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ABSTRACT
An evolving graph maintains the history of changes of graph
topology and attribute values over time. Such a graph has a
speci�c temporal and structural resolution. It is often useful to
modify this resolution during analysis, for example, to consider
communities rather than individual nodes, or to quantify changes
at the level of days rather than hours.

We propose attribute-based zoom and temporal window-based
zoom — two operators that support exploratory analysis of an
evolving graph at di�erent levels of resolution. We develop sev-
eral alternative physical representations of an evolving property
graph — a temporal generalization of a property graph — and
detail how to implement the proposed zoom operators using
data�ow operations. These di�erent physical representations
allow us to explore the trade-o�s in temporal and structural lo-
cality with respect to the performance of the zoom operators.
We implement the operators in Apache Spark, evaluate them
on real evolving graph datasets, and demonstrate scalability to
billion-edge graphs.

1 INTRODUCTION
Many social structures and systems can be represented as net-
works or graphs. The phenomena that are represented by these
graphs can change over time, and therefore, many interesting
questions about these graphs are related to their evolution rather
than to their static state. Researchers study graph evolution rate
and mechanisms [1, 9], the impact of speci�c events on further
evolution [8, 39] and spatio-temporal patterns [27, 28], with most
progress taking place in the last decade [24, 35, 37, 38, 40].

Our focus in this paper is on a temporal generalization of a
property graph, called TGraph, whichwe recently introduced [37].
Figure 1 shows an example — an interaction network in which
nodes represent people, and, for the students among them, in-
clude information about a school at which they are enrolled,
while edges represent co-authorship. As in conventional prop-
erty graphs [3], nodes and edges of a TGraph are associated with
a set of key-value pairs that represent an assignment of values to
attributes. In addition, TGraph associates a time interval (repre-
senting a set of discrete consecutive time points) with each state
of a node or edge. For example, a person node Ann exists, and is
enrolled at MIT, during the interval T = [1, 7).

TGraph maintains the history of changes of graph topology
and attribute values over time. It has a speci�c temporal and struc-
tural resolution, which users often want to modify for exploratory
analysis, for example, to look at communities rather than indi-
vidual nodes, or to quantify changes at the level of days rather
than hours. In this paper we focus on two operators, aZoomT and
wZoomT , that allow us to change the structural and temporal
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resolution of a TGraph, respectively. These operators are part
of a compositional evolving graph algebra called TGA, which
we presented in [37], that operates under point semantics [5].1 A
consequence of these semantics is that the TGraph must remain
temporally coalesced — vertices and edges in the output of an
operator must be associated with time periods of maximal length
during which no change occurred.
Attribute-based zoom (aZoomT ). We may be interested in an-
alyzing evolving graphs at di�erent levels of structural resolution,
to study properties and behavior of individual nodes, of commu-
nities, and of the graph as a whole. An operation that achieves
this, known as node creation, is present in several conventional
(non-temporal) graph query languages [14, 21, 32, 42]. Our fo-
cus is on a temporal generalization of this operation for graphs,
called temporal attribute-based zoom, or aZoomT for short.

Consider TGraph G1 in Figure 1, where school names are
represented as values of the school property of person nodes.
aZoomT computes the TGraph in Figure 2, where schools become
nodes (actors) rather than values.

aZoomT is evaluated over a TGraph under point semantics and,
speci�cally, under the principle of snapshot reducibility [5]: we
evaluate the non-temporal variant of the operator over each state
of the graph (also known as a “snapshot”), and then apply tempo-
ral coalescing [4] to represent each vertex or edge in the result
with a single fact, corresponding to the longest interval during
which no change occurred. aZoomT is described in Section 2.2.
Temporal window-based zoom (wZoomT ). This operator
changes the temporal resolution of a TGraph. This operation is
important because it may not be known a priori, at the time when
graph evolution is being recorded, at what time scale interesting
trends can be observed. For example, changes in node centrality
in a social network may be observable on the scale of weeks
but not months. Understanding at what temporal resolution to
consider network evolution is an integral part of exploratory
analysis. Let us return to our running example in Figure 1, and
assume that time points represent months of 2019. We may zoom
out on G1 temporally, to 3-month windows, retaining nodes and
edges in the result for a particular time window that were present
in the input during all time points of the window. The result is
presented in Figure 3, and described in more detail in Section 2.3.

Next, we explore di�erent physical representations to answer
the following questions: (i)How should we represent a TGraph to
compute the result of aZoomT and wZoomT e�ciently? Should
we use a snapshot-based representation, storing graph evolution
as a sequence of conventional graphs, that is easy to parallelize
but lacks compactness, or should we leverage a more compact
representation, as suggested by Figure 1? (ii)What representation
should we use to e�ciently execute a sequence of these operators?
We address these questions, making the following contributions:
• We propose di�erent physical representations of a TGraph
and detail how to de�ne aZoomT and wZoomT using data�ow
operations for these representations (Section 3).

1The focus of [37] is on de�ning the TGraph model and algebra, while this paper
focuses on system and implementation aspects.
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Figure 1: Evolving property graph (TGraph) G1.

• Wedescribe how to e�ciently implement aZoomT andwZoomT

in Apache Spark (Section 4).
• Weconduct an extensive experimental evaluation of aZoomT and
wZoomT and demonstrate scalability to billion-edge graphs.
We �nd that a physical representation that balances temporal
and structural locality outperforms other representations in
most cases (Section 5).

2 TGRAPHMODEL AND ZOOM OPERATORS
Weprovide the background on the evolving property graphmodel
called TGraph, and de�ne the operators aZoomT andwZoomT that
take a valid TGraph as input, and output a TGraph.

2.1 Evolving property graphs
In [37] we proposed a logical model of an evolving graph called
TGraph that represents a single graph (such as theWeb, or a large
collaboration network), and models the evolution of its topology,
and vertex and edge properties. A TGraph is a directed multi-
graph: its nodes and edges have identity, and multiple edges may
connect a given pair of nodes. Each entity (node and edge) has
a required type label, and is associated with a (possibly empty)
set of key-value pairs that represent its properties, each in the
form of a property label (key) and a corresponding value. The set
of properties for an entity is not �xed: it can be di�erent among
entities of the same type, and for the same entity over time.

We now recall the de�nition of TGraph from [37], simplifying
it slightly. This de�nition extends the static property graph de�-
nition of Angles et al. [3] by associating periods of validity with
graph nodes, edges, and their properties. Time is drawn from a
linearly ordered discrete domain ΩT .

De�nition 2.1. A TGraph G = (V , E, L, ρ, ξT , λT ) is a six-tuple:
• V is a �nite set of nodes (or vertices), E is a �nite set of edges,
V ∩ E = ∅, and L is a �nite set of property labels;
• ρ : E → (V × V ) is a total function that maps an edge to its
source and destination nodes;
• ξT : (V ∪ E) × ΩT → B is a total function that maps a node or
an edge and time point to a Boolean, indicating existence of
the node or edge at that time point; and
• λT : (V ∪ E) × L × ΩT → val is a partial function that maps a
node or an edge, a property label, and a time point to a value
of the property at that time point.

A valid TGraph conceptually corresponds to a sequence of
valid conventional (non-temporal) graphs. This imposes the fol-
lowing conditions: (i) a condition on ξT that an edge can only
exist at a time when both of the nodes it connects exist; and (ii)
a condition on λT that a property can only take on a value at a
time when the corresponding node or edge exists. Finally, we
require that the property set of an entity not be empty at any
time point when it exists. Practically, we require that each node
and edge assign a value to a property called type.

De�nition 2.1 associates graph nodes, edges and attribute val-
ues with time points. In the remainder of this paper, we will rep-
resent temporally adjacent time points by intervals, for syntactic
compactness, as illustrated in Figure 1. Following the SQL:2011
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Figure 2: Result of aZoomT over G1 (Figure 1). Semanti-
cally, this operation is executed over every snapshot of
G1 to: (i) create school nodes for each value of the school
property of person nodes in G1; (ii) count the number of
persons enrolled at a school, set the value of the student
property of the school node to that count; (iii) create edges
of type collaborate between school nodes for which co-
author edges were present in G1; and (iv) temporally coa-
lesce the result across snapshots, due to point semantics.

standard, we use closed-open intervals, representing a discrete
contiguous set of time points from ΩT . This representation does
not add expressiveness to a point-based representation, and is
purely a syntactic device [10].

We now describe aZoomT and wZoomT in detail using our
running example, and refer to [37] for a formal treatment.

