
The Case for Hybrid Succinct Data Structures
Christoph Anneser Andreas Kipf Harald Lang Thomas Neumann Alfons Kemper

Technical University of Munich
{anneser,kipf,harald.lang,neumann,kemper}@in.tum.de

ABSTRACT
One of the biggest challenges in data management is to retain
the high performance of in-memory processing with the ever in-
creasing data volumes. Recent years have shown that the amount
of collected data is increasing at a faster pace than DRAM capaci-
ties. Many state-of-the-art index data structures are optimized for
performance rather than for low space consumption and quickly
exceed the limited main-memory capacities when indexing larger
data sets. Succinct data structures on the other hand allow for
space efficient indexing, but compromise performance while still
being orders of magnitude faster than disk-based data structures.

In this work, we propose a novel framework that combines
state-of-the-art indexes with succinct data structures to form new
hybrid succinct data structures. These hybrids enable fine-grained
trade-offs between space and performance. Frequently accessed
parts of an index, e.g. the upper levels of a tree, are thereby
maintained in performance-optimized structures whereas less
frequently accessed parts have a space-optimized representa-
tion. Our evaluation shows that our approach can significantly
reduce the amount of used space by up to 50% (resp. 90% for
our compressed version) while retaining 93% (resp. 87%) of the
performance.

1 INTRODUCTION
Back in 2006, Jim Gray stated that memory is the new disk and
disk is the new tape [7]. This also applies to modern database
systems that store the entire data in random access memory
(RAM) to allow near real-time analyses for trading companies
and finance services. They need to efficiently process large data-
sets to react within a few milliseconds to new developments or
updates.

To achieve the required performance for near real-time data
processing, index structures such as B-trees, hash tables, tries,
amongst others are used to efficiently find specific elements. In
modern database systems, these index structures are also stored
in main memory and are most often highly optimized in terms
of performance and underlying hardware rather than space ef-
ficiency. However, while the main memory capacities tend to
double every three years and its costs decrease by a factor of 10
every five years, the data collected by sensors, smartphones, so-
cial media platforms, and IoT-devices increases at an even higher
rate resulting in data overflows [12]. This development requires
in-memory data structures to optimize both performance and
space.

In this paper, we focus on hierarchical indexes comprising
nodes and relationships between them, such as trees, tries, and
graphs, and distinguish two different types of data structures:
(1) Pointer Based Data Structures (PBDS): These state-of-the-

art data structures model relationships between elements

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Succinct Data 
Structure

(compressed & static)

Performance-Optimized 
Index Structure

(uncompressed & dynamic)

Online Workload-Adaption

H
yb

rid
 In

de
x 

S
tru

ct
ur

e

Tunable
Level-Wise 

Cutoff

OLAP
compact cold nodes
expand hot nodes/branches

1

1 2

2

2

Figure 1: We propose a novel framework that combines
state-of-the-art indexeswith succinct data structures. It al-
lows indexing even larger data sets entirely in main mem-
ory by taking advantage of space-efficient succinct in-
dexes. Furthermore, our hybrid index allows online adap-
tation to the actual OLAP workload by storing hot nodes
in performance-optimized structures.

explicitly using machine addresses. Traversing to another
node directly translates to a pointer resolution.

(2) Succinct Data Structures (SDS): These data structures en-
code relationships in the data implicitly using bitmaps and
still allow accessing nodes in constant time [13]. While SDS
tend to be smaller than PBDS, they are often slower since
traversing requires more complex operations [6].

So far, only a few SDS-based approaches, such as succinct
range filters [13] and tree-encoded bitmaps [9], have been suc-
cessfully applied to database systems, as modern PBDS tend to
offer much better performance. However, the explicit mainte-
nance of relationships in PBDS also consumes more space. Using
64-bit addresses may introduce significant overheads, since point-
ers theoretically allow for differentiating between 264 (more than
18 trillion) items, which is not required for most applications.
When indexing larger datasets, SDS become more interesting for
the case when PBDS do not fit into main memory anymore [6]
and would require staging parts of the data structure to disk.

