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ABSTRACT
In the last decade we are witnessing a widespread adoption of
architectural styles such as microservices, for building event-
driven software applications and deploying them in cloud infras-
tructures. Such services favor the separation of a database into
independent silos of data, each of which is owned entirely by
a single service. As a result, traditional oltp systems no longer
fit the architectural picture and developers often turn to ad-hoc
solutions that rarely support acid transaction consistency.

At the same time, we are witnessing the gradual maturation of
distributed streaming dataflow systems. These systems nowadays
have departed from the mere analysis of streaming windows and
complex-event processing, employing sophisticated methods for
managing state, keeping it consistent, and ensuring exactly-once
processing guarantees in the presence of failures.

The goal of this paper is threefold. First, we illustrate the
requirements of stateful software services in terms of consistency
and scalability. Second, we present how well existing solutions
meet those requirements. Finally, we outline a set of challenging
problems and propose research directions for enabling event-
driven applications to be developed on top of streaming dataflow
systems. We strongly believe that streaming dataflows can have
a central place in service-oriented architectures, taking over the
execution of acid transactions, ensuring message delivery and
processing, in order to perform scalable execution of services.

1 INTRODUCTION
Event-driven Applications (eda) are software applications that
act on incoming events. edas nowadays span a multitude of
areas. Some very common examples are gui applications (for
web services, gaming, design, etc), complex event processing (for
fraud detection, pattern matching, etc.), computations on stream-
ing graphs and machine learning, and analytical queries over
streams, such as window aggregation. In this paper we focus on
two emerging application types named after the architectural
pattern they follow, namely microservices [20] and actor-based
systems [1], such as Erlang [22], Akka,1, but most importantly,
higher lever abstractions such as Microsoft’s Orleans [3]. Our
work is motivated by the observation that these emerging archi-
tectural patterns do not receive the necessary amount of attention
from the database community, although they are extremely ubiq-
uitous and growing in popularity by the day.

Microservices and actors have a surprising number of com-
monalities. Microservices, like actors, are founded on the princi-
ple of separation of concerns: each microservice (or actor) man-
ages its own data and implements a set of endpoints (actors offer
1https://akka.io
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function calls). The only way for a microservice to get data from
another microservice is to make a call on an endpoint (a function
call/shipping for an actor). However, the two have a consider-
able amount of differences. More specifically, microservices favor
communication via synchronous rest api calls2 and ensure fault
tolerance by relying on an external database for persistence. Ac-
tors, on the other hand, communicate via asynchronous messages
and typically persist state in a local data structure or even in an
external storage system [3]. The local state of actors can be used
for recovering after failures, but also for migrating to different
machines. To alleviate data management and consistency issues
from actors, Bernstein et. al. [10] proposed the concept of virtual
actors, backed by actor-oriented database systems, with the goal
of integrating database concepts inside actor systems.

Stateful microservices can scale particularly well, but almost
always implement eventual consistency, such as sagas [11]. In
case that strict consistency is required, orchestration and Two-
Phase Commit (2pc) take place at the application level: users
hard-code database logic in their applications, using apis such
as Java xa, by implementing commit, rollback, and prepare for
2pc to work. Worse, transactions today contain more and more
complex business logic. However, encoding complex business
logic in a stored procedure is not preferred nowadays [2]. As a
result, strict consistency – an old and difficult problem that was
once only the responsibility of very few database programmers –
is now part of daily work for application programmers. Finally,
stateful services (including virtual actors) require state locality
in order to achieve low latency - not only when writing data, but
most importantly when reading data. As applications become
more and more interactive, reacting to state changes renders
latency requirements even stricter. At the same time, serverless
computing [23], an emerging trend allowing the execution of
user-supplied functions as a service, is proven to be a bad fit for
stateful microservices. This is because it necessitates shipping
data to the code and forces communication between executing
components through the storage layer, which is slow compared
to a direct network connection [14].

The aforementioned shortcomings call for a principled solu-
tion that will allow implementing edas with innate support for
transactions, loose-coupling of service modules with local state,
and consistent global state. In this paper we argue that such a
fabric can be based on streaming dataflows. More specifically,
modern streaming dataflow systems, such as Apache Flink [7]
and Samza [17], execute a topology of continuously executing
operators with local state and maintain a consistent snapshot of
their global state. Operators cooperate to provide analytics on
bounded and unbounded data. Moreover, features like Flink’s
Savepoints [6] or Kafka’s Streams offer a deterministic time ma-
chine for debugging and replaying dataflow executions, and can
be used to hide failures from application developers by offering

2Certain microservice implementations such as reactive microservices opt for asyn-
chronous messaging.
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exactly-once processing guarantees. Finally, dataflow systems
scale extremely well. As a result, at the time of writing, we are
witnessing a trend towards building stateful applications on top
of streaming engines.