2.2 Attribute-Based Zoom
Temporal attribute-based zoom, denoted aZoomT , is a temporal
generalization of the graph node creation operation [42]. Node
creation over non-temporal graphs takes a graph pattern as input,
and computes a new node for each occurrence of a match of
the pattern in the input. To assign identity to new nodes, it is
customary to extend this operation with a Skolem function fs .
aZoomTwill similarly create nodes in the output TGraph from
disjoint groups of nodes in the input, such that nodes within a
group agree on the values of all grouping attributes.

Conceptually, aZoomT is executed over every snapshot of the
input TGraph, and new nodes are assigned identity by a Skolem
function fs , which generates consistent assignments across time.
In addition to creating new nodes, aZoomTwill also optionally
compute values of node attributes using the aggregation function
faдд , including count, sum, min, max, average, and user-speci�ed
functions that are required to be commutative and associative.
Next, aZoomT computes edges as follows. Suppose that input
nodes n and n′ corresponds to output nodesд andд′, respectively,
and that edge e connects n to n′. Then, the output will contain
the edge e , with д as its source and д′ as its target. Essentially,
the input edge is re-created in the output, and re-pointed.

Node creation, computation of node attribute values, and re-
pointing of the edges, is executed over each snapshot of the input
TGraph, under point semantics. As the �nal step, the result is
then coalesced, associating a time interval of maximal length
during which no change occurred with every newly-computed
node and edge. We now illustrate aZoomTwith an example.

Example 2.2. Node Ann in Figure 1 is associated with a closed-
open interval T = [1, 7), signifying that the node existed in the
graph for six consecutive time points with no change. Bob exists
in the graph during T = [2, 9), but with a change to its attributes
at time 5, when school=CMU was added. School names are
represented as values of the school property of person nodes.

We invoke aZoomT to compute from G1 a TGraph where
schools become nodes rather than values, as shown in Figure 2
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Figure 3: wZoomT (G1, window=3-months, nodes=all,
edges=all, node.school=last(school)) over G1 (Figure 1).

with school nodes MIT and CMU. Note that the number of stu-
dents at MIT changes over time: both Ann and Cat study there
during T = [1, 7), while only Cat studies there during T = [7, 9).
Note that both edge e1 and e2 have been redirected to newly cre-
ated nodes and their validity period is updated to correct values
based on when those were valid in the graph: While e1 is valid
during T = [2, 7) in Figure 1, it is only valid during T = [5, 7) in
Figure 2, because Bob was not at CMU during T = [2, 5).

2.3 Temporal Window-Based Zoom
The wZoomT operator is analogous to moving window temporal
aggregation in temporal relational algebra. This operator is in-
spired by stream aggregation of Li et al. [29] (adopted to graphs),
and by generalized quanti�ers [22].

The wZoomT operator modi�es validity periods of TGraph
nodes and edges, by mapping di�erent states of a node or an
edge to a single representative state. This mapping is based on a
speci�cation of a temporal window, such as 2 months or 10 years.
If the speci�edwindow is �ner than the temporal resolution of the
input TGraph, the operation has no e�ect. For example, applying
wZoomTwith 1-month windows to a TGraph in which evolution
is recorded across years will simply return the input TGraph. Note
that, because wZoomT is required to produce a valid TGraph as
output, this operation does not support overlapping windows.

Window speci�cation is of the form n {unit |changes}, where
n is an integer, and unit is a time unit (e.g., 10 min, 3 years).
Window speci�cation generates a temporal relationW with the
schema (d | T ), where each tuple associates a window number d
with its period of validity T . We additionally require node and
edge existence quanti�ers {all|most|at least n |exists}, where n is
a decimal representing the percentage of the time during which
a node or an edge existed, relative to the duration of the window.
Quanti�ers are useful for observing di�erent kinds of temporal
evolution. For example, to observe strong connections over a
volatile evolving graph we may include nodes that span the
entire window (nodes=all), and edges that span a large portion of
the window (edges=most). We refer to all and exists as universal
and existential quanti�cation, respectively.

A related point is that a given node or edge should exist at
most once at any given time point, and so we must specify how
con�icts in attribute values are resolved by wZoomT . The an-
swer to this question is determined by the window aggregation
functions, which specify, for each attribute of a node or an edge,
which of its values to accept as a representative for the given
temporal window. We support the window aggregation functions
first, last, and any (the default).

Example 2.3. Consider again TGraph G1 in Figure 1, and sup-
pose that time points represent the months of 2018, and are di-
vided into �scal year quarters as follows: windowW 1: time points
1, 2, 3; T = [1, 4), windowW 2: time points 4, 5, 6; T = [4, 7), win-
dowW 3: time points 7, 8, 9; T = [7, 10). How might we quantify
the state of G1 during each quarter, a 3-month temporal window?

Figure 3 shows the temporally coalesced results of zooming out
to quarters over G1 with nodes=all and edges=all.

Ann is present in windowsW 1 andW 2 in the input in Figure 1,
and so is associated withT = [1, 7) in the result for both universal
and existential quanti�cation. In contrast, Bob is present in the
input for all ofW 2 but for only part ofW 1, and so is returned
with T = [4, 7) in the result for nodes=all, and with T = [1, 7) for
nodes=exists. Finally, Cat is present for all ofW 1 andW 2, but for
only part ofW 3 in the input (it is missing at time point 9), and
so is associated with T = [1, 7) in the output undernodes=all and
with T = [1, 10) under nodes=exists. Quanti�cation is applied to
edges analogously: e1 is mapped to windowW 2 and e2 is absent
in the output in Figure 3, because there does not exist a quarter
during which e2 exists continuously in the input.

3 EVOLVING GRAPH REPRESENTATIONS
AND DATAFLOW OPERATORS

In this section, we introduce several physical representations
for a TGraph and detail how to de�ne the zoom operations ac-
cording to these representations. We express the zoom opera-
tors using general data�ow operations — directed acyclic graphs
of operators resembling parallelizable second-order functions
that execute user-de�ned �rst order functions. This is a popular
programming model for distributed computations supported by
systems such as Apache Spark [43] and Apache Flink [2].

We use the term snapshot to refer to a conventional (non-
temporal) graph that represents the state of a TGraph during
some interval in which no change occurred. Figure 4 shows the
TGraph in our running example as a sequence of snapshots.When
storing and accessing evolving graphs, we are concerned with
preserving two kinds of locality: temporal and structural. Adopt-
ing the terminology of [19], with structural locality, neighboring
vertices (resp. edges) of the same snapshot are laid out together,
while with temporal locality, consecutive states of the same ver-
tex (resp. edge) are laid out together. We develop four TGraph
representations that di�er in compactness and in the kind of
locality (structural or temporal) they prioritize.
Representative Graphs (RG). RG represents a TGraph by a
sequence of snapshots (conventional graphs), associating them
with time intervals, see Figure 4 for an example. The snapshot
sequence is by far the most common representation in the litera-
ture [15, 20, 24–26, 38, 40]. RG has the following schema:
TemporalGraph { interval: Interval,

snapshots: array(Snapshot) }

Snapshot { vertices: array(Vertex), edges: array(Edge) }

Interval { start: Date, end: Date }

Vertex { vid: long, type: string, attributes: dictionary }

Edge { eid: long, type: string, v1: Vertex, v2: Vertex,
attributes: dictionary }

Note that vertices and edges of each snapshot store the attribute
values for the interval represented by the snapshot. This represen-
tation is simple, and lends itself well to parallelizing operations
in a distributed environment, as we can simply assign di�er-
ent snapshots to di�erent workers. An advantage of RG is that
it naturally preserves structural locality, and so is e�cient for
snapshot-based operations. An important drawback of RG is that
it is not compact: in many real-world evolving graphs there is an
80% or larger overlap between consecutive snapshots [8].
VertexEdge (VE). As illustrated in Figure 5,VE is a nested tempo-
ral relational representation of TGraph, with one relation storing
vertices and the other edges, together with the corresponding
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Figure 4: Representative-Graphs (RG): a “sequence of snapshots” representation of the TGraph G1 of Figure 1.

