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ABSTRACT
Privacy is a major concern in cloud computing since clouds are
considered as untrusted environments. In this study, we address
the problem of privacy-preserving range query processing on
clouds. Several solutions have been proposed in this line of work,
however, they become inefficient or impractical for many moni-
toring applications, including real-time monitoring and predict-
ing the spatial spread of seasonal epidemics (e.g., H1N1 influenza).
In this case, a system often confronts a high rate of incoming data.
Prior schemes may thus suffer from potential performance issues,
e.g., overload or bottleneck. In this paper, we introduce an exten-
sion of PINED-RQ to address these limitations. We also demon-
strate experimentally that our solution outperforms PINED-RQ.

1 INTRODUCTION
Reducing the impact of seasonal epidemics (e.g., H1N1 influenza)
is demanding for public health officials. Early detection of spatial
spread of the epidemics could help alleviate severe consequences.
It is thus important to track and predict the spread of such dis-
eases in the population. To do that, an individual can interact
with a website or mobile application to report personal data
(e.g., age, phone, sex, symptoms, travel plan, social network user
name, ...), to be utilized for real-time predicting analyses. Sys-
tems usually run in very short periods, a few days or weeks after
an epidemic emerges. Due to the need of significant computing
capacity and the high speed of incoming data, it is desirable to
use cloud services for managing and exploiting submitted data.
However, cloud computing suffers from privacy issues, e.g., sen-
sitive information can be exploited by cloud’s administrators.
Encrypting outsourced data is a common solution to handle pri-
vacy issues in clouds. In this study, we focus on range queries over
encrypted data since it is a fundamental operation. Over the last
years, different approaches have attempted to strike a trade-off
between security and practical efficiency [2, 10, 11]. Index-based
schemes [5, 13, 15] have also been proposed to increase query
performance while ensuring strong security. Nevertheless, prior
schemes cannot cope with the high rate of incoming data that
occurs in a wide range of monitoring applications, especially in
the proposed context.
To solve the drawback of existing works, we propose a solution
based on PINED-RQ [15] that enables the building of a secure
index over sensitive data at a trusted component (hereinafter
referred to as a collector). The collector then publishes the se-
cure index and the encrypted data to the cloud for serving range
queries. Our choice is motivated by the fact that PINED-RQ of-
fers strong privacy protection while it has significantly faster
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range query processing and requires less storage space, com-
pared to its counterparts [5, 13]. Nonetheless, PINED-RQ has to
publish data in batches and partially processes data at the col-
lector. Consequently, a bottleneck may occur as incoming data
and query requests arrive at a high rate. Moreover, since PINED-
RQ partially evaluates queries at the collector, which often has
limited resources, they may also confront scalability problems.
Publishing small batches may help PINED-RQ ease those po-
tential problems, however, because it is built upon differential
privacy [6, 8], small batches would cause large aggregation noise,
destroying index’s utilities.
Therefore, in order to adapt PINED-RQ to the targeted context,
we aim to shift heavy workload from the collector to the cloud,
that is able to provide on-demand capacity. In particular, instead
of publishing data in batches, when a new tuple arrives, the col-
lector immediately sends it to the cloud. The challenge to our
approach is how to build PINED-RQ’s index for the new tuples
that are previously moved to the untrusted cloud.
In this paper, we propose PINED-RQ++, an extension of PINED-
RQ, to mainly prevent potential bottlenecks at the collector while
ensuring a secure index for new data. The key idea behind our
prototype is to reverse the process of constructing PINED-RQ’s
index. This allows the sending of new data to the cloud as soon
as possible without sacrificing privacy. The experimental results
give promising performance, e.g., the publishing time of the
NASA dataset (∼0.5M tuples) [1] is reduced up to ∼35x while
maximum data rate at the collector experiences a reduction of up
to∼2.7x. In particular, our solution eliminates query processing at
the collector, making the systemmore scalable. The contributions
of this paper are as follows.

(1) We introduce a notion of index template within PINED-RQ
to support frequently published data.

