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Abstract
Hardware specialization has been considered as a promising way
to overcome the power wall, ushering in heterogeneous computing
paradigm. Meanwhile, several trends, such as cloud computing
and advanced FPGA technology, are converging to eliminate the
barriers to custom hardware deployment, allowing it to be both
technologically and economically feasible. In this paper, we con-
duct a pioneering study of hardware specialization for OLTP
databases and present a fast and power-efficient transaction pro-
cessing system built on FPGA, called BionicDB. With an order of
magnitude higher power-efficiency inherently offered by FPGA,
BionicDB performs faster or comparable to state-of-the-art soft-
ware OLTP system by accelerating indexing and inter-worker
communication.

1 INTRODUCTION
For the past decade, multicore has been a dominant scaling path.
However, multicore hardware is getting more and more stagnant
over time due to the growing scalability pressure and continu-
ing power wall [16, 21] . To tackle the situation, hardware spe-
cialization has garnered a great deal of attention. It is widely
regarded as a way to provide substantial power saving, while
providing application-specific acceleration at the expense of gen-
erality [22, 30, 32, 34, 38, 44, 45] .

In the meantime, field-programmable gate array (FPGA) tech-
nology has been matured, making custom hardware deployment
more viable and economical. Its reconfigurability can return eco-
nomic gains in accommodating quickly changing application de-
mands by lifting manufacturing burden; we can reconfigure hard-
ware to update or patch on-the-fly, as we do so for software. More
importantly, inherent power efficiency of FPGA provides a great
opportunity to overcome the power wall. Although running at low
clock frequency, fine-grained, massive parallelism of FPGA could
potentially compensate the low clock frequency with suitable
custom hardware design on top.

For these reasons, datacenters increasingly integrate FPGA as a
primary platform to run various custom accelerators for some data-
intensive applications, such as search engine, deep learning and
OLAP databases [4, 38] . Characteristically, those are compute-
bound, dataflow applications. For such workloads, FPGA’s mas-
sive fine-grained parallelism holds great promise for compute
acceleration while CPU’s limited and stagnant parallelism be-
comes a major computation bottleneck in dealing with huge data
volume.

However, hardware specialization for transaction processing
(OLTP) has been rarely explored. It has even been regarded as
questionable because of OLTP’s very different characteristics from
previous cases: OLTP is generally bound by memory stalls and
communication, rather than computation. In this situation, compu-
tation acceleration does not promise meaningful performance gain.
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Meanwhile, multicore CPU is returning diminishing performance
gain with growing power consumption, putting scalability efforts
at risk.

Inspired by the findings and technology trends, we conclude
that it is imperative to explore an OLTP-oriented hardware that is
power-efficient to operate under restrictive power budget and fast
enough to meet performance requirement at the same time. FPGA
can easily satisfy the power goal, but the question is how fast it
can be while preserving the power efficiency.

In this paper, we report the design and implementation of
BionicDB on FPGA as a case of hardware specialization for
OLTP. BionicDB is an OLTP-oriented hardware optimized for
in-memory, partitioned databases. Preserving the inherent power
efficiency of FPGA, it achieves high performance thanks to vari-
ous OLTP-oriented custom hardware that accelerate 1) index and
2) inter-worker communication. Also, it takes a hybrid processor-
accelerator (software-hardware) architecture to complement each
other. Our experimental results show that BionicDB can achieve
an order of magnitude power saving while providing competitive
performance compared to state-of-the-art software system; with
the same number of worker threads, BionicDB can be faster by
up to 4.5x when fully utilized and maintains comparable perfor-
mance in TPC-C transactions where BionicDB is substantially
underutilized.

The main contributions of this paper are as follows.
• We establish a holistic strategy for fast and power-efficient

OLTP through hardware specialization.
• We propose index pipelining and transaction interleaving for

index acceleartion.
• We suggest on-chip message-passing for faster inter-worker

communication in partitioned databases.
• We show that hybrid processor-accelerator (software-hardware)

approach is required for OLTP.

The remainder of this paper is organized as follows. Section 2
covers background on FPGA. Section 3 discusses design deci-
sions, laying the foundations of BionicDB. Section 4 describes
how BionicDB works in detail. Section 5 evaluates BionicDB,
comparing to a software OLTP system. Section 6 summarizes
related work. Section 7 contains our conclusion and suggests
possible future research directions.

2 FIELD PROGRAMMABLE GATE ARRAYS
FPGA is a reconfigurable hardware platform and becoming an
enabling technology for hardware specialization for a wide variety
of application. Its main advantages are low power consumption
and massive fine-grained parallelism that can be leveraged for
acceleration. While CPU still remains as a central processing
resource, certain CPU-unfriendly work can be offloaded to custom
accelerator built on FPGAs for higher efficiency.

The main building blocks of FPGA that enable reconfigurability
are lookup tables (LUT), flip-flops (FF) and programmable routing
fabric. The first two components are used to implement logic func-
tions, and the routing fabric interconnects them programmably.
In addition to the programmable elements, modern FPGA chips
commonly include hardwired blocks for higher efficiency, such as
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Challenge Solution
Memory stalls Index pipelining
Memory stalls Transaction interleaving
Inter-worker communication On-chip message-passing over DORA
Heavy control-flow Hybrid processor-accelerator design

Table 1: Design summary

block RAMs (BRAMs), digital signal processors (DSPs) and even
embedded processors. Hardware can be designed with hardware
description language (HDL) and CAD tools provided by a vendor
compile HDL code into a bitstream that physically implements
the hardware design on a target chip.

FPGA trades efficiency for reconfigurability, largely because
of the area/speed/power overhead from programmable fabric, re-
siding in a middle ground between ASIC and CPU in terms of ef-
ficiency and flexibility; ASIC provides the highest efficiency with
lowest flexibility, while CPU provides the opposite. But FPGA
can be an excellent platform for applications where the volume
of production does not justify ASIC manufacturing. In datacen-
ters where servers are dynamically re-purposed for a changing
set of applications, a FPGA-augmented server can reprogram
both software and hardware at runtime, allowing more efficient
resource provisioning [38] . It also provides a chance to free up
a number of CPUs from cycle-consuming jobs and spare them
for more suitable (SW-friendly) tasks, returning higher datacenter
efficiency.