Vertices (V)
v a T

Ann type=person, school=MIT [1, 7)
Bob type=person [2, 5)
Bob type=person, school=CMU [5, 9)
Cat type=person, school=MIT [1, 9)
Edges (E)
e v1 v2 a T
e1 Ann Bob type=co-author [2, 7)
e2 Bob Cat type=co-author [7, 9)

Figure 5: Vertex-Edge (VE): nested relational representa-
tion of theTGraphG1 fromFigure 1. The relationsVertices
(V) and Edges (E) are temporally coalesced.

time intervals. Both relations are temporally coalesced, giving
rise to a compact representation. VE stores all vertex proper-
ties together as a single nested attribute (and all edge properties
analogously). VE has the following schema:
TemporalGraph { interval: Interval,

vertices: array(Vertex), edges: array(Edge) }

Interval { start: Date, end: Date }

Vertex { vid: long, type: string, interval: Interval,
attributes: dictionary }

Edge { eid: long, type: string, vid1:long, vid2: long,
interval: Interval, attributes: dictionary }

For edges, we store a unique edge identi�er eid(long) to support
multi-graphs, as well as the vertex identi�ers vid1(long) and
vid2(long) that are foreign keys referring to the vertex relation.
The main advantage of VE’s attribute representation is that it
lends itself to schema evolution. A disadvantage is that di�erent
properties may have di�erent evolution rates, and a change to
a single property requires a new vertex or edge tuple. VE stores
graph vertices and edges in unordered collections, and therefore
does not maintain temporal locality by default in cases where
the state of a vertex or edge changes. For example, two tuples
for vertex Bob in Figure 5 may not be located consecutively, or
even on the same worker, once the data is partitioned across
a cluster. We can reconstruct temporal locality at runtime, by
re-partitioning the data based on vertex or edge identi�ers.
One Graph (OG), One Graph Columnar (OGC). These are
two topologically compact representations.OG stores all vertices
and edges once, in a single aggregated data structure, as shown
in Figure 6. In OG, vertices and edges store the history of the
evolution of their attributes as an array of key-value pairs, to-
gether with the corresponding validity periods. Figure 6 shows
the OG representation for our example graph. Note that we have
only one tuple for vertex Bob, which holds two sets of values for
two corresponding validity periods T=[2,5) and T=[5,9). OG has
the following schema:
TemporalGraph { interval: Interval,

vertices: array(Vertex), edges: array(Edge) }

Vertices (V)
v a

Ann { T=[1,7): type=person, school=MIT }
Bob { T=[2,5):type=person,

T=[5,9):type=person, school=CMU }
Cat { T=[1,9): type=person, school=MIT }
Edges (E)
e v1 v2 a
e1 Ann Bob { T=[2,7): type=co-author }
e2 Bob Cat { T=[7,9): type=co-author }

Figure 6: One Graph (OG): nested relational representa-
tion of theTGraphG1 fromFigure 1. The relationsVertices
(V) and Edges (E) are temporally coalesced.

Interval { start: Date, end: Date }

HistoryItem { interval: Interval, attributes: dictionary }

Vertex { vid: long, type: string,
history: array(HistoryItem) }

Edge { eid: long, type: string, v1: Vertex, v2: Vertex,
history: array(HistoryItem) }

The schemas for OG and VE are similar in many ways. The main
di�erence is that the interval and attribute dictionary in VE has
been replaced with a history array that containsHistoryItems.
Each such history item stores an interval as the key and a dictio-
nary of the corresponding attributes. The second di�erence is
that OG contains a copy of the source and target vertex of each
edge, instead of a foreign key to the vertex relation.

OGC, on the other hand, only stores the graph topology with
validity periods as a graph, as shown in Figure 7. OGC has the
following schema:
TemporalGraph { intervals: array(Interval),

vertices: array(Vertex), edges: array(Edge) }

Interval { start: Date, end: Date }

Vertex { vid: long, type: string, intervals: Bitset }

Edge { eid: long, type: string, v1: Vertex,
v2: Vertex, intervals: Bitset }

OGC is intended for topology-only attribute-less graphs, encod-
ing the presence of a vertex or edge in each interval with a bitset.
Both OG and OGC emphasize temporal locality, while also pre-
serving structural locality, but lead to a much denser graphs than
RG. This, in turn, makes parallelizing computation challenging.

In the remainder of this section, we describe how to de�ne
aZoomT and wZoomT in terms of data�ow operations according
to our proposed representations.

3.1 Attribute-Based Zoom
We now describe aZoomT for each TGraph representation. In the
algorithms we present, V and E are overloaded to refer to the
vertex and edge relations of a given snapshot (in the case of RG)
or of the overall TGraph. In aZoomTwe use a Skolem function
fs to produce new vertex ids. fs is a user-provided function that
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Bitset (b): T={[1,2),[2,7),[7,9)}
Vertices (V) Edges (E)
v b e v1 v2 b

Ann [1, 1, 0] e1 Ann Bob [0, 1, 0]
Bob [0, 1, 1] e2 Bob Cat [0, 0, 1]
Cat [1, 1, 1]

Figure 7: One Graph Column (OGC): nested relational rep-
resentation of the TGraph G1 of Figure 1. Vertices (V) and
Edges (E) are temporally coalesced. Bitsets represent va-
lidity during periods of T={[1,2),[2,7),[7,9)}.

takes the vertex id and all attributes as an input and produces a
long identi�er as output. We additionally apply the commutative
and associative aggregation function faдд to resolve cases where
we have a series of vertices with identical identi�ers but multiple
values for the same attribute in the same snapshot. This is an
important step that ensures that each snapshot in the result
corresponds to a valid graph (see [36] for details).
RG. Recall thatRG maintains a collection of snapshots. We apply
the same set of operations in an embarrassingly parallel manner
to each snapshot, as there are no dependencies between them in
this case (Algorithm 1). We iterate over each snapshot (lines 3-10)
and return an RG (line 11) containing the aZoomT result. We
apply fs to each vertex using amap (line 5) in order to compute a
new identi�er for each vertex. The copyWithVid function updates
each vertex identi�er while keeping other attributes unchanged.
We then group vertices by id (line 7) and apply the aggregation
function faдд (line 8).

To redirect edges to the newly created vertices, we apply the
function fs to the vertices v1 and v2 of each edge in a map (line 9).
The copyWithVids function updates the id of the vertices to the
new identi�ers. The edges contain a copy of their source and
target vertices in RG, which obliviates the need for a join here.

Algorithm 1 aZoomT over RG
Require: Skolem function fs : V ⇒ N; Aggregation function faдд :

V ×V ⇒ V
1: newSnapshots ← �
2: .Aggregate each snapshot
3: for (V ,E) in graph.snapshots do
4: V ′ ← V .Update of vertex identi�ers
5: .map{v ⇒ v .copyWithVid(fs (v))}
6: .Vertex aggregation for identity-equivalence
7: .groupBy{v ⇒ v .vid }
8: .reduce{(va , vb ) ⇒ faдд (va , vb )}

.Edge redirection to new vertices
9: E′ ← E .map{e ⇒ e .copyWithVids(fs (e .v1), fs (e .v2))}
10: Add (V ′, E′) to newSnaphots
11: return new TGraph G(newSnapshots)

VE. VE consists of two temporal relational tables for vertices
and edges, which contain tuples for each vertex or edge history.
Algorithm 2 details our implementation of aZoomT for VE. We
�rst calculate non-overlapping intervals (lines 2-5) based on the
temporal splitter concept introduced in [11]. We join intervals
and vertices (lines 7- 9), assign new identi�ers (line 10), and
enforce identity-equivalence in each interval with the aggrega-
tion function (line 12). Since VE edges only contain a foreign
key to the corresponding vertices, we need to join the edges

with their corresponding vertices for the edge redirection pro-
cess (lines 14 and 15), before we can apply the fs function to each
corresponding vertex to redirect the edge (line 18).

Algorithm 2 aZoomT over VE
Require: Skolem function fs : V ⇒ N; Aggregation function faдд :

V ×V ⇒ V
1: I ← V .Non-overlapping intervals for each new vertex identi�er
2: .map{v ⇒ (fs (v), v .interval )}
3: .groupBy{(vid , _) ⇒ vid }
4: .foldLeft(EmptyInterval)
5: {(i , v) ⇒ mergeNonOverlapping(i , v .interval )}
6: V ′ ← V .Vertex aggregation for non-overlapping intervals
7: .join(I ).on{(v , id ) ⇒ v .id == i .vid }
8: .�atMap{(v , i) ⇒ verticesForIntervals(v , i)}
9: .map{(v , i) ⇒
10: v .copyWithIdAndInterval(fs (v), i) }
11: .groupBy{v ⇒ v .id }
12: .reduce{(va , vb ) ⇒ faдд (va , vb )}

13: E′ ← E .Edge redirection to new vertices
14: .join(V ).on{(e , v) ⇒ e .vid1 == v .id }
15: .join(V ).on{((e , _), v) ⇒ e .vid2 == v .id }
16: .map{(e , v1, v2) ⇒
17: i ← recomputeInterval(e , v1, v2)
18: e .copyWithVidsAndInterval(fs (v1), fs (v2), i) }

return new TGraph G(V ′, E′)

OG. We implement aZoomT for One Graph (OG) analogously to
RG, with the di�erence that we compute over the entire TGraph
rather than over each individual snapshot (Algorithm 3). We split
each vertex in OG based on its history, and apply the fs func-
tion to each element of the history array individually. We use a
flatMap function on vertices combined with a map on the his-
tory elements of each vertex for this (lines 1-3). We again enforce
identity-equivalencewith our aggregation function (lines 4 and 5).
The vertext computation portion of Algorithm 3 is illustrated in
Figure �g:az-og. For edge redirection inOG, we split the edges by
expanding the history of each corresponding vertex in that edge,
as OG stores each edge only once. Next, we apply the Skolem
function fs to each element of the history (line 6-9).