(2) We propose a mechanism, PINED-RQ++, for updating the
index template while still retaining privacy protection for
frequently published data comparable to PINED-RQ.

(3) We also develop a parallel version of PINED-RQ++ to
improve the throughput of the system.

(4) We implement (non-)parallel PINED-RQ++ to show the
superiority of our solutions compared with PINED-RQ.

The paper is structured as follows. In Section 2, we briefly review
background. We then introduce our solution in Section 3. In
Section 4, we present our experimental results before giving
conclusion and future work in Section 5.

2 BACKGROUND
2.1 Related Work
Various schemes have been developed to preserve privacy for
processing range queries in clouds over the last years. Hidden
vector encryption approaches [4, 16] use asymmetric cryptogra-
phy to conceal data’s attributes in an encrypted vector. These
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methods incur prohibitive computation costs. Many bucketiza-
tion schemes [9–11] have been proposed for range query pro-
cessing in clouds. These solutions partition an attribute domain
into a finite number of buckets. The range query retrieves all
data falling within the range. However, bucketing approaches
disclose data distribution and suffer from large aggregation false
positives. Agrawal et al. [2] and Boldyreva et al. [3] present order-
preserving encryption schemes that preserve the relative order
of plain data under encryption. A downside of these schemes
is that they leak the total order of plain data to the cloud. This
is vulnerable to statistical attacks. Meanwhile, Li et al. [13] and
Demertzis et al. [5] propose index-based strategies for answering
range queries over outsourced data. Unfortunately, both suffer
from prohibitive storage cost. On the other hand, Sahin et al. [15]
present PINED-RQ for serving efficient range query processing in
clouds via secure indexes. Nonetheless, the high rate of new data
is not discussed in this work. Based on PINED-RQ, we develop
our solution to tackle the limitations of the current works.

2.2 Differential Privacy
Definition 1 (ϵ-differential privacy [6, 8]): A randomised mecha-
nismM satisfies ϵ-differential privacy, if for any setO ∈ Ranдe(M),
and any datasets D and D ′ that differ in at most one tuple,

Pr [M(D) = O] ≤ eϵ .Pr [M(D ′) = O]
where ϵ represents the privacy level the mechanism offers.
Laplace Mechanism [7]: Let D and D ′ be two datasets such that
D ′ is obtained from D by adding or removing one tuple. Let
Lap(β) be a random variable that has a Laplace distribution
with the probability density function pd f (x , β) = 1

2β e
−|x |/β .

Let f be a real-valued function, the Laplace mechanism adds
Lap(max ∥ f (D) − f (D ′) ∥1 /ϵ) to the output of f , where ϵ > 0.
Theorem 1 (Sequential Composition [14]): Let M1,M2, ...,Mr de-
note a set of mechanisms and eachMi gives ϵi -differential privacy.
LetM be another mechanism executingM1(D),M2(D), ...,Mr (D).
Then,M satisfies (

∑r
i=1 ϵi )-differential privacy.

2.3 PINED-RQ
We briefly describe PINED-RQ [15], which is built upon differen-
tial privacy [6]. We only focus on the insertion operation in this
study. There are two main steps for building a PINED-RQ index.
(a) Building an index: Given a dataset at the collector, a PINED-
RQ’s index is constructed based on a B+Tree. In PINED-RQ, the
set of all nodes is defined as a histogram covering the domain
of an indexed attribute. For example, the students’ GPA is used
to build histograms (see Figure 1a). Each leaf node has a count
representing the number of tuples falling within its interval. It
also keeps pointers to those tuples. Likewise, the root and any
internal node have a range and a count, combining the intervals
and the counts of their children, respectively.
(b) Perturbing an index: All counts in the index are independently
perturbed by Laplace noise [7]. The noise may be positive or
negative, thus, after this step, the count of a node may increase or
decrease, respectively. As shown in Figure 1b, the count of node
6 changes from 1 to -1 while the count of node 5 changes from 1
to 2. Such changes consequently lead to inconsistencies between
a leaf node’s noisy count and the number of pointers it holds. To
address that issue, PINED-RQ adds dummy tuples (fake tuples) to
the dataset as a leaf node receives positive noise. Otherwise, if a
leaf node receives negative noise, real tuples are moved from the
dataset to the corresponding overflow array. An overflow array
[15] of a leaf node is a fixed-size array, which is randomly filled