3 DESIGN
BionicDB aims to provide 1) power saving 2) and high perfor-
mance at the same time for OLTP. Software-only systems on
low-power processors usually end up trading one for another;
[40] reports that an ARM processor sacrifices performance by
3x with merely 25% energy efficiency gain, compared to a Xeon
processor when running a high-performance in-memory OLTP.
Therefore, we leverage hardware specialization with FPGA to
achieve both goals. Table 1 summarizes the specific challenges
and solutions to address them.

3.1 Acceleration Strategy
We start from understanding bottlenecks in modern OLTP to iden-
tify “what to accelerate" and establish a strategy on “how to ac-
celerate". Typically, OLTP systems serve massively concurrent
transactions that make small random updates to databases [1, 20] .
Such workload characteristic naturally gives high pressure on
indexing and thread coordination.

Index. Although OLTP databases heavily rely on index, the CPU
is frequently bound by memory stalls from dependent pointer
chasing within an index probe, wasting huge amounts of cycles.
For example, a recent study reported roughly 40% overhead from
index in a state-of-the-art software OLTP system[24] . But ex-
isting software solutions are limited to overcome the memory
wall [19, 25] : 1) cache optimizations and bigger cache are easily
undermined by OLTP’s access randomness; 2) prefetching often
fails to hide memory latency due to the lack of computation to
overlap with; 3) software pipelining is inefficient with irregularity;
4) and group/dynamic prefetching is bound by the limited size of
the instruction window of a CPU.

BionicDB alleviates the memory stalls through index pipelin-
ing. The key concept of index pipelining is to overlap multiple
index accesses through hardware pipelining. It can provide higher
memory-level parallelism, thereby improving single-worker per-
formance. Also, we aim to exploit index parallelism not only
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Figure 1: OLTP acceleration strategy

within a transaction, but also across transactions. For that, trans-
action interleaving captures inter-transaction index parallelism,
improving the utilization of index pipelining. Figure 1a illustrates
how we can achieve higher memory-level parallelism with these
techniques.

Communication. Partitioned databases can simplify the hard-
ware complexity; theoretically, database resources are core-private
eliminating the burden of complex thread coordination, such
as concurrent index implementation. For that reason, we adopt
DORA[35, 36] which is a scalable partitioned database.

In regard to performance, it has very low overhead for a single-
partition transaction because inter-worker communication does
not take place at all. However, it requires inter-worker communi-
cation overhead when a transaction spans across partitions (multi-
site transaction). Recent studies [7, 8, 12] have revisited message-
passing semantic for partitioned databases, but software message-
passing can involve 1) memory latency when a message is evicted
from cache and 2) thread synchronization at concurrent message
queues that can be a scalability bottleneck. Despite the prob-
lems, there is no alternative or a bypass for software, because the
shared-memory is the only available communication semantic in
most CPUs. In other words, the shared-memory bottlenecks are
inevitable with software message-passing even when application-
level communication semantic is purely message-passing.

For faster communication in partitioned database, As illustrated
in Figure 1b , BionicDB provides an on-chip message-passing
method that can completely eliminate the overhead of software
message-passing. As a result, multisite transactions, a remaining
concern in partitioned databases, can be accelerated.

3.2 Hybrid Hardware-Software Approach
While software-only is inefficient for the challenges of memory
stalls and communication, the heavy control-flow in transaction
logic, such as conditional branches and dynamic loops, makes
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general-purpose processor technology indispensable. This natu-
rally leads to hybrid processor-accelerator approach that can deal
with the inefficiency of both hardware-only (dynamic control-
flow) and software-only (memory stalls, inter-worker communica-
tion) solutions.

The next question is how to integrate them. In our hardware
environment where FPGA is connected through PCIe, the exces-
sive PCIe latency (1us) between FPGA and host CPU can absorb
most acceleration benefits. Therefore, we implement a custom
softcore (microprocessor built around reconfigurable fabric) and
acceleration fabric altogether on a PCIe-attached FPGA chip for
tight integration, moving the majority of the OLTP components.
The mission of the softcore is to execute pre-compiled stored
procedures, while interacting with the index/communication ac-
celeration fabric. As a result, hardware and software can closely
collaborate, complementing each other. We design a custom core
from the scratch, rather than using a vendor-provided softcore,
to easily implement custom features and to integrate with the
acceleration fabric more efficiently.

Although unexplored in this work, upcoming in-socket FPGA
hardware[33] where FPGA is placed closer to host CPU is promis-
ing for hybrid software-hardware approach in that it allows to
re-use existing software ecosystem, while enabling fast FPGA
roundtrips thanks to low-latency interconnects, such as QPI.

4 ARCHITECTURE
4.1 Hardware Description
We build BionicDB on Micron HC-2 machine (formerly, Convey
HC-2)1 which contains four Xilinx Virtex-5 LX330 FPGA chips
on a PCIe card and two-socket Intel Xeon X5670 processors. The
memory subsystem of the FPGA card includes 64GB of DDR2
RAM, 8 memory controllers and 16 scatter-gather DIMMs. It
can provide up to 80GB/s memory bandwidth for random 64-bit
accesses when its 16 scatter-gather DIMMs are fully utilized with
all FPGA chips enabled. However, current implementation of

1 https://www.micron.com/about/about-convey-computer-accelerator-products/
hc-series

BionicDB uses only a single FPGA chip out of 4 and 8 DIMMs
out of 16, bound by the maximum bandwidth of 10GB/s. It is also
worth noting that in-memory OLTP is typically bound by memory
latency, rather than bandwidth, due to small random accesses.

4.2 Overview

Figure 2 illustrates the architecture of BionicDB. BionicDB im-
plements OLTP functionalities (stored procedure execution, in-
dexing, concurrency control and transaction management) on a
PCIe-attached FPGA chip, leaving a few background housekeep-
ing jobs (signaling FPGA to start/stop, memory management,
interactions with clients) to the host CPU. The database is par-
titioned, entirely residing in FPGA-side on-board DRAM. Each
partition is accessed by a single partition worker in FPGA, and we
fit multiple partition workers on a FPGA chip as many as its logic
capacity allows for thread-level parallelism. The main components
of a partition worker are 1) stored procedure execution engine and
2) acceleration fabric. The former includes the softcore and the
catalogue that stores stored procedures and metadata, and the lat-
ter is composed of a local index coprocessor and communication
channels.