Algorithm 3 aZoomT over OG
Require: Skolem function fs : V ⇒ N; Aggregation function faдд :

V ×V ⇒ V
1: V ′ ← V .�atMap{v ⇒
2: v .history .map{(_, attr ) ⇒
3: v .copyWithIdAndAttributes(fs (v .vid ), attr ) }}
4: .groupBy{v ⇒ v .vid }
5: .reduce{(va , vb ) => faдд (va , vb )}
6: E′ ← E .map{e ⇒
7: h ← recompute_history(e)
8: e .copyWithVidsAndHistory(fs (e .v1.vid ),
9: fs (e .v2.vid ), h)}

return new TGraph G(V ′, E′)

OGC does not represent attributes and so does not support
aZoomT .

3.2 Temporal Window-Based Zoom
As we did for aZoomT , we express wZoomT di�erently for each
representation, with some common aspects. The �rst step is to
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Figure 8: Illustration of the vertex computation portion of Algorithm 3, aZoomT , over TGraph in Figure 6, with count as
faдд . The �rst two steps correspond to the call to flatMap on lines 1-3: splitting nodes based on their history array, and
then calling the Skolem function fs to generate ids for new nodes. In this example, fs outputs the value of the school
property. The next step groups vertices by id (line 4). The �nal step (line 5) applies the aggregation function count, storing
the computed value as a vertex property.

compute the temporal window relation based on the window
speci�cation. We split the total graph lifetime temporally by
applying the function computeNewIntervals to the graph. This
function takes an interval as an input and returns a tuple con-
taining the old and the recomputed interval.

A major di�erence to aZoomT is that the TGraph must be coa-
lesced before wZoomT can be applied, in order to guarantee the
correctness of the zoom operation. This is because aZoomT exe-
cutes over each snapshot (under snapshot reducibility), while the
computation of wZoomT is across snapshots. Consequently, if
the input to wZoomT is not coalesced, we cannot properly apply
existence quanti�ers and compute results of aggregation.

We additionally need to handle potential dangling edges for all
representations in wZoomT to ensure that every snapshot of the
resulting TGraph is a valid graph, as speci�ed in the condition
over ξT in De�nition 2.1. Recall that wZoomT supports the quan-
ti�ers all, most, at least n, and exists, which can be translated
to a threshold on the percentage of the time during which an
entity (a vertex or an edge) existed, relative to the duration of
the window: t = 1 for all, t > 0.5 for most, t > 0 for exists and
t > n for at least n. If an entity’s existence meets the threshold,
it will be retained in the result of the operation. A dangling edge
check is only required if rv is more restrictive than re , because
a particular edges may pass the check, but one or more of the
vertices it connects may not.

RG implements wZoomT as shown in Algorithm 4. We again
use the computeNewInteval function to compute the new inter-
vals based on the window speci�cation (line 2). Next, we apply
join, groupBy, and flatMap to map each vertex to one or more
snapshots from the speci�cation (lines 4-9). Then, vertices are
grouped by their id within each new interval (line 10). Next, we �l-
ter vertices and edges based on the existence quanti�er (line 11).
We apply the math_threshold function to vertices with their
respective thresholds (r ) to �lter vertices that do not meet the
criteria of our quanti�er. Finally, we apply the resolve function
fv to compute the new attribute values (line 12). We treat edges
analogously (lines 14-18). At the end, we merge snapshots into a
TGraph and remove dangling edges.

VE implements wZoomT using Algorithm 5. Figure 9 illus-
trates this algorithm for vertex Bob from Figure 5. We �rst need
to calculate the new intervals using computeNewInterval (lines 2-
3). Then we join V with the intervals to align each vertex with
each temporal window (lines 4-6) to split the vertices. Next, we
group by interval and vertex (line 7), and �lter vertices that do
not pass the quanti�er threshold (line 8). Finally, we resolve the
vertices’ �nal attributes (line 12). We apply the same operations

Algorithm 4 wZoomT over RG
Require: resolve functions fv , fe ; quanti�ers rv , re
1: .Computation of new intervals
2: I ′ ← I .map{i ⇒ (i , computeNewInterval(i))}
3: .Grouping of snapshots by new interval
4: S ← G .snapshots .join(I ′)
5: .on{(s , interval ) ⇒ s .i == interval .i }
6: .groupBy{(s , interval ) ⇒ interval .newInterval }
7: .Aggregation of vertices for new snapshots
8: V ′ ← S .�atMap{(i , snapshot ) ⇒
9: (i , snapshots .map{s ⇒ s .ver t ices })}
10: .groupBy{(i , v) ⇒ (i , v .id )}
11: .�lter{(i , ver t ices) ⇒ match_threshold(ver t ices , rv )}
12: .reduceByKey{((va ), (vb )) ⇒ fv (va , vb )}
13: .Aggregate edges for new snapshots
14: E′ ← S .�atMap{(i , snapshot ) ⇒
15: (i , snapshots .map {s ⇒ s .edдes })}
16: .groupBy{(i , e) ⇒ (i , e .id )}
17: .�lter{(i , edдes) ⇒ match_threshold(edдes , re )}
18: .reduceByKey{((ea ), (eb )) ⇒ fe (ea , eb )}

.Recreate RG representation
19: G′ ← merge(I ′,V ′, E′)

to edges (lines 11-18). We remove dangling edges (given that
rv > re ) with two semijoins (lines 17-19).

OG implements wZoomT using Algorithm 6. Recall that in
OG each vertex stores its interval information in a history array.
We process each element of this array separately and rebuild
the array afterwards (lines 1-4) for this process. We �rst invoke
recomputeIntervals (line 2) to recompute the history array with
updated intervals. Next, we leverage the aggregateAndFilterAt-
tributes function (line 3) to group, �lter and resolve vertices
analogous to previous algorithms, and apply the same transfor-
mations to the edges as well (lines 5-8).

We again remove dangling edges with semijoins (lines 9-15).
The only di�erence here is that joining edges with vertices is not
enough, as we also need to update the history arrays. We achieve
this with a map function which updates every edge history with
the intersection of the edge history and the corresponding vertex
history (lines 12 and 15) using the copyWithHistory function.

OGC implements wZoomT similarly to OGC, but working
with a bitset instead of a history array. Removing dangling edges
in OGC is as simple as computing the logical and between the
edge bitset and the corresponding vertex bitsets.
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Figure 9: Illustration of Algorithm 5,wZoomT , for vertex Bob in Figure 5, with window size 3 and last as fv . The �rst step
aligns each vertex with each temporal window (lines 4-6 of the algorithm). Next we create a single nested representation
of each vertex per window and compute rv , the fraction of the window during which the vertex was observed (line 7).
Finally, we �lter vertices by rv and resolve their attribute values with fv =last (lines 8, 9).

