 2013. LCARS:
A Location-content-aware Recommender System. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD ’13). ACM, New York, NY, USA, 221–229. https://doi.org/10.1145/2487575.
2487608

581


	A Map Search System based on a Spatial Query LanguageYuanyuan Wang, Panote Siriaraya, Haruka Sakara, Yukiko Kawai, Keishi Tajima