We briefly describe the processing flow during transaction exe-
cution. The client should upload a pre-compiled stored procedure
along with all metadata to the catalogue in advance. After that, the
client can submit a transaction block to BionicDB for executing
the transaction. Then, a partition worker fetches the transaction
block from its input queue (step 1 in Figure 2). Once a transaction
block arrives, the softcore fetches the corresponding stored proce-
dure code from the catalogue and executes it (step 2 in Figure 2).
During the execution of a stored procedure, it makes a database
access by asynchronously passing an index request to the local
index coprocessor or a remote site through the communication
channels (step 3 in Figure 2). Meanwhile, the index operations
issued by the local softcore (foreground requests) can be over-
lapped in the index coprocessor. The index operations from remote
sites (background requests) also can be overlapped in the index
coprocessor (step 4 in Figure 2). After a batch of transactions is
entirely executed, the transactions are committed in serial order.

303



Transaction logic:
SEARCH (0, Table1)
UPDATE  (8, Table2)

Commit handler:
// Make write-set public

Abort handler:
// Abort with UNDO logs

Offset Contents
0 Input key
8 Input key

UNDO log buffer

Scratch buffer

Output buffer
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Figure 3: Stored procedure interface.

4.3 Softcore
In BionicDB, a transaction can be executed by invoking an as-
sociated stored procedure that is pre-compiled with BionicDB
instructions (will be described in this section). Then, the soft-
core executes the instructions while interacting with the index
accelerator where most performance gains come from.

Stored procedure execution. A stored procedure is composed
of three parts: 1) transaction logic code, 2) commit handler and
3) abort handler. The first part represents the original transaction
logic and the rest implements a commit protocol (currently, com-
mit/abort handlers should be defined by users). Depending on the
execution results during transaction logic, BionicDB moves on to
either the commit or the abort handler.

Once a stored procedure is registered, a client can submit a
transaction block to BionicDB to invoke the transaction at run-
time. A transaction block contains a transaction ID, input data
and buffers for result sets, intermediate data and transaction logs.
When it receives a transaction block, the softcore executes the
matching stored procedure code with the transaction ID, using
the input data and buffers in the transaction block. In the example
shown in Figure 3 , the stored procedure (left) tries to search a
tuple with a key at offset 0 and update a tuple with a key at offset
8 in the transaction block (right).

When generating a stored procedure, a compiler should trans-
late SQL statements into machine code, as Hekaton does with
T-SQL [14] (we used manually-written stored procedures, as the
compiler is beyond the scope of this paper). A client can register
a new transaction or change an existing one by uploading the
stored procedure code to BionicDB along with metadata to work
with, such as transaction information and table schema. It does not
require FPGA reconfiguration that involves hours-long synthesis,
so BionicDB can accommodate workload changes quickly.

Instruction set architecture. The instruction set of BionicDB is
composed of a subset of typical CPU instructions and DB instruc-
tions that encapsulate index operations (see Table 2). Figure 4
briefly illustrates how the softcore processes each instruction type
during stored procedure execution. CPU instructions are directly
executed by the softcore in five steps as simple RISC CPUs do:
Instruction Fetch, Decode, Execute, Memory and Writeback. We
ruled out instruction pipelining and out-of-order execution as
previous studies showed that such features do not translate into
meaningful improvement in OLTP [6, 17] .

DB instructions are added for invoking indexing services pro-
vided by the index coprocessor. For DB instructions, the softcore
collects metadata in Prepare stage, such as index type (hash or
skiplist) and transaction begin timestamp. In the next stage (Dis-
patch), the softcore passes the DB instruction with the metadata
to the local index coprocessor or a remote one via on-chip com-
munication channels, depending on the destination partition. DB

Instruction Type
INSERT DB
SEARCH DB
SCAN DB
UPDATE DB
REMOVE DB
ADD/SUB/MUL/DIV/MOV CPU
CMP CPU
LOAD/STORE CPU
JMP/BE/BLE/BLT/BGT/BGE CPU
RET CPU
COMMIT/ABORT CPU

Table 2: BionicDB instructions. DB instructions invoke index
operations provided by the index coprocessor.

IFetch

Decode

Execute

Memory

Writeback

Prepare

Dispatch

CPU inst. DB inst.

Local 
index coproc.

Remote 
index coproc.

(via on-chip comm.)

Figure 4: Instruction execution steps of the softcore.

instructions are asynchronously forwarded for overlapping multi-
ple index operations.

General-purpose registers (GP registers) are available to store
data or pointers, and special-purpose registers, including a pro-
gram counter (PC) and a status register that contains carry/ze-
ro/sign/overflow flags, are also available as typical CPUs. Ad-
ditionally, coprocessor registers (CP registers) are provided; the
result of a DB instruction is returned asynchronously to a CP reg-
ister specified in the DB instruction. Then, the softcore can copy
the result from the CP register to a GP register by executing a RET
instruction. Therefore, a DB instruction must be paired with a
RET instruction on the same CP register. The GP/CP register files
are implemented on BRAMs, instead of flip-flops, for resource ef-
ficiency, and 256 GP/CP registers are provided to a single softcore.
General-purpose cache memory was not implemented.

The addressing mode is base-offset. At the beginning of a trans-
action, a BionicDB worker sets a base address register with the
start address of a transaction block and reaches memory locations
within the block by adding the base address and an offset value.
The offset value could be either the content of a GP register or an
immediate value which is inlined to an instruction directly.

4.4 Index Coprocessor
The index coprocessor processes DB instructions from the local
softcore or a remote one. The key technique for acceleration
is hardware pipelining. We decompose an index algorithm into
sub-functions that can work in parallel and implement each sub-
function as a hardware pipeline stage. Each pipeline stage is a
finite-state machine that is awakened on source data arrival from
off-chip DRAM, performs a certain task, issues memory requests
designating the next stage as a destination and moves on to the
next incoming instruction. There could be multiple outstanding
DB instructions between neighboring stages.

Index pipelining can overlap multiple index accesses, achiev-
ing higher memory-level parallelism. But pipeline hazards can
happen when different stages access the same memory location.
We describe details of each index and discuss how to prevent
pipeline hazards in the following sections. Figure 5 shows the
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Figure 5: Index pipelining to overlap multiple index accesses. Hash index deals with point access and skiplist provides range scan.

index pipelining with hash and skiplist indexes. For point ac-
cess, BionicDB implements hash index that processes INSERT,
SEARCH, UPDATE and REMOVE instructions. Skiplist index
can handle SCAN instructions for range query, INSERT and RE-
MOVE instructions. Both indexes support variable-length key.