We propose a new, lightweight framework that takes advan-
tage of both types of data structures and allows combining any
hierachical PBDS and SDS to a new hybrid index that consumes
less space than the PBDS and offers higher performance than the
SDS. It also allows online workload adaptation for use cases, in
which some elements tend to be more important than others and
get accessed more frequently.

The rest of this paper is organized as follows: In Section 2,
we present the foundations of succinct index structures as well
as the Fast Succinct Trie [13] which is used in our evaluation.
We also give a short overview of point-polygon joins, since our
evaluation is based on this use case. In Section 3, we present a
detailed overview of our approach. We evaluate our framework
for the real-world use case of geospatial point-polygon joins in
Section 4 and conclude with our next steps and future work in
Section 5.

Short paper

 

 

Series ISSN: 2367-2005 391 10.5441/002/edbt.2020.40

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.40


2 BACKGROUND
In this section, we present the foundations of succinct data struc-
tures and the Fast Succinct Trie, which is a succinct trie data
structure that almost achieves the performance of uncompressed
PBDSs [13]. We also discuss a state-of-the-art index for point-
polygon joins where we applied and evaluated our framework.

Succinct Data Structures. A data structure is called succinct if
its space is close to the information-theoretic optimum while
most basic operations are still executable in constant time. In
the literature, close is defined in different ways – we refer to a
data structure as succinct if it uses O(opt) bits, with opt being
the minimal number of required bits to represent the data and
its relationships.

As stated in Section 1, instead of explicitly modeling rela-
tionships between elements using machine addresses, this infor-
mation is encoded implicitly in bitmaps. Consider the trie data
structure in Figure 2 where each level encodes two bits and keys
are not a prefix of other keys. For a succinct encoding, we store
two bitmaps labels and hasChild that encode for each node label
(branch) 002, 012, 102, and 112 whether it exists and if there is a
following child node. E.g., when labels[4n + 2] is set, it indicates
that the n-th node contains the label 102. Then, all encoded nodes
are concatenated in breadth-first ordering resulting in the above
mentioned bitmaps (cf. labels and hasChild in Figure 2). We de-
fine rank(x) to count the number of set bits up and including
position x , and select(x) to return the index of the x-th set bit:

rank(x) =
i≤x∑
i=0

hasChild[i] (1)

select(x) = i , with rank(i) = x (2)

Based on rank and select, more complex operations for a noden
starting at position p can be defined. E.g., we can calculate the
position for the child node at label/branch x (3), and we can find
the position of n’s parent node (4) (assuming fixed-sized nodes
comprisingw bits) [13]:

child(x,p) = rank(x + p) ×w,with hasChild[x + p] = 1 (3)
parent(p) = select(⌊p/w⌋) (4)

As one can see in Figure 2, six bytes are sufficient to store the trie
structure and its relationships (excluding the values). However,
while succinct data structures optimize space, they tend to intro-
duce higher latencies than PBDS since resolving a neighboring
element involves multiple rank and select statements.

In 2018, Zhang et al. proposed a new data structure called Fast
Succinct Trie (FST) [13]. It almost achieves the performance of
state-of-the-art trie data structures such as the Adaptive Radix
Tree (ART) [10] but needs less space and allows for efficient value
compression. It internally uses a hybrid encoding scheme where
upper levels are represented similarly to the trie in Figure 2, and
lower levels store the data in a more compressed way by only
representing branches that actually exist. In Section 3, we apply
our framework to this data structure.