with dummy tuples at the publishing time to conceal removed
tuples from the adversary. As illustrated in Figure 1b, the tuple
(Chloe) belonging to node 6 is deleted from dataset while one
dummy tuple is added and linked to node 5. Finally, the perturbed
index is sent to the cloud along with the encrypted dataset.
Notably, PINED-RQ satisfies (ϵ,δ )n-Probabilistic-SIM-CDP pri-
vacy model [15], a variant of differential privacy [8]. Intuitively,
this variant results from the introduction of the encryption and
the overflow arrays to the index building process.

(a) Clear index (b) Secure index
Figure 1: Example of PINED-RQ index

Clearly, an update directly to such published indexes would vio-
late differential privacy [6, 8], thus, PINED-RQ cannot support
live updates. Furthermore, PINED-RQ is also reluctant to publish
very small datasets since the aggregation noise would destroy
index’s utilities. These properties make PINED-RQ impractical
for high speed monitoring applications. In contrast, our proposal
aims to send new data immediately to the cloud. Thus, one tech-
nical challenge is how to manage such dummy and removed
tuples, which help protect the privacy of the index, as new data
are stored at the cloud instead of at the collector.

3 PINED-RQ++
We focus on the architecture as depicted in Figure 2. Data genera-
tors produce raw data and send them to a collector. The incoming
data are then pre-processed prior to being sent to a cloud. A con-
sumer poses range queries to the cloud. In PINED-RQ++, we
assume that the cloud is honest-but-curious while the other com-
ponents are trusted. Thus, the adversary can use all information
exchanged between the cloud and the other trusted components
to deduce anything in a computationally-feasible way.

Figure 2: Proposed architecture
At the beginning, an index template is built at the collector.When-
ever a new tuple arrives, the index template is updated with that
tuple. Next, the tuple is encrypted and forwarded to the cloud.
When the index template is published at a later time, the cloud
associates it with unindexed data to produce a secure index as
described in Section 2.3. The collector then initiates a new index
template for future incoming data.
A query is only processed at the cloud which holds both indexed
and unindexed data at time. As a result, as a consumer issues
a query, it is first evaluated on indexed data (as in PINED-RQ’s
query processing [15]), the result of this evaluation and all the un-
indexed data are returned to the consumer. Finally, the consumer
decrypts and filters the returned data for the final results.

3.1 Index Template
The process of building an index template is typically the same as
in PINED-RQ (see Section 2.3). However, since initially there are
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no data, its count variables only contain Laplace noise [7] and
its leaves have no pointers. Such count variables and pointers
are updated during a publishing time interval, which is defined
as the period from when an index template is initiated to when
it is published. This poses several challenges to our approach,
for instance, how to publish dummy tuples generated during the
index template building process or how to ensure that pointers
between leaves and the new data do not leak privacy. Section 3.2,
and 3.3 discuss these challenges as well as possible solutions.

3.2 Matching Table
Recall that when an index template is published, the cloud as-
sociates it with unindexed data to form a PINED-RQ’s index for
those data. To prepare for this association, the collector needs to
keep the pointers between unindexed data and leaves. To do that,
a simple way is to mark the ciphertext of a new tuple by the id
of the leaf node to which the tuple belongs, and send the marked
ciphertext to the cloud. Later, the cloud can rebuild pointers from
marked ciphertexts when the index template is published. How-
ever, these marked ciphertexts reveal the real pointers between
unindexed data and leaves during a time interval. PINED-RQ++
consequently discloses more extra information, e.g., the actual
distribution of the incoming time of real data, when compared
to PINED-RQ.
To prevent the leakage of such information, we use unique ran-
dom numbers which are viewed as temporary ids of tuples and
a matching table (see Figure 3). The first column in this match-
ing table stores leaves’ id while each row of the second column
holds the temporary id of tuples belonging to the corresponding
leaf node. For instance, tuples 1 and 7 belong to node 6 while
tuple 5 belongs to node 9. In particular, when a tuple arrives, the
collector encrypts it, generates a unique random number, and
sends the <random number, ciphertext> pair to the cloud. This
number is stored in the corresponding row in the matching ta-
ble at the collector. The randomness guarantees that no useful
information about the index template is leaked to the adversary.
When an index template and its matching table are published, the
cloud simply loops over the matching table and replaces random
numbers with the leaves’ pointers.