4.4.1 Hash index for point access We illustrate how the HW
hash index works in Figure 5a . KeyFetch stage takes a DB in-
struction and issues memory requests to fetch a search key from a
transaction block, designating Hash stage as a destination. Then,
the memory response containing the search key is queued at Hash
stage. Hash stage takes the search key from its input queue, com-
putes a hash value and loads a hash table entry with the hash value.
(we use Sdbm hash function2 for its minimal use of hardware
resources; it requires neither a huge lookup table nor an expensive
operation like modulo).

At this point, Hash stage forwards an INSERT instruction to
Install stage and the other instructions to HeadFetch stage. For
INSERT instruction, Install stage takes a hash table entry and
appends a new tuple to the entry. For SEARCH/UPDATE/RE-
MOVE instructions, HeadFetch stage checks the content of hash
table entry. If the value is NULL indicating that there is no tuple
installed, it returns a “NotFound" message to the destination CP
register specified in the DB instruction. Otherwise, it issues mem-
ory requests to read the first item of a hash bucket. KeyComp stage
compares the search key against the first item’s key. If they match,
it examines visibility check (will be explained in Section 4.7)
for concurrency control, otherwise, it passes the instruction to
Traverse stage to follow a hash conflict chain.

Traverse stage follows a hash conflict chain until it finds a
matching tuple or reaches the end of the chain. Unlike other stages
that contain only computation without memory stalls, this stage
could involve multiple memory stalls. Thus, Traverse could take
much longer time with poorly distributed hashing. We decouple
this stage from Compare stage so that an instruction that follows a
long hash conflict chain does not block succeeding instructions
that terminate at Compare stage. If hash conflict is frequent, mul-
tiple Traverse stages could be populated for balanced dataflow
over the pipeline. Also, a hash function with good distribution
and sufficiently large hash table could minimize the activation of
Traverse stage by reducing hash conflicts.

Pipeline hazards and prevention. There are two hazards in hash
index: insert-after-insert and search-after-insert (see Figure 6). In
the former case, lost update can happen between in-flight inserts

2 http://www.cse.yorku.ca/~oz/hash.html

accessing the same hash table entry, if the following request reads
a hash table entry before the preceding request updates it (see
Figure 6a). Although not illustrated in the figure, a SEARCH
instruction could read an inconsistent hash table entry at Hash
stage before Install stage finishes updating it. In both cases, the
reason for the hazards is that Hash and Install stages access the
same hash table entry without coordination.

To prevent the hazards, we use a pipeline-stall based coor-
dination scheme. BionicDB tracks the hash values of in-flight
instructions that passed Hash stage in a lock table on BRAM
(content-addressable memory could be used for faster check), and
Hash stage checks the lock table before accessing a hash bucket.
If a duplicate hash value is detected, it blocks until the lock entry
disappears (see Figure 6b). The lock table entry is deleted by
terminal stages when an instruction completes.

4.4.2 Skiplist for range scan For range scan, we choose
skiplist because it is efficient with index pipelining for range
scan (will be discussed later in this section). A skiplist index is a
collection of linked lists at multiple levels [37] . A skiplist node
(tower) includes a tuple and an array of pointers to the next towers
at different levels. The bottom link is a list of all towers, while
upper ones are short-cuts and contain towers with probabilistic
distribution; the number of towers decreases exponentially from
the bottom through the top, offering logarithmic time complexity
on average for traversal by preferring to traverse taller towers first.

Traversal pipelining. BionicDB maps skiplist indexing on deeply
pipelined datapath. Each pipeline stage covers an exclusive range
of levels. We illustrate an example of index pipelining for skiplist
in Figure 5b . In the example, four levels are mapped on four
skiplist pipeline stages. The level 3 stage starts pointer chasing
horizontally at the top level, stops at the tower having key 15
because its next tower contains an upper bound and drills down to
the lower level. As it goes out-of-range, it passes the instruction
to the next pipeline stage (level 2) and immediately moves on
to the next incoming instruction. Meanwhile, level 2 stage takes
over the instruction and performs same tasks within its coverage.
The level 0 stage that exclusively owns the bottom level finally
receives the request and locates the right tower for the given key,
which is 56. For balanced pipelining, it is important to customize
range binding properly. If skiplist towers are substantially sparser
at upper levels than lower ones, upper pipeline stages could be
assigned larger ranges.

Insert. During the traversal for INSERT instruction, the insert
path, the pointers to the predecessor and successor towers at each
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Figure 7: Skiplist hazard and prevention.

level below the new tower’s height, is recorded in BRAMs. From
the bottom level, the bottom-level stage installs a new tower on
the insert path.

Scan. Scan does not require to record the path because it only
needs to reach the bottom level. We assign a dedicated scanner
module after the bottom-level stage. The bottom-level stage passes
a scan request with the first tower in the scan range to the scanner.
Then, a scanner collects committed and visible tuples within the
scan range. The result scan set is stored in a designated buffer
space in a transaction block (on DRAM), and the size of scan set is
returned through a CP register. Like Traverse stage in hash index,
decoupled scanner stages prevent long-running scan requests from
blocking following requests that complete at the bottom-level
stage. When necessary, redundant scanners could distribute heavy
scan loads, ameliorating unbalanced dataflow.

Insert-insert hazard and prevention. In skiplist, only insert-
insert hazard can happen. When consecutive inserts traverse down
through common path, the traversal path of the following request
could be invalidated when the preceding one has overwritten it
with a new tower’s address. Figure 7a shows an example of the
insert-insert hazard. In the example, INSERT(D) request drills
down a wrong tower (which is B) because the preceding insert C
has not updated the tower at level 1. In turn, INSERT(D) installs a
new tower on its inconsistent path, consequently, C is lost at level
1.

To prevent insert-insert hazard in skiplist, we apply a similar
blocking policy to the hash index to prevent the skiplist hazard
(see Figure 7b). For all in-flight INSERTs, we record the entry
points of insert paths in a lock table. All skiplist pipelines should

check the lock table before switching to the next tower or a lower
level and block when encountering a locked traversal path. The
lock is eliminated by the terminal stage (the bottom-level stage)
when an INSERT operation completes.