In this paper we present the vision of operational stream pro-
cessing whose goal is to render stream processors full-fledged
data management engines, capable of executing transactions,
performing analytics, and embedding complex business logic
of stateful services inside dataflow operators. We organize this
paper as follows: in Section 2 we focus on current best practices
for implementing edas and their requirements for scalability and
consistency. In Section 3 we review existing possible solutions to
fill those requirements. Finally, in Section 4 we argue that stream-
ing dataflow systems, such as Apache Flink [7] and Samza [17],
can serve as an efficient, and scalable backend for executing edas,
given that our community tackles a set of important challenges.

2 REQUIREMENTS OF EDAS
In this section we first briefly outline the main requirements
of edas with respect to the backend technology required for
their execution. We then focus on a set of advanced operational
requirements of microservices and actors.

2.1 General Requirements
The following requirements manifest themselves in almost all
edas. We believe that a fabric that can be used as a backend for
edas should at least provide support for the following.
Fault-Tolerant State. State is a first-class citizen in virtually ev-
ery event-driven computation. State in a streaming computation
can be counters (e.g., counting elements in a stream), database
contents in a microservice or the current computation state of an
actor program. At the same time a distributed event-processing
application, needs to ensure that, even in the presence of failures,
the state of the system remains consistent and the application
continues its operations fromwhere it left off.Whenever possible,
failures should be transparent to the application programmer.
Event Partitioning & Scaling Out. Computations over parti-
tioned data are typically used for computing aggregates, and for
scaling-out actor instances and load-balancing user requests (e.g.,
by partitioning per user id). Similarly, scalability in microservices
can be typically achieved by running multiple service instances,
balancing the load among them using http proxies.

2.2 Advanced Requirements
Apart from the general requirements, which are needed by most
edas, most modern applications demand a special set of require-
ments for the operation of the services that comprise them.
Transactions. One of the largest problems in running services is
the lack of coordination schemes in order to perform transactions
and retain consistent state across services.
State Locality. Access to local state is important for boosting
the performance of services [8], yet it is not always leveraged
in microservice or actor architectures in favor of keeping those
services stateless. In those cases, the state is offloaded to an exter-
nal storage system. However, stringent latency requirements of
interactive server applications require state to remain embedded
in the service.
Global State View & Analytics. Services often need to consol-
idate data from multiple other services in a bulk fashion. For
instance consider the case of joining orders with transactions,

in order to obtain insight about sales. Since each service owns
its data, consolidating that state via multiple calls to service end-
points is currently slow and cumbersome.
Loose coupling. One of themost important reasons that services
are so popular is that they allow developers to develop, test, and
deploy them in a loosely-coupled fashion. We consider this a
defining trait of services that must be respected.
Debugging and Auditing. Given their distributed nature, ser-
vices inherit the difficulty to reason, understand, and debug. To
this end, services need inherent support for debugging and test-
ing in a reproducible manner.
Dynamic (re)configuration. During the lifetime of a service,
the load of the service (e.g., due to churn), its assigned hard-
ware (e.g., due to failures), and even the service itself (e.g. due
to updates) can change dramatically. Services need to transpar-
ently adapt to those changes without being affected in terms of
performance and availability.

3 EXISTING SOLUTIONS
Many existing solutions meet the general requirements presented
in Section 2.1. The advanced requirements of Section 2.2 are a
lot more challenging to support though. This section presents
which of the advanced requirements are fulfilled by existing
systems, namely microservices frameworks, oltp systems, actor
programming frameworks, and stream processors.