Figure 3: Perturbed index template and matching table

3.3 Noise Management
One challenge to our approach is that the collector initiates
and perturbs the index template without any existing data. This
means that no tuples are available to be deleted in case of negative
noise. Also, when leaves receive positive noise, the collector can
initially generate dummy tuples. However, when those dummy
tuples are published to ensure privacy protection must be con-
sidered. To this end, we present two approaches as follows.
Regarding positive noise, the collector can immediately gener-
ate and send dummy tuples to the cloud at any random time
point within a time interval. However, the arrival of all dummy
tuples at the same time could be unsafe since the distribution
of arrivals may be exploited by an adversary. Instead, we ran-
domly release dummy tuples over the time interval. For instance,
given 10 dummy tuples and a time interval of 100ms, then 10

discrete points can be randomly chosen between 1 and 100. At
each chosen time point, a dummy tuple will be published along
with a unique random number. It is, however, true that the pri-
vacy would be leaked as a dummy tuple might arrive at a chosen
time at which real tuples are improbable. To avoid that case, the
collector sends dummy data according to the actual distribution
of the sending time of the real tuples. With this approach, when
a <random number, ciphertext> pair comes to the cloud, the ad-
versary cannot distinguish which pair is dummy or real data.
For negative noise, if a leaf node initially receives negative noise
c, the collector moves the first c tuples (when they arrive) of that
leaf node to the corresponding overflow array. At publication
time, the collector randomly fills all overflow arrays with dummy
tuples and sends these overflow arrays to the cloud. Notably, the
movement of tuples only occurs at the collector and the adver-
sary does not know which nodes receive negative noise. Thus,
the privacy of such movements is also preserved.

3.4 Index Template Update Management
The main goal is to guarantee that the counts of PINED-RQ++’s
index template are the same as those of PINED-RQ’s index when
the index template is published. In PINED-RQ, a leaf node’s count
represents the number of tuples falling within its interval. The
count of internal nodes and the root is a summation of their
children’s counts. All counts are then perturbed by noise. In
contrast, an index template only contains noise at first and it will
increase its counts as soon as a tuple arrives at the collector.
Basically, when a tuple arrives at the collector, the leaf node to
which the tuple belongs is determined. Then, the count of that
leaf node and all its ancestors will be increased by 1. As shown
in Figure 4, as the new tuple <Madison, 3> has GPA lying within
the interval of node 7, the count of node 7 and all its ancestors
(node 2 and node 0) are increased to 1, 2 and 3, respectively.

Figure 4: Index template and matching table are updated
after the arrival of a new tuple

3.5 Parallel PINED-RQ++
Since the collector, that is assumed to be a small private node with
a few cores, updates the index template, its throughput would be
impacted as the rate of incoming tuples increases. We therefore
parallelize the construction of the index template to improve
the collector’s throughput. Instead of keeping only one index
template for updating, we create many clones of the original, each
of which is independently updated. As a result, incoming tuples
are equally distributed to clones for local updating. At publish
time, all clones are merged together and sent to the cloud.

3.6 Privacy Analysis
As compared to PINED-RQ, both PINED-RQ++ and its parallel
version only leak extra information of <random number, cipher-
text> pairs and the time, when such pairs arrive at the cloud, to
the adversary. Random numbers will not disclose any informa-
tion about the data. Besides, as discussed in Section 3.3, when
a pair arrives at the cloud, an adversary cannot distinguish be-
tween a dummy and a real tuple. Thus, PINED-RQ++’s privacy
protection is similar to that of PINED-RQ.
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4 EVALUATION RESULTS
4.1 Benchmark Environment
We ran our experiments on a cluster, whose configuration is
illustrated in Table 1.