Stall-free range scan. Unlike insert, skiplist scan can be stall-
free, allowing efficient pipelining. A scan request might traverse
down an inconsistent image of the skiplist, when missing towers
installed by previous in-flight inserts at short-cut levels. How-
ever, all towers inserted previously are visible at the bottom link
because a single dedicated pipeline stage serializes requests in
order. After the bottom-level stage passes a scan request, a scanner
starts pointer chasing from the first tower in the scan range. There-
fore, scan does not miss any previous inserts in the end. During
scan, the scanner could see towers inserted after scan started, but
they are ignored by timestamp-based visibility check. In terms
of performance, a scan request could choose a slower traversal
path by missing recent short-cuts, but higher concurrency is more
beneficial for overall performance.

4.5 Transaction Interleaving

The index coprocessor could be heavily underutilized with insuf-
ficient intra-transaction index parallelism when transactions are
serially executed. As an extreme example, a single record transac-
tion in key-value workloads that issues only a single index request
can entirely eliminate the chance to overlap index accesses. To
prevent the underutilization, the softcore exploits inter-transaction
index parallelism by interleaving multiple transactions. We de-
scribe the details of transaction interleaving and discuss what
factors could affect its efficiency.
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Transaction grouping. Whenever a transaction block enters the
softcore, the softcore tries to add the transaction to the current
batch as follows. It first checks the metadata in the catalogue to
figure out how many GP/CP registers are required for the trans-
action. If there are enough registers remaining, the transaction
joins the current batch with an exclusive range of GP/CP registers
allocated. For the purpose, the softcore maintains the base GP/CP
register addresses and renames the registers in the stored proce-
dure instructions by adding the base register addresses. After that,
the base register addresses are updated to indicate next available
range, and the stored procedure is executed immediately. If the
allocation fails, the current batch is closed and the new transaction
is scheduled after the current batch commits.

Two-phase execution and interleaving. Figure 8 shows how in-
terleaving is done. BionicDB executes transactions in two phases:
1) transaction logic and 2) commit/abort. Starting from the first
transaction in a batch, the softcore executes a stored procedure
code. When it reaches the end of a stored procedure, it saves the
transaction context in a BRAM buffer, including program counter
register, the base address of transaction block and register address
range, and switches to the next transaction without waiting for
outstanding DB instructions to complete.

When the first phase of a batch is finished by batch closure,
it returns back to the first transaction and restores the context
saved in the BRAM buffer. At this point, the program counter
(PC) indicates the address of the first instruction of the commit
handler. The commit handler then waits for all outstanding DB
instruction to return. Depending on the results from them, the
softcore continues to commit or jumps to the abort handler. Any
exception, such as a DB instruction failure by CC or a voluntary
abort, caught will trigger the abort handler. Then, the commit/abort
handler performs a CC protocol to finish the transaction batch.
After the second phase of a batch is finished, the softcore opens
a new batch and executes the pending input transactions in the
batch.

Discussion. With transaction interleaving, DB instructions across
transactions can be overlapped. It is particularly beneficial for
small transactions with insufficient intra-transaction index par-
allelism. Also, the overhead of transaction interleaving is mar-
ginal: transaction contexts are stored entirely in a context table
on BRAMs, and a single switch takes 10 cycles to save current
context and restore the next one from the context table.

The benefit of interleaving could be absorbed by data depen-
dency within a transaction; data dependency is formed when a DB
instruction requires an output from the previous DB instruction
in the same transaction. Data dependency becomes a barrier that
forces to wait for outstanding DB instructions to complete within
a transaction, getting rid of the chance to overlap index requests
in the next transactions. However, we found that current interleav-
ing is still promising for certain workloads where transactions are

small and data dependency-free (for example, YCSB transactions).
To deal with heavy data dependency, it might be helpful to switch
between transactions dynamically whenever desired, but current
implementation does not support such dynamic scheduling.

4.6 On-chip Message-passing Channels
Partitioned databases, such as H-store and DORA, can minimize
synchronization overhead across concurrent threads with single-
threading policy; a partition is not thread-safe, but it is guaranteed
to be accessed by a dedicated worker exclusively. Therefore, a
partition worker cannot directly access a remote partition, instead,
it should send a request message to a remote site. Then, a delegate
worker on the remote partition processes the request on behalf of
the initiator and returns a response message back. Hence, inter-
worker message-passing is required when a transaction spans over
multiple partitions.

To reduce the communication overhead and, thereby, accelerate
cross-partition transactions, BionicDB provides on-chip message-
passing channels. Unlike software message-passing that can in-
clude memory latency and thread synchronization during com-
munication, request/response messages are directly exchanged
between workers at on-chip speed without memory round-trips
and thread synchronization. Despite the low clock frequency of
FPGA, the communication latency is still low due to low-overhead
message-passing protocol. The latency in exchanging a single pair
of request and response messages takes 6 cycles in total (the la-
tency could vary slightly depending on congestion). We believe
that message-passing is a suitable communication semantic for
single-threaded databases where data is strongly isolated between
partition workers, while most CPUs have to conform the shared-
memory semantic for backward compatibility.

Multisite transaction handling. Let us explain how a multisite
transaction is processed using with the on-chip communication
channels in detail. Each worker is assigned a communication link
that consists of request and response channels. When the softcore
decodes a DB instruction and finds out that the target partition is
remote, it creates a request packet with the instruction and sends
it through the request channel asynchronously. A request packet is
piggybacked with a transaction timestamp for concurrency control
and source/destination worker IDs for routing. At a remote site,
a background unit monitors the request channel and catches an
inbound request packet having a matching worker ID. In turn,
the DB instruction is dispatched immediately to the remote index
coprocessor as a background request. At this point, local (fore-
ground) and remote (background) requests can be overlapped in
the index coprocessor. But, it does not cause inconsistency be-
cause the index coprocessor is capable of dealing with pipeline
anomalies and concurrency control. After completion of a back-
ground request, its result is sent back to the initiator through the
response channel. The response message returned to the initiator
is written back to the destination CP register asynchronously, and
the initiator’s softcore takes the result later when executing a RET
instruction with the CP register.