3.1 Microservices frameworks
Transactions. The most widespread solutions for performing
transactions in microservices frameworks are sagas [11] and
application-level transaction managers implementing the Java
Transactions api (jta). A transaction in the saga pattern al-
lows microservices to make local state changes (e.g., book a
flight/hotel) independently of the rest of the microservices taking
part in the transaction. On failure, all microservices that have
already updated their state, need to issue compensating actions
(e.g., cancel the flight booking). sagas pose two main issues:
i) state consistency across microservices cannot be achieved and
ii) not every action can be compensated. Various web application
development frameworks, such as Spring, offer eXtended Trans-
actions (xa), an implementation of 2pc with acid-like properties
for web applications [18]. The solutions based on application-
level transaction managers require a tight coupling of services,
and demand from developers to implement 2pc functions (e.g.,
prepare and abort) in application-level code which is very error
prone and necessitates deep understanding of database concepts.
State Locality. The state locality requirement contradicts the
design of stateless microservices, which dictates handing over
the responsibility of persisting state to an external database sys-
tem. Thus, current microservice frameworks fail to fulfill this
requirement. Scaling-out microservices requires very sophisti-
cated design of the backing database architecture. The service’s
state in these cases is external; accessing it requires a call to an
external system, introducing latency.
Global State View. Microservices frameworks are not suitable
for providing global state views. Since each microservice owns its
data and state, having a complete view over the complete system’s
data state requires manually making a snapshot of all services’
individual databases and importing those in a central database
to perform analytics. Such a process cannot be done without
special software and protocols; naively dumping all individual
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databases into a data warehouse without taking down all services
in advance will most certainly result into data inconsistencies.
Debugging & Auditing. Developing microservices using event-
sourcing and Command Query Responsibility Segregation (cqrs)
[5] allows developers to replay message exchanges between ser-
vices and debug their applications by rebuilding the state of an
application at the time that a bug occurred.

3.2 Distributed OLTP Systems
Distributed OnLine Transaction Processing (oltp) systems such
as VoltDB [21] and H-Store [15], can be used as a backend for
edas since they provide scalability, consistency, global view of
the application state, and analytics. However, they introduce a
number of issues. First, oltp systems require that transactional
code is included in the database as a stored procedure. However,
transactional code is often an indivisible part of application code,
a microservice’s business logic for instance. Pushing the business
logic into the database is largely disliked [2]. Second, distributed
oltp systems partition their state as they see fit, yet in order to
achieve low latency, the state of each service should be locally
available and even in the same memory space as the service itself.
Finally, having one distributed database that manages the state
of all applications goes against loose-coupling and requires that
different services agree on a given schema, database system, etc.

3.3 Actor programming frameworks
Actors are good examples of loosely-coupled systems, that can be
reconfigured in the presence of failures and environment changes.
In addition, effective debugging can be achieved by use of the
event sourcing and cqrs patterns, like in reactive microservices.
Erlang, Akka, and Microsoft Orleans are popular actor-based
programming frameworks. In the rest of this section, we focus
on Orleans, which offers the highest level of abstraction among
actor-based systems.
Transactions. Actors in general do not providemeans for execut-
ing distributed transactions. Orleans appears to be implementing
some form of acid transactions with 2pc based on batching [10].
Global State View & Analytics. Actors can offer state locality
but they lack the capability to provide a consolidated view of
the global state and perform analytics on that state. For instance,
Orleans can save the persistent state of actors locally or in inex-
pensive cloud storage that can be replicated for scalability and
fault tolerance. Adopting the encapsulation principle, each actor
has local access to its own data and state and restricted access
to the state of other actors as per their public interface. This
organization works for established actor-local operations, but
leaves much to be desired in terms of a consistent global state
view that can be used to answer queries on the complete state of
an application. Performing analytics on global state in an actor
system would be similar to a microservices.

3.4 Stream Processing Systems
So far stream processors are primarily known for their capacity
to support high-throughput and low-latency analytics. However,
modern stream processors such as Apache Flink [7], also support
distributed state consistency via exactly-once state processing
guarantees. Stream processors can serve as a platform for run-
ning edas in a scalable [16] and consistent fashion [6]. We argue
that additional research needs to be performed in order for stream
processors to be able to satisfy the operational requirements of

edas, namely transactions, query-able global state, and loose cou-
pling at the api level. Current stream processors lack appropriate
programming models that allow developing microservice archi-
tectures. At present, they only offer functional apis focused on
bulk event processing, rather than message exchange that allows
for loose microservice coupling. Moreover, stream processor sys-
tems need transactional facilities to support advanced business
logic and coordination. The only two exceptions that are avail-
able at the time of writing are i) a closed-source implementation
of multi-key transactions in Apache Flink, as well as S-Store [19],
which provides acid guarantees on shared mutable state on a
single machine. Having a global state view of an application is
also missing. Apache Flink, for instance, only supports external
querying of a single operator’s state.