Table 1: Experimental environment
Component CPU (2.4 GHz) Memory (GB) Disk (GB)
Collector 12 16 20
Cloud 16 16 40
Data generator 4 8 80
Consumer 4 16 10

We evaluate our proposal on four metrics namely network
traffic, the time needed to publish an index (template), time re-
sponse latency, and throughput. We use two real datasets NASA
log [1] (1569898 tuples, five attributes) and Gowalla [12] (6442892
tuples, three attributes) for our experiments. We use the reply
byte and check-in time as indexed attributes, respectively. Based
on the values in the datasets, the reply byte’s domain is divided
into 350 bins while that of check-in time into 1502 bins. The
fanout is set to 16. We use a time interval of 1 minute.

4.2 Results
(a) Network traffic: The network traffic metric gives an idea of
the stability of the overall system, which is crucial for analyt-
ical processing. In this scenario, the data generator sends 3K
tuples/second. Network traffic in terms of data rate is monitored
at the collector over ten minutes. Figure 5 shows that the net-
work traffic in PINED-RQ++ is much more stable than that in
PINED-RQ. The maximum data rate is reduced by up to ∼2.7x
(NASA) and ∼2.5x (Gowalla) in PINED-RQ++.

Figure 5: Network traffic over a ten minutes period
(b) Publishing time: We compare the time required to publish an
index (template) according to dataset size. This metric is essential
for monitoring applications since a long delay may cause bottle-
necks at the collector. Different sizes of datasets are obtained by
adjusting the incoming data speed and time interval parameter.
As shown in Figure 6, when the dataset size increases, the time
gradually rises in PINED-RQ while the publishing time in PINED-
RQ++ remains almost unchanged. In particular, the publishing
time is reduced by up to ∼35x for NASA (514972 tuples) and
∼16x reduction for Gowalla (1116907 tuples). Notably, when the
dataset size rises, the gap between the two prototypes goes up.

Figure 6: Average publishing time of 10 datasets
(c) Response time latency: We turn our attention to query latency.
The data generator produces 2K tuples/second. The consumer
sends one query per second. The query range is randomly cho-
sen between 25% and 100%. In Figure 7, the results indicate
that PINED-RQ has lower latency for small ranges compared
to PINED-RQ++. However, our approach performs slightly better
with large ranges (100%) because PINED-RQ’s collector experi-
ences higher workload for processing consumers’ queries.

Figure 7: Average response time latency of 1000 queries

(d) Throughput:We compare the parallel PINED-RQ++’s through-
put with the non-parallel version. The incoming data rates are
chosen to be higher than the maximum throughput of the non-
parallel version, 6.5K and 18K tuples/second for NASA andGowalla,
respectively. The different data rates are chosen since the tuple
size of NASA is larger than that of Gowalla. The parallel version
always has better throughput than the non-parallel version. The
results in Figure 8 show that when the number of clones increases,
the throughput is improved. The two-clone setting gives the best
throughput, increasing by about 18% (to ∼3K tuples/second) for
NASA and about 47% (to ∼8.3K tuples/second) for Gowalla when
compared to the non-parallel version. Using a larger number of
clones is not meaningful due to the merging process’s costs.

Figure 8: Parallel PINED-RQ++

5 CONCLUSION
We developed PINED-RQ++ to address the challenges of high
rates of incoming data for processing range queries in clouds and
the scalability problems of the prior schemes. The experimen-
tal results show that our solution provides better performance
than PINED-RQ while privacy is also protected. This proves
that PINED-RQ++ is appropriate for real-world monitoring ap-
plications. Besides, we introduce the parallel version, that helps
enhance throughput.
Future work includes improving query performance, caching
techniques and a dynamic adaptation to the query workload.
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