Scaling on-chip message-passing. We discuss several scaling
issues, leaving them to future work. First, the current topology
of the on-chip communication is crossbar which does not scale.
When scaling up BionicDB on datacenter-grade FPGAs that can
fit tens or hundreds of BionicDB workers in a single chip (resource
consumption will be provided in Section 5), a scalable on-chip
communication topology, such as ring or tree, will be required.
Also, BionicDB is currently a single-chip, single-node system.
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Given that typical FPGA offerings have merely around tens of
GBytes of on-board DRAM, it is vital to scale BionicDB across
multiple FPGA nodes in a shared-nothing cluster like H-store
[23] . Fortunately, some cloud FPGA services, such as AWS F1,
support multi-chip, multi-node deployment [4] . Therefore, the
message-passing channels should be diversified with additional
connectivities for inter-node communication.

4.7 Concurrency Control
Currently, BionicDB employs a variant of the basic single-version
timestamp CC [11] . Its strengths and weaknesses are well-known
[47] , but we use it for the sake of simplicity as CC is not the focus
of this paper. A transaction is assigned a hardware timestamp
value at the beginning. During transaction lifecycle, DB instruc-
tions issued by the transaction are packed with the transaction
timestamp and passed to the index coprocessor. Then, visibility
check is performed as follows by the index coprocessor against a
matching tuple with the search key.

Visibility check. Each tuple is associated with latest read and
write timestamps, and they are compared against the transaction
timestamp when accessed. The read permission is granted on
a tuple having a lower write time, and the write permission is
granted on a tuple having a lower read time. If the transaction
is the latest reader, read time of the tuple is updated with the
transaction timestamp immediately. There are minor deviations
from the original algorithm. First, any access to an uncommitted
(dirty) tuple during runtime is blindly rejected without the care of
the serial order and triggers transaction abort immediately. Also,
read set is not buffered. If the second access to a previously visited
tuple is denied by concurrent updates, the transaction should abort
to ensure repeatable read.

If a DB instruction passes the visibility check, the address of
the matching tuple with a “success" return code is written back
to the CP register specified in the DB instruction. Otherwise, an
error code is written. An UPDATE instruction only marks the
dirty bit and returns without actual modification. With the tuple
address returned, the softcore later performs in-place update after
backing up the original tuple in UNDO log buffer in a transaction
block. An REMOVE instruction returns after marking both dirty
and tombstone bits.

Commit protocol. When a commit handler takes over the soft-
core after transaction logic execution, it collects the results from
CP registers by executing RET instruction. If an error code is
detected, the softcore jumps to the abort handler. After making
sure successful execution, the softcore iterates write-set to cleanup
dirty marks and overwrite their write time with the transaction’s
begin timestamp. If aborted, the abort handler restores the write-
set from the UNDO logs in a transaction block and removes the
dirty marks.

4.8 Logging and Recovery
Although logging and recovery are currently missing, we discuss
a possible way to guarantee durability. BionicDB can adopt the
VoltDB’s command logging approach for recovery[29] . After ex-
ecuted by BionicDB, each transaction block contains the commit
state and the commit timestamp of the transaction, preserving
the input arguments. BionicDB can recover the database simply
by re-executing the committed transaction blocks in the commit
timestamp order. To this end, the host CPU should store the input
transaction blocks that were processed in a durable storage be-
fore returning them to clients. After system failure, the host CPU
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Figure 9: Comparison of overall performance of BionicDB to
Silo on Xeon (4 chips).

should load the last checkpoint image and the persisted transaction
blocks (command logs) from the disk. Then, the host CPU can re-
play the committed transaction blocks, ignoring the uncommitted
ones. It must replay them in the commit timestamp order to ensure
correct recovery. After recovery, the hardware clocks of BionicDB
should be re-initialized to the latest commit timestamp, and the
host CPU can signal BionicDB to resume transaction processing.

5 EVALUATION
This section evaluates BionicDB for the following purposes.

• We show that BionicDB can provide high performance and
substantial power saving in OLTP workloads, comparing to
state-of-the-art SW system.

• We figure out how much speedup comes from each acceleration
feature and which factors can limit the performance.

5.1 Experimental Setup
In all experiments, we fit the entire databases in DRAM. For
BionicDB, we populated input transaction blocks in advance
by host CPUs (ideally, remote clients should submit transaction
blocks through network cards, and BionicDB should process them
without the intervention of the host CPU). Unless stated otherwise,
we report the aggregate throughput of four BionicDB workers.

5.2 Hardware
Xilinx Virtex5 LX330. We built BionicDB on a single Virtex5
LX330 FPGA chip which was manufactured with 65nm technol-
ogy and released a decade ago. It contains merely 200K logic cells,
allowing to fit only four BionicDB workers within a single chip.
However, recent datacenter-grade FPGA chips containing millions
of logic cells, such as Xilinx Virtex Ultrascale+ used in AWS F1
instances or Intel Arria 10, could accommodate tens or hundreds
of BionicDB workers with a single chip [2, 5] , providing ample
thread-level parallelism. The clock frequency of BionicDB was
set to 125MHz.

Intel Xeon E7 4807. To compare BionicDB to a software engine,
we ran Silo[43] on 4 hexa-core Xeon chips (24 physical cores in
total). Its clock frequency is 1.87GHz, and each core is assigned
private 32KB L1I/D cache and 256KB L2 cache. L3 cache is
18MB and shared by all cores on a chip. In choosing a CPU for
comparison, our focus was making sure the CPU is roughly in
the same generation with Virtex5 for fairness. Xeon E7 4807 was
released later (in 2011) than Virtex5 and manufactured with more
advanced process technology (32nm).
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5.3 Benchmarks
TPC-C. We ran a mix of the TPC-C NewOrder and Payment
(50:50). Most transactions are local, but 1% of the NewOrder and
15% of the Payment transactions are cross-partition by default. We
partitioned the database by Warehouse and replicated Item table
which is read-only across partitions. The number of partitions
was fixed to the number of workers. We modified the Payment
transaction by enforcing to pick up a customer with customer id
for both BionicDB and Silo.

YCSB. The YCSB transaction includes 16 independent DB ac-
cesses with no data dependency. The YCSB table schema consists
of a 8B integer key and 1KB payload. We populated 300K records
per partition, and the size of a partition is 300MB (the number
of partitions is equal to the the number of workers). We ran the
YCSB-C (read-only) and YCSB-E transactions. The YCSB-B
(read-intensive) was ommitted due to similar results to YCSB-C.
We modified the YCSB-E transaction to make it scan-only and
fixed the scan range to be 50 records which is the average scan
length with the default workload setting.