Algorithm 5 wZoomT over VE
Require: resolve functions fv , fe ; quanti�ers rv , re
1: .Computation of new intervals
2: I ′ ← I .map{ i ⇒ (i , computeNewInterval(i)) }
3: .Vertex aggregation for new intervals
4: V ′ ← V .join(I ′).on{ (v , (i , n)) ⇒ v .n == i }
5: .map { (v , (i , newInterval )) ⇒
6: v .copyWithNewInterval(newInterval )}
7: .groupBy{ v ⇒ (v .id , v .interval ) }
8: .�lter{(i , ver t ices) ⇒ match_threshold(ver t ices , rv )}
9: .reduceByKey{((va ), (vb )) ⇒ fv (va , vb )}
10: .Edge aggregation for new intervals
11: E′ ← E .join(I ′).on{ (e , (i , n)) ⇒ e .interval == n }
12: .map { (e , (i , newInterval )) ⇒
13: e .copyWithNewInterval(newInterval )}
14: .groupBy{ e ⇒ (e .id , e .interval ) }
15: .�lter{(i , edдes) ⇒ match_threshold(edдes , re )}
16: .reduceByKey{((ea ), (eb )) ⇒ fe (ea , eb )}
17: if rv > re then .Dangling edge removal
18: E′′ ← E′.semijoin(V ′)

.on{ (e , v) ⇒ e .vid1 == v .id and in_interval(e, v)}
19: E′′′ ← E′′.semijoin(V ′)

.on{ (e , v) ⇒ e .vid2 == v .id and in_interval(e, v)}
20: return new TGraph (V ′, E′′′)

Algorithm 6 wZoomT over OG
Require: resolve functions fv , fe ; quanti�ers rv , re
1: V ′ ← V .map{v ⇒
2: h ← recomputeIntervals(v .history)
3: h ← aggregateAndFilterAttributes(h, fv , rv )
4: v .copyWithHistory(h) }
5: E′ ← E .map{e ⇒
6: h ← recomputeIntervals(e .history)
7: h ← aggregateAndFilterAttributes(h, fe , re )
8: e .copyWithHistory(h) }
9: if rv > re then .Dangling edge removal
10: E′′ ← E′.semijoin(V ′)

.on{ (e , v) ⇒ e .vid1 == v .id and in_interval(e, v)}
11: .map{(e , v) ⇒
12: e .copyWithHistory(intersect(e .history, v .history)) }
13: E′′′ ← E′′.semijoin(V ′)

.on{ (e , v) ⇒ e .vid2 == v .id and in_interval(e, v)}
14: .map{(e , v) ⇒
15: e .copyWithHistory(intersect(e .history, v .history)) }
16: return new TGraph G(V ′, E′′)

4 IMPLEMENTATION
Wede�ned our zoomoperators in Section 3 using general data�ow
operations and UDFs that are implemented by a variety of popu-
lar systems. Apache Spark with GraphX [17] and Apache Flink
with Gelly [7] are natural candidates for such workloads, as is
Di�erential Data�ow [33]. We choose Apache Spark for our im-
plementation due to its maturity and popularity.

Our implementation includes a TGraph API, several graph rep-
resentations as discussed in Section 3, and several optimizations
such as lazy coalescing. Our API supports chaining multiple op-
erations together and switching between graph representations
during query execution.

The VE representation is implemented directly over Spark’s
Resilient Distributed Datasets (RDDs) [43] while RG, OG and
OGC leverage the GraphX library for static graphs [17]. We
use the long datatype to represent node and edge identi�ers to
maintain interoperability with GraphX.
GraphX-speci�c implementation details. GraphX implements
vertex-cut-based partitioning that reduces communication over-
head [17] for certain aggregations on graphs. GraphX also pro-
vides an optimized implementation of a distributed triplet view,
a concept originating from Resource Description Frameworks
(RDF) [31]. The triplet view provides fast access to each edge
and its corresponding source and destination vertex properties.
The triplet view requires a materialized three-way join, which
GraphX optimizes by implementing vertex-mirroring and a mul-
ticast join [17]. We leverage the implementation of the triplet
view to e�ciently access edges’ vertex attributes in RG, OG and
OGC. We implement RG as sequence of GraphX graphs, while
OG and OGC are modeled as a single GraphX graph. GraphX
mechanisms such as vertex-cut partitioning and the triplet view
enabled us to implement graph operations more e�ciently.
Data loading. The data is read from the Hadoop Distributed File
System (HDFS). Our on-disk data layout uses Apache Parquet, a
columnar data format for HDFS based on the Dremel project [34].
Apache Parquet does not have a mechanism for indexing, but it
supports �lter pushdown on any column by which the data is
sorted on disk. We store and load vertices and edges as separate
vertex and edge Parquet �les. The default schema to store a graph
on disk is similar to the VE schema described in Section 3. We
load two of our representations (VE and RG) from this format.
To apply a �lter pushdown, the data on disk need to be sorted.
For VE, we use the vertex/edge identi�er as the �rst sort key, and
the interval start time as the second key. Storing data in this way
preserves temporal locality, and places the history of changes
in a vertex or an edge together. Parquet does not support �lter
pushdown for datetime formats, hence we store time as UNIX
timestamps (long).
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We use a similar schema for RG, however, we sort vertices
and edges by the interval start time �rst, and then by their vertex
(resp. edge) identi�er, to preserve structural locality. During our
experiments we learned that RG can be loaded 30% faster using
the structural locality instead of temporal locality (experiment
omitted due to space constraints). While OG and OGC could be
loaded in the same way as VE, we experimentally validated that
it is signi�cantly faster to pre-compute nested versions of the
graphs with schemas described in Section 3, and then convert
to OG or OGC during load time. A problem with this approach
is that Parquet’s �lter pushdown will not work, since interval
information is stored in a nested column. We resolve this issue by
storing the �rst and last time a vertex/edge existed as a separate
column on disk, and sorting on these columns.

We provide a GraphLoader utility that can initialize any of
our physical representations from Apache Parquet �les on HDFS
or on local disk. This loader accepts a date range and �lters
the data through Parquet’s �lter pushdown. For datasets with a
long evolution history, this optimization provides a substantial
performance improvement (see [36]).
Coalescing. The coalesce primitive for merges adjacent and
overlapping time periods for value-equivalent tuples. Several
implementations have been suggested for the coalesce operation
over temporal SQL relations [5]. In our implementation for VE,
we use the partitioning method: grouping the vertex and the edge
relation by key, then sorting by start time, and folding tuples
within each group and checking pairs of adjacent tuples for value-
equivalence. The e�ect of this operation is that a single tuple is
produced for each period of maximum length during which no
change occurred.

To further optimize performance, we coalesce lazily for se-
quences of two or more operations. Recall that aZoomT com-
putes in each snapshot, and so it does not require its input to be
temporally coalesced to produce the correct output. In contrast,
wZoomT does require its input to be coalesced for correctness,
because it computes across snapshots. This means that, in a se-
quence of aZoomT and wZoomT operators, the system does not
need to temporally coalesce before invoking aZoomT , but it must
coalesce before invoking wZoomT and at the end of the operator
sequence, when the �nal result is produced.

5 EXPERIMENTAL EVALUATION
We conduct an experimental evaluation to study the performance
of aZoomT andwZoomT . Our goal is to understand how di�erent
representations and their corresponding operator implementa-
tions perform for di�erent datasets and workloads. We present
three di�erent categories of experiments: aZoomT experiments
(Section 5.1),wZoomT experiments (Section 5.2), and experiments
combining both operations (Section 5.3).
Cluster. All experiments are conducted on a 16-worker in-house
Cloudera cluster, using Linux CentOS 14.04 and Spark v2.2. Each
machine has 4 cores and 32 GB of RAM. Spark standalone cluster
manager and Hadoop 2.6 were used. In each experiment, we
report the mean runtime of three executions, each with a cold
start. The runtime includes the setup time of submitting a job
to the cluster manager, reading the data from disk, executing
the operation, and materializing the results in memory. We set a
30-minute time-out for all experiments.
Datasets.We evaluate the performance on two real world datasets,
WikiTalk and NGrams, and a family of synthetic datasets SNB,

with di�erent scale factors. All datasets are summarized in the ta-
ble below, and di�er in size, in the number and type of attributes,
and in evolution rates, calculated as the average graph edit sim-
ilarity [38] between consecutive snapshots (the edit similarity
between snapshots i and j is the ratio of the number of common
edges to the sum of the number edges: 2 ∗ |Ei ∩ Ej |/(|Ei | + |Ej |)).
In contrast toWikiTalk and NGrams, SNB is a growth-only graph,
and so it shows a higher evolution rate.

vertices edges snaps ev. rate
WikiTalk 2.9M 10.7M 179 14.4
SNB:10 65K 1.9M 36 89
SNB:100 448K 20M 36 90
SNB:300 1.1M 59M 36 90
SNB:1000 3.3M 202M 36 91
NGrams:M 28M 606M 287 16.6
NGrams:L 48M 1.32B 328 18.2

WikiTalk is a real dataset that contains over 10 million mes-
saging events (edges) among 3 million wiki-en users (vertices) at
a 1-month resolution, from 2000 through 2016 [41]. Vertices have
two attributes: name is a unique username for each account and
editCount is the number of edits committed by the user (around
15K unique values). Edges have no attributes. WikiTalk is a very
sparse dataset with short-lived edges and growth-only vertices:
once added, a vertex persists for the lifetime of the graph and its
attributes do not change.