Efficient Point-Polygon Joins.Weapplied and tested our frame-
work for the use case of point-polygon joins according to the
approach introduced by Kipf et al. in 2020 [8]. Dynamic points get
joined with a static set of polygons using prefix lookups on one-
dimensional 64-bit keys. First, a given space (e.g. the minimum
bounding rectangle of the polygons, cf. green cell in Figure 3) is
recursively decomposed into smaller sub-cells. Then, the cells are

10 11

00 10

v1

v3

11 01

11 00

0011 0001 1110 0001 1000

0011 0000 1010 0000 0000

labels

hasChild

v1 v2 v3 v4values

v2

v4

1011 110011stored keys 1101 1110000

1 2

3 4

0 1 2 3 4
0000

0000

paddingbyte

Figure 2: Succinct encoding of a trie with maximum fan-
out of four. The relationships between nodes are implic-
itly encoded in the labels andhasChild bitmaps in breadth-
first order.

10 11

00 10

a

a

11 01

11 00

b

b

0

1 2

3 4

dynamic points

Figure 3: Left: space decomposition into quadtree cells
that cover polygons a and b. Right: trie data structure in-
dexing the blue cells level-wise and the exemplary lookup
of point x.

enumerated (discretized) by a space-filling curve (e.g. the Hilbert
curve) and can be identified by one-dimensional keys. Each de-
composition divides a given cell into four smaller sub-cells for
which reason we store two bits per cell level that uniquely iden-
tify one of the four sub-cells. Up to 31 levels can be addressed by a
single 64-bit integer where the least significant set bit determines
the encoded level. Applied to the Earth’s surface, we can address
every single square centimeter within 64 bits [2].

As a next step, we compute for each polygon p a so-called
covering, which comprises a set of cells that cover p (cf. blue cells
in Figure 3). A specialized pointer-based radix trie with fan-out
four, called Adaptive Cell Trie (ACT), indexes the cells of all
combined coverings (refer to [8] for more details). When joining
an incoming point, we first transform the point to the smallest
cell level (in this case 31) and then use ACT to find matching
polygons using level-wise prefix checks. If a cell c1=0110 is prefix
of another cell c2= 01101101, then c2 is fully contained in c1.
E.g., the binary key for point z starts with 01 and we can already
detect at ACT’s root node rn that no polygon encloses the point
since the label 01 is not present in rn. For point x (1011. . . ), we
find the enclosing polygon a at level two (cf. exemplary lookup
in Figure 3). Point y is an example for a false positive match since
it is not enclosed by any polygon, but querying ACT indicates
thaty could be contained by polygon b. By this means, this point-
polygon join guarantees a precision which corresponds to the
diagonal of the largest cell that is not completely enclosed by a
polygon.

3 HYBRID SUCCINCT DATA STRUCTURES
We propose a new, lightweight framework that allows combining
any hierarchical PBDS and SDS level-wise to significantly reduce
the memory footprint, while retaining the performance at a large

392



extent. Online workload adaptation supports branch-wise PBDS
refinements for use cases with skewedworkloads. Our framework
comprises four steps to build a new hybrid index structure for a
given dataset:

(1) Build the static, read-only SDS.
(2) Build the PBDS for the upper n levels.
(3) Connect the PBDS nodes at level n to the corresponding child

nodes in the SDS (e.g. by using pointer tagging).
(4) Extend the PBDS interface by two operations to allow branch-

wise online workload adaptation:
(a) expand(node): Frequently accessed nodes are encoded

in the faster PBDS when a specified threshold is exceeded.
(b) compact(node): Colder nodes (under the threshold) are

compacted, removed from PBDS and indexed in SDS only.

In our approach, we exploit the fact that real-world workloads
tend to be skewed and therefore, we periodically evaluate the
actual queries at runtime to determine frequently accessed nodes.
For a node n whose accesses exceed a predefined threshold t , we
call expand(n) to add n to the faster PBDS. In the case that the
accesses to n precede t , we simply remove n from the PBDS.

Since all queries start at the upper levels of a hierarchical data
structure, we encode the frequently queried upper levels l using
the performance-optimized PBDS and connect it level-wise to
the SDS. Furthermore, the upper levels represent only a small
fraction of the overall data structure and encoding them as PBDS
may not have a noticeable impact on the total size. In contrast
to branch-wise refinements, level-wise cutoffs do not introduce
additional branch misses since we do not have to differentiate
between PBDS and SDS references before reaching level l .