5.4 Overall Performance
We compared the overall performance of BionicDB and Silo
in Figure 9 . As explained in Section 5.1 , we only presented
BionicDB from 1 to 4 workers because of limited logic capacity
of Virtex5 FPGA. In Figure 9a , we ran YCSB-C transactions.
With the same number of workers, BionicDB outperformed Silo
by 4.5x. Silo matched the throughput of 4 BionicDB workers
with 24 cores enabled over 4 CPU chips. YCSB-C transaction
exploited both intra-, inter-transaction parallelism provided by
index pipelining and transaction interleaving thanks to sufficient
index parallelism and the absence of data dependency that permits
aggressive transaction interleaving.

We also ran a mix of the TPC-C NewOrder and Payment (50:50)
and plotted in Figure 9b . Unlike the YCSB result, BionicDB

achieved only comparable performance to Silo with the same
number of workers because of insufficient index parallelism of
Payment transaction (only 4 index lookups) and heavy data de-
pendency that nearly eliminated the chance for transaction inter-
leaving (in fact, the TPC-C transactions were executed almost in
serial).

These results reveal both the promise and challenge of BionicDB
at the same time. BionicDB can outperform state-of-the-art SW
OLTP system when fully utilized, but it can be underutilized by in-
sufficient index parallelism and heavy data dependency. However,
the results confirm that BionicDB can provide still competitive
performance even with much lower frequency (125MHz) and
a limited microprocessor (no instruction-level parallelism and
general-purpose cache memory), by taking a suitable accelera-
tion approach for OLTP. From the next section, we evaluate each
acceleration component to understand their impacts quantitatively.

5.5 Impact of Index Pipelining

We evaluated index pipelining in Figure 10 and Figure 11 , We
controlled the degree of coprocessor parallelism by changing
the maximum number of in-flight DB requests over the index
coprocessor. To focus on the index coprocessor, all experiments
in this section run local transactions only.

Hash. In Figure 10a , we ran a non-transactional key-value work-
load to see the peak performance of the hash index. A single
transaction repeated issuing 60 insert/search instructions in bulk
for 20,000 times (in total 1.2M inserts and searches). The peak
performance for insert and search reached 8.5Mops and 7Mops,
respectively, and saturated between 12 and 16 index parallelism.
This implies that there were 3 or 4 in-flight requests between
pipeline stages in average.

We plotted the throughput of the YCSB-C (read-only) and
the TPC-C NewOrder transactions in Figure 10b and Figure 10c .
Both figures show the similar trend with the previous result in the
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Figure 12: Transaction interleaving vs. serial execution.

KV workload. It proves that the transactions have sufficient intra-
transaction parallelism. Figure 10d shows the performance of the
TPC-C Payment transactions. Due to the limited index parallelism,
the performance did not improve after 4 requests.

Skiplist. We instantiated 8-stage skiplist pipelines with an extra
scanner module. The maximum height of a skiplist tower was set
to 20. Figure 11a shows the performance of sequential loading.
The pipeline was saturated at 8 in-flight requests. It increased
sharply from 1 to 4 and modestly from 4 to 8 requests. The rea-
son for lower pipeline parallelism than hash index is that skiplist
pipeline stages contain multiple memory stalls during horizon-
tal pointer chasing, leaving nearly no in-flight requests between
stages, unlike the hash pipeline. Hence, the index parallelism was
bound by the depth of pipeline. The modest curve from 4 to 8
in-flight requests is related to unbalanced dataflow over skiplist
pipeline. Pipeline stages covering upper levels were less busy than
lower levels as towers were sparser. Figure 11b shows the perfor-
mance of point query. It shows similar trend with the previous
result, but the throughput is higher because tower installation was
skipped.

To measure scan performance, we ran modified YCSB-E trans-
actions (Section 5.1) and presented the performance in Figure 11c .
We can find that the pipelining efficiency was deteriorated. This
is because a single scanner became a bottleneck in the pipeline.
Thus, heavy scan loads should be distributed over multiple scan-
ners for balanced pipelining. In Figure 11d, we compared the
scan performance to Masstree and SW skiplist on the Xeon CPU
introduced in Section 5.1 . The number of workers was four across
all indexes. Since its pipelining efficiency was largely eliminated,
HW skiplist was slower than Masstree by 20% and SW skiplist by
5x. With extra FPGA resources, HW skiplist could be improved
with deeper pipelining and multiple scanners (in this experiment,
pipelining depth and the number of scanners were bound by cur-
rent FPGA resource). To catch up with SW skiplist, at least 5
scanners would be required.

5.6 Impact of Transaction Interleaving
Figure 12 shows the performance comparison between transac-
tion interleaving and serial execution. In this experiment, all trans-
actions were local. In Figure 12a , we changed the the size of
transaction footprint, or intra-transaction parallelism, by varying
the number of DB instructions in a YCSB-C transaction. With a
single record transaction, transaction interleaving was 3x faster
than serial execution. In serial execution, the coprocessor was
underutilized by small transactions. Whereas, transaction inter-
leaving was able to overlap index requests across transactions,
resulting in much higher utilization. As we increase the number of
requests, the performance gap shrank. This is because coprocessor
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Figure 13: Single-site (100% local access) vs. multi-site trans-
action (75% remote, 25% local access).

was utilized better in serial execution with more intra-transaction
parallelism.

Figure 12b illustrates the throughput of the TPC-C NewOrder
and Payment transactions. In both transactions, there was no no-
ticeable difference because heavy data dependency hindered trans-
action interleaving. The NewOrder transaction had enough intra-
transaction index parallelism, but failed to exploit inter-transaction
parallelism due to data dependency, leaving the coprocessor idle
during commit phase. The Payment transaction’s case was worse.
It was not able to exploit both intra-, inter-transaction parallelism
because of limited parallelism and data dependency combined,
leading to significant underutilization. It is also evidenced by
the modest difference in overall performance from the YCSB-C
transaction that includes four times more index roundtrips.