Finally, stream processors can serve as a good basis for debug-
ging distributed services. For instance, message brokers, such
as Apache Kafka [17], can be used for storing all messages that
are exchanged among microservices and replaying them during
debugging. Moreover, Apache Flink’s savepoints3 can be used to
replay events from a specific past consistent state of the stream
topology in order to debug an application.

4 THE ROAD AHEAD
This section summarizes the research directions our community
needs to take in order to realize the operational stream processing
vision. We envision edas to be authored in a service-oriented
api. Such an api would enable a service to have custom business
logic, to communicate with other services via (a)synchronous
message exchange, and to have access to local state.

A set of services authored in that api can be compiled into
a dataflow graph, an example of which is depicted in Figure 1.
Edges represent channels of message exchange among services.
Vertices execute custom business logic, and are given access to
managed local state. The dataflow engine takes care of the state’s
consistency, as well as the routing and exactly-once processing
of messages within services. For the services executing in the
dataflow graph to send and receive requests to/from external
systems, they have to write or read to a message queue/log (e.g.,
Apache Kafka). This, not only enables exactly-once processing
and delivery of messages, but it can also hide failures from the
application programmers who can assume that, if a message
has been sent, their application will receive an answer to that
message exactly-once. Finally, certain parts of the inputs can be
replayed in order to debug/audit a given service deployment.

One would argue that such an architecture could be imple-
mented on existing systems such as Apache Flink, Samza, or
Kafka. However, a set of requirements that we introduced in the
previous section remain unsatisfied and require further research.
Transactions. Current dataflow systems guarantee consistency
of single-event changes on a given partition of state. In order
to guarantee consistency during multi-key, multi-partition state
changes, we need to extend existing approaches of consistent
snapshots [6] drawing ideas from distributed systems [9], and
traditional oltp systems. Some form of timestamp-based concur-
rency control could be employed [4, 13], especially given that
processing- or event-time is a first-class citizen of all events en-
tering a stream processor. Furthermore, we can invent 2pc-like
protocols that take advantage of the fifo connections between
computation vertices in dataflow graphs, and ensure the order in
which transactions arrive and state changes are applied.
3 https://ci.apache.org/projects/flink/flink-docs-stable/ops/state/savepoints.html
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Figure 1: A set of services running inside a streaming
dataflow graph. The business logic of services runs as an
operator that processes messages and produces responses,
the state of the service is managed by the dataflow engine,
and all inputs and outputs of a given system are logged.

(Non-Dataflow) APIs for Loosely-coupled Services. Current
dataflow systems only allow developers to author data pipelines,
by defining data dependencies among operators and user-defined
functions such as Map and Reduce in an explicit manner. To allow
developers to develop loosely-coupled data-intensive services,
we need novel apis which will allow developers to individually
develop, test, and debug services. Those services can be auto-
matically compiled into a single, efficient, and scalable dataflow
graph. To this end, we can derive the data dependencies from the
defined messages/endpoints that applications send to each other,
building the dataflow graph dynamically.
Consistent Access to Global State. Consistent snapshots [6]
of transactional dataflows need to provide safe and consistent
read access to global state, i.e., we need the means to execute
distributed queries over the state of different operators. More
specifically, we could provide the means for services to publish
(views over) their state on top of which other services can build
materialized views. Materialized views can maintain fresh results
[12] and guarantee locality.
Dynamic (re)configuration. Currently, dataflow systems build
a dataflow graph statically and then parallelize and deploy it,
since all the data dependencies among operators are pre-defined.
However, frequent and independent updates of services necessi-
tate highly dynamic graphs with network channels that can be
created or destroyed at any given time during the execution of
a service. The ultimate goal is that the performance of existing
services is not affected by changes in the dataflow graph. An
important use case of dynamic configuration is the automatic
parallelization of services. As we mentioned earlier, each service
obtains access to managed local state. However, both the state
and the input messages that are directed to a given service should

be partitioned whenever possible, in order to ensure parallel exe-
cution. To this end, given a key for each state object, we aim at
automatically parallelizing and even replicating service deploy-
ments and optimizing them for throughput and latency, without
sacrificing consistency.

5 CONCLUSIONS & FUTUREWORK
In this paper we made a case for using streaming dataflow sys-
tems as a backend for stateful event-driven applications, such
as microservices. We listed a set of requirements that include
acid transactions, global state consolidation, and the need for de-
bugging and auditing. We then used those requirements to draw
a rough outline of the future work that we believe has to take
place, to materialize the vision of operational stream processing.
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