NGrams is a real dataset that contains word co-occurrence
pairs, with 88 million word vertices (3.2 unique words in all) and
over 2.8 billion undirected co-occurrence edges. In our experi-
ments we use two versions of this dataset: NGrams:L, with 328
yearly snapshots from 1520 through 1920, and NGrams:M, with
287 yearly snapshots from 1520 through 1870. NGrams is denser
than WikiTalk; its vertices persist over time, while edges can
appear and disappear. This dataset exhibits a linear relationship
between the number of nodes and the number of edges.

The LDBC Social Network Benchmark (SNB) [12] is a synthetic
graph generator that produces realistic networks with di�erent
types of entities and di�erent attributes. We focus on SNB person
entities (vertices) and on friendship relationships (edges), and
generate datasets at four scale factors: SNB:10, SNB:100, SNB:300,
and SNB:1000, with 36 monthly snapshots in each. SNB:1000 is
the largest dataset that can be created without changing the gen-
erator source code. SNB does not generate a temporal benchmark
but, since entities and relationships have timestamps, it can be
viewed as a growth-only evolving graph. We use the vertices
attribute firstName (5300 unique values in SNB:1000), edges
have no attributes. The friendship network generated using SNB
is growth-only graph, a graph where every vertex and edge is
added once and never goes away.

5.1 Evaluation of aZoomT

We now evaluate the performance of attribute-based zoom. Ex-
periments are executed with RG, VE and OG, as described in
Section 2, but not with OGC, which does not support aZoomT .

Fixed number of groups, varying data size. Dataset size
plays an important role in the performance of aZoomT . We sim-
ulated di�erent data sizes by using three datasets and varying
the number of snapshots in each dataset. In this experiment and
all other experiment in this section, we used aZoomTwith a hash
function as the Skolem function fS that generate new ids based
on one of the attributes of the graph. In WikiTalk we group by
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Figure 10: aZoomT : The e�ect of dataset size on the run-
time for each dataset. OG and VE perform on par, while
RG quickly times out.

username (2.9M output groups), In NGrams— by word (3.2M out-
put groups), and in SNB— by firstName (5,300 output groups).

Figure 10 shows the runtime of aZoomT on di�erent datasets.
As expected, increasing the data size increases the execution time.
OG is the best-performing representation, and VE is second-best.
Both VE and OG exhibit sub-minute runtimes on WikiTalk: at
most 0.54 min for OG and at most 1.09 min for VE (Figure 10a).
The runtime of VE for SNB:1000 is at most 2.21 min for this
graph with over 200M edges, where OG takes up to 2.53 minutes.
(Figure 10b). Notably, OG scales well, even for NGrams, where
OG computes in 4.8 min for 400 years worth of data and VE in
9.3, in a graph with 1.3 billion edges (Figure 10c). In contrast, RG
is much slower than VE and OG, and it does not scale for the full
SNB:1000 and NGrams:L dataset. It takes 26 minutes forWikiTalk,
14minutes for 12 snapshots of SNB, timing out for anything larger
and taking 29.55min to compute for 200 snapshots of NGrams,
and timing out for 300 snapshots.
Fixed number of groups and graph size, varying number
of snapshots. Another important factor in evolving property
graphs that can impact operator performance is the number
of snapshots (intervals during which no change occurred in
the TGraph). We generate experimental datasets to measure
this e�ect by merging consecutive snapshots of WikiTalk and
NGrams:L, where we gradually decrease the number of intervals,
while we keep the size of the dataset (in terms of the number
of nodes and edges) �xed. For SNB:1000, we directly generate
datasets with the desired number of snapshots. For WikiTalk,
we select the last 160 months of history, and create graphs with
between 2 and 160 snapshots. For NGrams, we select the last 320
years of the graph’s history, and again generate datasets with
between 2 and 320 snapshots. For SNB, we generate between
12 and 360 snapshots, corresponding to between 1 and 30 years
worth of network evolution. Note that generating graphs in this
way does neither change the number of nodes and edges, nor the
group-by cardinality.

Figure 11 shows the runtime of aZoomT as a function of the
number of snapshots. OG and VE exhibit comparable perfor-
mance for WikiTalk, executing in under 2 minutes, with OG
being slightly more e�cient. The trends are di�erent in SNB: the
runtime of aZoomT on both OG and VE is near-constant, but VE
is more e�cient: 2.3 minutes for VE, compared to 2.9 minutes for
OG. OG outperforms VE for NGrams; their runtime increases
linearly with an increasing number of intervals.

The di�erence in performance across datasets is due to the
nature of data evolution. WikiTalk and SNB only have one tuple
per node, since attributes do not change over time, therefore an
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Figure 11: aZoomT : Fixed dataset size and group-by car-
dinality, varying number of snapshots. The number of
nodes and edges is �xed to the largest graph size, and the
group-by cardinality is �xed to the natural group-by car-
dinality of each dataset.
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Figure 12: aZoomT : Fixed dataset size and number of snap-
shots, with varying group-by cardinality.
increase in the number of intervals does not change the number
of tuples (which is not the case for NGrams). We observe that
RG is the least e�cient representation for this operation, except
for the smallest number of intervals in WikiTalk, where all repre-
sentations have roughly similar performance. The running time
of RG grows linearly with the number of intervals, with a high
slope. We timed out this experiment at 30 minutes per execution,
and RG failed to complete for SNB and NGrams at 80 intervals.

Fixed size and number of snapshots, varying group-by
cardinality. In this aZoomT experiment, we investigate the ef-
fect of group-by cardinality — the number of new nodes being
created by the aZoomT operation, on performance. We work with
the WikiTalk, SNB:300 and NGrams:300 datasets at their original
temporal resolution. We vary the number of groups in the output
by assigning a group identi�er to each node in the input. Group
identi�ers are drawn uniformly at random from a given integer
range. We varied the range to control group-by cardinality, set-
ting it to 10, 100, 1,000, 100,000, and 1,000,000. Figure 12 shows
the results of this experiment. We observe that the runtime of
aZoomT over OG, VE and RG is not a�ected by group-by cardi-
nality. For visibility purpose, we did not include RG in Figure 12.
On WikiTalk, RG showed an execution time of about 29 minutes
for all the group-by cardinality values.

Frequency of change. In our �nal aZoomT experiment, we
study the e�ect of the frequency of change on performance.
Therefore, we synthetically change vertex attributes values with
a �xed frequency. While this intervention does not change the
size of the graph in terms of the number of nodes and edges, it
does change the storage requirements (e.g., the number of tuples
for VE, or the length of the array in OG) for each vertex.
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Figure 13: aZoomT : Fixed dataset size and number of snap-
shots, varying frequency of change of vertex attributes

Figure 13 shows the e�ect of the frequency of change on the
performance forWikiTalk (Figure 13a) and SNB:1000 (Figure 13b).
The size of each graph and the contained number of snapshots is
�xed to the full dataset size. While the group-by cardinality does
vary, the number of new groups is of the same order of magni-
tude as in the original graphs. We observe that the frequency of
change has no e�ect on the performance of RG. This is because
RG stores each vertex once per snapshot, irrespective of whether
there was a change between consecutive snapshots. The runtime
of aZoomT on OG is higher when more changes occur. This is
expected: Recall that OG stores attributes with their correspond-
ing validity intervals in an array, and so a higher frequency of
change results in longer arrays, which slows down operations on
OG. VE stores each change as a new tuple,and a higher frequency
of change results in more tuples, slowing down VE as well.

Summary. We studied the e�ects of data size, the number of
snapshots, the frequency of attribute change, and the group-by
cardinality (e.g., the number of newly-computed nodes) on the
performance. We observed that OG is the best representation for
aZoomT , followed by VE. For our largest experimental datasets,
with over 1.3 billion edges, aZoomT can be executed in less than 5
minutes withOG. The dataset size (the total number of nodes and
edges) a�ects operator performance on all datasets. The number
of representative graphs (snapshots) has a small e�ect on VE and
OG, and a signi�cant e�ect on RG. We did not observe an e�ect
of the group-by cardinality on the runtime in any representation.
The frequency of change has a small e�ect on RG, but it a�ects
VE and OG signi�cantly.

5.2 Evaluation of wZoomT

We now investigate the performance of wZoomT . In all experi-
ments, we load RG from disk enforcing structural locality, and
VE enforcing temporal locality. For OG and OGC we load data
from nested format described in Section 4.