5.7 Impact of On-chip Message-passing
Latency analysis. Table 3 compares the communication latency
of on-chip message-passing against software message-passing. We
assumed 20ns and 80ns for the latency of shared-cache and DDR3,
respectively. Based on the estimates, we calculated the total com-
munication latency for exchanging a single request/response pair
that takes two iterations of message-passing, assuming that cache
communication takes two cache reads on a modified-state cache-
line, and DRAM communication takes two rounds of memory
read and write. Despite the slow frequency (125MHz), the latency
of on-chip message-passing is 48ns which is comparable to cache
communication and much faster than DDR3 communication. If
cache miss happens, the latency of software communication can
rapidly increase. Also, we did not take synchronization cost into
account, giving favor to software message-passing. In practice,
software message-passing could suffer much higher communica-
tion latency in the presence of cache misses and thread contention.

Primitive Latency (ns) Total comm. delay (ns)
On-chip MP 24 48

Software MP
L3 cache 20 40
DDR3 80 320

Table 3: Latencies of message-passing methods.

Throughput of cross-partition transactions. It is widely known
that frequent multisite transactions in non-partitionable workloads
can be a serious bottleneck in partitioning-based systems. We now
evaluate the performance of multi-site transactions to see if the
on-chip message-passing can accelerate them. We ran the cross-
partition YCSB-C transactions with uniform random keys and
plotted the throughput in Figure 13 . In the cross-partition trans-
action, 75% of DB accesses are remote, and the rests are local
accesses. As an ideal case, we also plotted the performance of local
transactions that do not involve inter-worker communication at all.
The result shows that on-chip, message-passing communication
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imposed negligible overhead, achieving almost same performance
with the ideal case. In all other workloads, we observed the same
result. This confirms that the message-passing, on-chip commu-
nication of BionicDB eliminated the overhead of communication
and accelerated cross-partition transactions effectively.

5.8 Power Consumption and Resource Utilization
We estimated the power consumption of BionicDB on Virtex5
LX330 with Xilinx Power Estimator (XPE). The total power con-
sumption was approximately 11.5W. The thermal design power
(TDP) of a single Xeon E7 4807 is 95W, and the aggregate TDP
of four chips is 380W.

Module Flip-flops Look-up tables Block RAMs
Hash 12,932 14,504 24
Skiplist 27,300 35,968 36
Softcore 7,080 8,796 12
Catalogue 1,484 1,964 8
Communication 2,482 3,191 8
Memory arbiters 1,192 5,800 0
HC-2 modules 98,507 76,639 103
Virtex5 LX330 Total 207,360 207,360 288
Utilization 72% 70% 70%
Table 4: Resource utilization of BionicDB with 4 workers

Table 4 reports the resource utilization of BionicDB with four
workers on a Virtex5 LX-330 chip. The entire hardware design
consumed around 70% of FFs, LUTs and BRAMs. Almost half of
the total logic cells were taken by HC-2’s infrastructures, such as
host interface, crossbar memory interconnects and a custom pro-
cessor which were not used by BionicDB at all. Four BionicDB
workers consumed approximately 70k LUTs and 53k FFs in total.
Out of BionicDB resources, the skiplist index consumed almost
50%, and hash index consumed around 20%. The stored proce-
dure execution modules, the softcore and catalogue, took only
15% thanks to the resource-efficient design choices.

6 RELATED WORK
Many existing database accelerators have focused on offloading
SQL computation. They commonly exploit massive fined-grained
parallelism for compute acceleration, avoiding instruction decod-
ing overhead and memory wall. (application-specific functions
are wired on datapath directly, and data stream flow over them)
[18, 27] .

Oracle SPARC M7 processor integrates in-memory database
acceleration fabric (DAX), offloading filtering and de/compres-
sion [3] . Ibex[44] is a FPGA-based MySQL storage engine that
offloads filtering and aggregation functions to FPGA. It provides
the notion of near-data processing by placing the SQL accelerator
between CPU and SSD. Bharat et al., suggested FPGA copro-
cessor for OLAP acceleration in in-memory HTAP system [41] .
They offloaded filtering and data decompression to FPGA copro-
cessors on a PCIe board while the host CPU focus on transaction
processing. The FPGA coprocessor directly accesses compressed
memory-resident data, decompresses them, and performs filter-
ing. To saturate PCIe bandwith, data scan tiles are replicated.
Q100[45] is a dataflow hardware for SQL. ASIC tiles that per-
form SQL operators are provided, along with a custom instruction
set to control data stream over the tiles. DoppioDB offloaded
regular expression evaluation and analytic operators on Intel’s
Xeon-FPGA machine [33, 39] . Do et al. explored in-storage SQL
processing inside flash memory SSD [15] , but the system used
embedded processors for acceleration without custom hardware.

Kocberber et al. suggested Widx which is an on-chip hash index-
ing accelerator for OLAP workloads [26] . They identified hash
index lookup as the main bottleneck due to poor memory-level
parallelism in OLAP workloads and offloaded the it to on-chip
acceleration fabric.

For stream acceleration, Glacier [30] implemented SQL circuits
on an FPGA fabric, installed on datapath between network card
and host CPU. Handshake join [42] is a highly parallel stream
join algorithm with massive parallel processing resources such as
FPGA or GPGPU. The key idea is fine-grained parallel join pro-
cessing between two streams flowing from the opposite directions.
A large number of tuple pairs are evaluated at once, exploiting
massive computation parallelism. FQP[31] is a flexible stream
query processor that can support changing query logic without
FPGA reconfiguration. It implemented filtering and stream join
operators.

For transaction processing, there have been a few studies with
custom hardware approach. Cipherbase uses FPGA as a copro-
cessor for security, offloading expression evaluation, some index
operations and en/decryption [9] . Also, there have been hard-
ware key-value store systems with hash index [10, 13, 22, 46]
and transactional graph processing on FPGA [28] . However, stan-
dalone transaction processing hardware is still missing in the
landscape. Many existing SQL accelerators do not solve OLTP’s
main problems: memory stalls and communication. Low-end pro-
cessor, such as ARM, could be a power efficient option, but it
often sacrifices performance [40] .

7 CONCLUSION
In this paper, we explored hardware specialization for OLTP and
presented the design and implementation of BionicDB built on
FPGA. We discussed index pipelining and transaction interleaving
for index acceleration, and on-chip message-passing for faster
communication in partitioned databases. Also, we argued that
OLTP requires tightly integrated SW-HW architecture. The exper-
imental results confirmed that transaction processing can be done
at substantially lower power cost while providing competitive per-
formance. Possible future directions include scaling up BionicDB
on a modern FPGA chip and scaling out over multiple chips and
nodes.
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