We deliberately accept that common parts are stored redun-
dantly as it allows the PBDS to become a dynamic meta index
structure for the static SDSwhere lightweight refinements do affect
only the dynamic PBDS. Despite the introduced redundancy, our
framework focuses on minimizing the memory overhead while
our secondary goal is keeping the read overhead as small as pos-
sible. In accordance with the RUM conjecture by Thanassoulise
et al. [5], "there is always a price to pay for every optimization",
as our approach does not handle updates efficiently so far.

To the best of our knowledge, this is the first approach that
applies tuneable level-wise cutoffs combined with branch-wise
workload adaptations to hybrid succinct index structures. In con-
trast to the proposed framework by Zhang et al. in 2016 [11], we
completely avoid searching redundant parts of the key space by di-
rectly pointing from PBDS into SDS using pointer tagging. While
Zhang’s approach is optimized for OLTP workloads where re-
cently inserted tuples are assumed to be accessed more frequently
and therefore are kept in the dynamic structure, we do not rely
on this assumption but rather adapt to the actual workload at
runtime using fine-grained branch-wise refinements. Addition-
ally, we connect PBDS and SDS level-wise, whereas Zhang et al.
completely separate both indexes tuple-wise.

Prefix Lookups Based on ACT and FST. In the following, we
explain our framework using the Adaptive Cell Trie [8] as PBDS
and the Fast Succinct Trie [13] as SDS and apply them to the use
case of point-polygon joins as introduced in Section 2.

Given: We start with a set of polygons and its coverings that
were calculated according to the aforementioned approach in
Section 2. The coverings contain unique cell keys where each cell
key is represented by a uint64_t and for each key, the referenced
polygon(s) are stored in an uint64_t-payload (value).

00 10

a

a

11 01

11 00

b

b

1 2

3 4

1 2
0.01 0.05 0.31 0.63

relative accesses

a

a

11

11 00

b

1

3 4

1

4b3

ACT

FST

level-wise cutoff
branch-wise 
refinement

2 2

2

Online Workload-Adaption
expand hot nodes/ branches

nullp.nullp. nullp. nullp.

nullp.

Figure 4: Initial hybrid trie with a threshold of 0.4 and
ACT-encoded root node (left). Illustration of hybrid trie af-
ter expanding FST node 2 and indexing it in ACT (right).

Step 1: First, we adapted the FST to store two bits per level
(instead of a byte) so that one trie level stores exactly one cell
level (cf. Figure 3). The trie indexes the 64-bit cell keys up to the
cell level while the remaining, unused levels are ignored.

In addition to our framework, we compressed the values using
run-length encoding. In this use case, neighboring cells are likely
to cover the same polygon(s) and thereby share the same polygon
reference (value). These values occur directly one after the other
in the values vector and offer a high compression potential.

Step 2: As PBDS, we use the Adaptive Cell Trie [8] where
one trie level also stores exactly one cell level. Each ACT node
comprises an array of four 64-bit tagged pointers resulting in an
overall size of 256 bits per node. The left trie depicted in Figure 4
stores the cell keys {1011, 110011, 1101, 111000} and shows an
ACT encoded root node while the remaining levels are encoded
in the FST.

Step 3: We connect ACT and FST by inlining the required
information in the ACT pointers. Since pointers do not use the
entire 64 bits for memory addressing, we can use the two least
significant bits to differentiate whether (i) the pointer stores a
memory address for an ACT child node, (ii) a referenced polygon
id (value) or (iii) an offset into the FST. In the case a label does
not exist in a node, we just store a nullpointer.