Fixed time window, changing data size. In this experi-
ment, we �x the zoom window size to 3 snapshots for Wik-
iTalk (grouping into up to 60 temporal windows) and SNB:1000
(grouping into up to 12 temporal windows), and 25 snapshots
for NGrams:L (grouping into up to 16 temporal windows). We
load di�erent temporal slices of each graph and measure the
execution time of wZoomT . Figure 14 shows the results of this
experiment. We applied “exists“ quanti�ers for both nodes and
edges. We observed similar results for “all“ quanti�ers (except
that they make wZoomT slightly faster as fewer nodes and edges
have to be kept in the result), which we omit for space reasons.

As expected, increasing the size of the graph increases the
runtime on all representations. Our implementation based on
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Figure 15: wZoomT : Fixed data size and number of inter-
vals with varying window size, nodes=all, edges=all. OG
and OGC outperform other representations.

OGC is the clear winner for all datasets, taking 0.41 minutes for
WikiTalk, 1.25 minutes for SNB and 1.12 minutes for NGrams. For
WikiTalk and SNB, OG is the second winner while VE performs
better for NGrams:L, particularly for larger TGraph sizes. Finally,
RG performsworst for all datasets. The reason forVE’s signi�cant
performance drop on SNB is window size. We look at the impact
of window size on wZoomT in the next section.

Fixed data size, varying temporal window size. In the
previous experiment, we used a �xed zoom window size and
increased the size of the graph. In this experiment, the size of
the graph is �xed and we vary the size of the temporal window.
Figure 15 shows the corresponding results. RG does not scale for
temporal window-based zoom on large datasets, therefor we only
report performance numbers for RG on WikiTalk. We observe
that the performance of OG and OGC does not depend on the
window size, while the operations on VE take longer to execute
for smaller temporal windows. OGC is the winner among all
datasets followed by OG; VE exhibits longer runtimes for smaller
window sizes especially. This is because VE creates copies of each
tuple in order to align them with the computed time windows.
The smaller the window, the more tuples are created in the inter-
mediate stage. This e�ect is more visible for WikiTalk and SNB
because of their growth-only nature. In SNB, each vertex or edge
exists from its start date to the life time of the graph, therefore
VE needs to create a large amount of copies as each of those long
intervals is split into intervals corresponding to the window size.
Summary. We studied the e�ect of data size and of temporal
window size on performance. Our experiments showed thatOGC
performs best, followed by OG and VE. RG was the slowest rep-
resentation in all cases. We also observed that smaller temporal
window sizes (and thus more windows to compute) lead to longer
execution time for RG and VE.
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Figure 16: aZoomT - wZoomT combination and switching
between memory representations. Fixed data size, group-
by cardinality and number of intervals, varying the size of
windows, node quanti�er ‘all’, edge quanti�er ‘all’.

5.3 Operation Chaining
In this section we chain together aZoomT to a wZoomT and in-
vestigate whether switching between representations improves
performance. Since OGC does not support attribute-based oper-
ation and due to the high memory usage and scalability issues of
RG, we only run our experiments on VE and OG.

In the �rst experiment we run aZoomT then wZoomTwith
di�erent windows sizes on WikiTalk, SNB:300 and NGrams:M.
For aZoomT onWikiTalk, we use edit count as the zoom attribute,
for SNB we use �rst name, and for NGrams we use the word
attribute. Figure 16 shows the results of this experiment. The
x-axis lists window sizes for wZoomT (in months for WikiTalk
and SNB, and in years for NGrams), while the y-axis denotes the
running time in minutes. Each line shows which representation
is used. On WikiTalk, OG is the winner while OG-VE, VE-OG
and VE are slightly slower. On SNB:300, VE-OG, and OG are
fastest, and OG-VE is slowest, followed by VE.

In the previous section we saw that VE performs slightly better
for aZoomT on SNB, and OG performs signi�cantly better for
wZoomT , so it makes sense for VE-OG and OG to show the
best performance and for VE and OG-VE to show the worst. For
NGrams, OG is the clear winner followed by OG-VE. The worst-
performing combination here is VE-OG, followed by VE. On
NGrams, OG performs signi�cantly better for both aZoomT and
wZoomT , and this can explain the results we are observing here.

In the next experiment we change the order of aZoomT and
wZoomT . While this reordering does not always produce the
same result, we can safely reorder the operations for WikiTalk
and SNB, since no attributes change in these datasets, and so
applying wZoomT or aZoomT �rst produces the same result with
the “exist“ quanti�er for both vertices and edges.

Figure 17 shows the e�ect of group-by cardinality onwZoomT -
aZoomT and aZoomT - wZoomT . In this experiments, we load
the full graph for each dataset, project each node attribute to a
random value based on group-by cardinality, and then perform
the operations, with window size set to 6 months for WikiTalk
and SNB, and 10 years for NGrams. We vary group-by cardinality
from 10 to 1 million. We observe an increase in the execution
time as the group-by cardinality increases, which we attribute
to the fact that aZoomT produces a larger intermediate graph
for cases where we perform aZoomT �rst. In contrast, we see
no signi�cant change in the execution time when wZoomT is
executed �rst. Interestingly, performingwZoomT �rst in NGrams
yields faster running time. Unlike in WikiTalk and SNB, vertices
in NGrams are not growth-only, and they also span over a longer
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Figure 17: aZoomT andwZoomT performance for di�erent
group-by cardinalities with di�erent zoom orders. Fixed
data size and number of intervals.OG-based implementa-
tions perform best in most cases.

period of time.wZoomTwill reduce the number of snapshots and
vertex tuples, which explains why wZoomT - aZoomT is faster
than aZoomT - wZoomT .
Summary. We studied combining aZoomT and wZoomT for dif-
ferent combinations of parameters. Our experiments show that,
while OG alone performs best in most cases, switching between
representations does not signi�cantly a�ect the running time.
We also found that running aZoomT before wZoomT is fastest
for growth-only datasets.

5.4 Summary
In this section, we �rst studied the e�ects of data size, the number
of snapshots, the frequency of attribute change, and the group-by
cardinality on the running time of aZoomT . We observed that
OG is the best performing representation for aZoomT , followed
by VE. We showed that representing the TGraph as a sequence
of independent snapshots in RG results in the by far worst per-
formance. The second part of this section focused on wZoomT .
We varied graph size and window size, and observed that OGC
is the best-performing representation, followed by OG and VE.
RG again exhibited the worst performance forwZoomT . The last
part of this section focused on combining aZoomT and wZoomT .

Overall, we found thatOG, which balances temporal and struc-
tural locality, outperforms other representations in most cases.

6 RELATEDWORK
Temporal models and languages in the relational literature
are very mature (see, e.g., [10, 16, 23]). However, the same cannot
be said for evolving graphs, where models di�er in what time
representation they adopt (point or interval), what top-level enti-
ties they model (graphs or sets of nodes and edges), whether they
represent topology only or attributes or weights as well, and what
types of evolution they support. Harary and Gupta [20] were,
to the best of our knowledge, the �rst to informally propose to
model graph evolution as a sequence of static graphs. This model
has been predominant in the literature [15, 24–26, 38, 40], with
various restrictions on the kinds of changes that can take place
during graph evolution. In contrast to existing work, TGraph
assigns periods of validity to nodes, edges and their properties,
capturing evolution of graph topology and of node and edge
attributes, and supports point-based semantics [37].

The attribute-based zoom operator is a temporal general-
ization of the node creation operator that is present in several
conventional (non-temporal) graph query languages [42]. For
example, StruQL outputs new nodes in a create clause, corre-
sponding to the node creation operation with a Skolem function
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to create the object ids [13], while GOOD provides an abstraction
operator that allows to create new nodes to represent multiple
nodes based on shared properties [18]. To the best of our knowl-
edge, a temporal generalization of this operator has not been
considered except in our own prior work [37], and also has not
been implemented in systems.

That said, the G* system supports SQL-style aggregation using
the AggregateOperator per graph snapshot, supporting a limited
version of summarization [26]. G* ingests evolving graph data
one snapshot at a time, replicated across all machine without any
compression, and is most similar to our RG. Our experiments
showed that G* is not capable of loading graphs with a large num-
ber of intervals and does not scale for large size graphs [36]. We
were not able to fully ingest any of our datasets used in Section 5
into G*. Chronograph, a system designed for temporal graph
traversal [6], implements a version of temporal aggregation for
the purpose of converting point-based to period-based semantics
for edges, but not for nodes.