Step 4: We extended the ACT interface by two functions
expand and compact and stored four access counters for each
node (cf. ACT-encoded root node in the left part of Figure 4). Dur-
ing runtime, we periodically determine the number of accesses
and after a pre-defined number of lookups, we add those nodes
whose access counters exceed a given threshold t to the candidate
set. Then, we start expanding the candidate nodes and add them
to ACT until the candidate list is empty or a givenmemory bound
would be exceeded. E.g., node 2 in Figure 4 gets expanded since
its relative access counter 0.63 exceeds the threshold of 0.4.

4 EVALUATION
We applied our framework to the use case of point-polygon joins
(cf. Section 2). First, we will evaluate the performance of our hy-
brid trie and compare it against other data structures. Then, we
will discuss the impact of workload adaptation on the overall per-
formance and index structure size. Additionally to our approach,
we will show a hybrid trie that compresses the values.

We use a real-world data set containing 289 neighborhoods
(polygons) in New York City and join them with 1.23 billion
publicly available taxi pickup locations (points) for the years
2009 to 2016 [4]. We calculate the cell coverings for the polygons
as described in Section 2. Then, we use different index structures

393



●

0

200

400

0 5 10 15 20
Throughput (M/s)

Si
ze

 (M
iB

)

ACT

B+

FST

GBT HT Workload Adaptive

HT Workload Adaptive/ Compression

LB

better

+level-wise

+workload 

+compression

adaptation

cuto

HT level-wise cutoff

ff

Figure 5: Evaluation of selected index structures consider-
ing space and performance. The ‘waves’ have been added
for illustration purposes. Indexes in brighter areas have a
better space/performance ratio.

that store the combined covering which contains approximately
14 million cells.

We conduct the experiments on a 14-core Intel Xeon E5-2680
v4 CPUs equipped with 256GB DDR4 RAM and we compile with
GCC 5.4.0 and optimization level O3. Besides ACT and FST, we
compare our Hybrid Trie (HT) to the following data structures:
the Google B-tree (GBT) [1], the STX B+ Tree (B+) [3], and the
std::lower_bound algorithm (LB).

Comparing to Other Data Structures. In Figure 5, we show
different data structures and their space consumption in MiB
for indexing 14 M uint64_t-keys on the y-axis. Then, we query
1.23 B keys and denote the performance in M/s on the x-axis.

While LB achieves the lowest throughput (4.78 M/s), the use-
case optimized ACT allows querying more than 18.75 M entries
per second. The most space is used by the B+ tree (535 MiB) and
the most space-efficient index structure is the workload-adaptive
hybrid trie with enabled run-length encoding for the payloads.
While GBT uses internal node compression techniques and B+
uses approximately twice the space, they achieve comparable
performance (7.98 and 8.10 M/s).

As expected, the performance of the hybrid trie with level-wise
cutoff (13.27 M/s) is located in between FST (10.09 M/s) and ACT
(18.75 M/s), while the required space (113.71 MiB) is increased
by a negligible amount of 0.007% compared to FST (113.70 MiB,
ACT uses 223.65 MiB).

Analyzing Workload Adaptation. In Table 1, we depict the
evaluation results for the workload adaptive hybrid tries with dif-
ferent level-wise cutoffs and thresholds t . A cutoff level cl means
that the upper cl levels are encoded as ACT and the remaining
levels are encoded as FST. A node n whose relative accesses ex-
ceed t gets expanded and added to ACT, whereas n gets removed
from ACT if its relative accesses precede t . These updates can be
performed periodically after a specified amount of time. Entries
without a given threshold (-) refer to a non workload-adaptive hy-
brid trie. The ACT-encoded part has a negligible influence on the
total HT size (1.01% for cl = 11) and with increasing cutoff levels,
the performance impact of the workload adaptation decreases.

For the presented use case, online workload-adaptation works
well since taxi pickup locations are skewed (e.g. there are many
pickups at the airport and the main train station). The last column

Table 1: Space and performance metrics for the workload-
adaptive hybrid tries. With increasing cutoff level and
decreasing threshold, the performance increases signifi-
cantly while the size overhead remains negligible.

Cutoff
Level

Refinement
Threshold [%]

Size Overhead
To FST [%]

TP [M/s]
(Perf. of ACT)

ACT-only
Lookups [%]

1 - 0.001 10.32 (55%) 0.00
1 1 0.004 14.30 (76%) 31.25
1 0.5 0.008 14.58 (78%) 44.13

6 - 0.007 12.83 (68%) 0.41
6 1 0.009 13.42 (72%) 31.42
6 0.5 0.013 14.65 (78%) 44.30

11 - 1.020 17.28 (92%) 78.13
11 1 1.020 17.27 (92%) 78.13
11 0.5 1.020 17.28 (92%) 78.13

of Table 1 shows the percentage of queries that can be answered
directly by the refined ACT without entering the FST.

Further Compression Techniques. As discussed in Section 2,
most succinct data structures store the payloads in a separate data
structure which allows for further compression. We applied run-
length encoding to the payloads which results in a compression
ratio of 19,74 (114856 MiB / 5819MiB) while the performance
of 16.24M lookups per second is still comparable to ACT. The
hybrid trie uses only 2.6% of ACT’s space while it retains 86.6% of
its performance. By this means, the hybrid trie is smaller by two
orders of magnitude while it achieves comparable performance
to ACT. Note that our approach is not limited to run-length
encoding but can of course be combined with any compression
technique (e.g. dictionary encoding).

5 CONCLUSIONS AND FUTUREWORK
While our framework achieves good results for the presented use
case, it is still an ongoing work in progress. As a next step, we will
apply the framework to other use cases such as prefix lookups for
strings and other index structures. We also plan to implement a
duplicate-free hybrid trie and apply different compression tech-
niques to the values.

REFERENCES
[1] Google C++ B-tree. https://code.google.com/archive/p/cpp-btree/.
[2] S2 Geometry. https://s2geometry.io/.
[3] STX B+-tree. http://panthema.net/2007/stx-btree/.
[4] TLC Trip Record Data. http://www.nyc.gov/html/tlc/html/about/trip_record_

data.shtml.
[5] M. Athanassoulis, M. S. Kester, L. M. Maas, R. Stoica, S. Idreos, A. Ailamaki,

and M. Callaghan. Designing access methods: The RUM conjecture. In Proc.
of EDBT, pages 461–466, 2016.

[6] S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to practice: Plug and
play with succinct data structures. In SEA, pages 326–337. Springer, 2014.

[7] J. Gray. Tape is dead, disk is tape, flash is disk, ram locality is king. http:
//research.microsoft.com/en-us/um/people/gray/talks/Flash_is_Good.ppt.

[8] A. Kipf, H. Lang, V. Pandey, R. A. Persa, C. Anneser, E. T. Zacharatou, H. Do-
raiswamy, P. Boncz, T. Neumann, and A. Kemper. Adaptive main-memory
indexing for high-performance point-polygon joins. In Proc. of EDBT, 2020.

[9] H. Lang, A. Beischl, V. Leis, P. Boncz, T. Neumann, and A. Kemper. Tree-
Encoded Bitmaps. In Proc. of SIGMOD. ACM, 2020.

[10] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: Artful indexing
for main-memory databases. In Proc. of ICDE, volume 13, pages 38–49, 2013.

[11] H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky, L. Ma, and R. Shen. Reducing
the storage overhead of main-memory oltp databases with hybrid indexes. In
Proc. of SIGMOD, pages 1567–1581. ACM, 2016.

[12] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang. In-memory big data
management and processing: A survey. TKDE, 27(7):1920–1948, 2015.

[13] H. Zhang, H. Lim, V. Leis, D. G. Andersen, M. Kaminsky, K. Keeton, and
A. Pavlo. SuRF: Practical range query filtering with fast succinct tries. In Proc.
of SIGMOD, pages 323–336. ACM, 2018.

394


	The Case for Hybrid Succinct Data StructuresChristoph Anneser, Andreas Kipf, Harald Lang, Thomas Neumann, Alfons Kemper