Temporal aggregation operators over relational data can
be found in the literature, typically as an extension of non-
temporal relational aggregation (see, e.g., example 10 in [11]). Li
et al. proposed a general window aggregate for data streams [29]
that can be applied to temporal relational data. Window aggre-
gate semantics is based on a sliding window speci�cation — a
range and a slide — based on the desired data attribute that has a
domain with a total order. The range speci�es the width of the
window e.g., 100 seconds or 100 rows, and the slide speci�es how
windows are formed. We are not aware of any proposal for an
operator capable of changing the temporal resolution of evolving
graphs, besides our own, introduced in [37], and no systems work
on such an operator.

In our work we implement aZoomT and wZoomT operators
in a data�ow system, and instantiate our ideas over Apache
Spark [43], using the GraphX [17] library. We leverage the graph-
speci�c optimizations provided by GraphX, as described in our
implementation section, and incorporate temporal semantics into
data representations and operators.

7 CONCLUSION
In this paper we proposed an implementation of two zoom oper-
ators — aZoomT and wZoomT— on evolving graphs. We detailed
four physical representations — RG, VE, OG, and OGC, and
described how to de�ne the zoom operators using distributed
data�ow operations, tailored to the corresponding data represen-
tation. We discussed how to e�ciently implement the operators
in Apache Spark with its GraphX library, and explained that
our operator de�nitions could easily be implemented in other
data�ow systems such as Apache Flink. In an extensive experi-
mental evaluation on several real datasets with up to 1.3 billion
edges, we explored the trade-o�s in terms of temporal and struc-
tural locality with respect to zoom operator performance. We
�nd that OG, which balances temporal and structural locality,
outperforms the other representations in most cases.

In our future work we will extend our system to support addi-
tional operations on evolving graphs, such as Pregel-style analyt-
ics [30]. We will propose query optimization techinques for our
workloads. Finally, we will design a query language with support
for the proposed temporal zoom operators, among others.

REFERENCES
[1] Charu C. Aggarwal and Karthik Subbian. 2014. EvolutionaryNetworkAnalysis.

ACM Comput. Surv. 47, 1 (2014), 10:1–10:36.
[2] Alexander Alexandrov et al. 2014. The stratosphere platform for big data

analytics. VLDB 23, 6 (2014), 939–964.
[3] Renzo Angles et al. 2017. Foundations of Modern Query Languages for Graph

Databases. ACM Comput. Surv. 50, 5 (2017), 68:1–68:40.
[4] Michael H. Böhlen. 2009. Temporal Coalescing. In Encyclopedia of Database

Systems. 2932–2936.
[5] Michael H Böhlen et al. 2009. Temporal Compatibility. In Encyclopedia of

Database Systems. 2936–2939.
[6] Jaewook Byun et al. 2019. ChronoGraph: Enabling temporal graph traversals

for e�cient information di�usion analysis over time. IEEE TKDE (2019).
[7] Paris Carbone et al. 2015. Apache Flink™: Stream and Batch Processing in a

Single Engine. IEEE Data Eng. Bull. 38, 4 (2015), 28–38.
[8] Je�rey Chan et al. 2008. Discovering correlated spatio-temporal changes in

evolving graphs. Knowl. Inf. Syst. 16, 1 (2008), 53–96.
[9] Junghoo Cho and H Garcia-Molina. 2000. The evolution of the web and

implications for an incremental crawler. VLDB (2000), 200–209.
[10] Jan Chomicki. 1994. Temporal Query Languages: A Survey. In ICTL.
[11] Dignös et al. 2012. Temporal Alignment. In SIGMOD.
[12] Orri Erling et al. 2015. The LDBC Social Network Benchmark: Interactive

Workload. In Proceedings of the 2015 ACM SIGMOD. 619–630.
[13] Mary F. Fernández et al. 1997. A Query Language for a Web-Site Management

System. SIGMOD Record 26, 3 (1997), 4–11.
[14] Mary F. Fernández et al. 2000. Declarative Speci�cation of Web Sites with

Strudel. VLDB J. 9, 1 (2000), 38–55.
[15] Afonso Ferreira. 2004. Building a reference combinatorial model for MANETs.

IEEE Network 18, 5 (2004), 24–29. https://doi.org/10.1109/MNET.2004.1337732
[16] Shashi K Gadia and Chuen-Sing Yeung. 1988. A generalized model for a

relational temporal database. In ACM SIGMOD Record, Vol. 17. ACM, 251–259.
[17] Joseph E. Gonzalez et al. 2014. GraphX: Graph Processing in a Distributed

Data�ow Framework. In 11th USENIX. 599–613.
[18] Marc Gyssens et al. 1994. Decomposing Constraint Satisfaction Problems

Using Database Techniques. Artif. Intell. 66, 1 (1994), 57–89.
[19] Wentao Han et al. 2014. Chronos : A Graph Engine for Temporal Graph

Analysis. In EuroSys.
[20] F. Harary and G. Gupta. 1997. Dynamic graph models. Mathematical and

Computer Modelling 25, 7 (1997).
[21] Huahai He and Ambuj K. Singh. 2008. Graphs-at-a-time: query language and

access methods for graph databases. In Proceedings of the SIGMOD. 405–418.
[22] Ping-yu Hsu and D Stott Parker. 1995. Improving SQL with Generalized

Quanti�ers. In ICDE.
[23] Christian S. Jensen and Richard T. Snodgrass. 2009. Temporal Data Models.

In Encyclopedia of Database Systems. 2952–2957.
[24] Andrey Kan et al. 2009. A Query Based Approach for Mining Evolving Graphs.

In AusDM 2009, Vol. 101.
[25] Udayan Khurana and Amol Deshpande. 2016. Storing and Analyzing Historical

Graph Data at Scale. In EDBT.
[26] Alan G. Labouseur et al. 2014. The G* graph database: e�ciently managing

large distributed dynamic graphs. Distrib. and Parallel Databases 33, 4 (2014).
[27] M. Lahiri and Berger-Wolf. 2008. Mining Periodic Behavior in Dynamic Social

Networks. In 2008 Eighth IEEE ICDM. 373–382.
[28] Timothy LaRock et al. 2019. Detecting Path Anomalies in Time Series Data

on Networks. arXiv preprint arXiv:1905.10580 (2019).
[29] Jin Li et al. 2005. Semantics and evaluation techniques for window aggregates

in data streams. In SIGMOD.
[30] Grzegorz Malewicz et al. 2010. Pregel: a system for large-scale graph process-

ing. In ACM SIGMOD. 135–146.
[31] F Manola et al. 2013. RDF primer. W3C Recommendation 10, 1–107 (2004).
[32] Mauro San Martín et al. 2011. SNQL: A Social Networks Query and Transfor-

mation Language. In AMW.
[33] Frank McSherry et al. 2013. Di�erential Data�ow. In CIDR 2013,.
[34] Sergey Melnik et al. 2010. Dremel: Interactive Analysis of Web-Scale Datasets.

In VLDB.
[35] Youshan Miao et al. 2015. ImmortalGraph: A System for Storage and Analysis

of Temporal Graphs. ACM Transactions on Storage 11, 3 (2015), 14–34.
[36] Vera Z. Mo�tt. 2017. Framework for Querying and Analysis of Evolving Graphs.

Ph.D. Dissertation. Drexel University.
[37] Vera Zaychik Mo�tt and Julia Stoyanovich. 2017. Temporal graph algebra. In

Proceedings of DBPL 2017. 10:1–10:12.
[38] Chenghui Ren et al. 2011. On Querying Historical Evolving Graph Sequences.

Proceedings of the VLDB Endowment 4, 11 (2011), 726–737.
[39] Ingo Scholtes et al. 2016. Higher-order aggregate networks in the analysis of

temporal networks: path structures and centralities. The European Physical
Journal B 89, 3 (2016), 61.

[40] Konstantinos Semertzidis et al. 2015. TimeReach: Historical Reachability
Queries on Evolving Graphs. In EDBT.

[41] Jun Sun and Jérôme Kunegis. 2016. Wiki-talk Datasets.
[42] Peter T. Wood. 2012. Query languages for graph databases. SIGMOD Record

41, 1 (2012), 50–60.
[43] Matei Zaharia et al. 2016. Apache Spark: a uni�ed engine for big data process-

ing. Commun. ACM 59, 11 (2016), 56–65.

36


	Zooming Out on an Evolving GraphAmir Aghasadeghi, Vera Moffitt, Sebastian Schelter, Julia Stoyanovich

