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ABSTRACT
The importance of incorporating ethics and legal compliance
into machine-assisted decision-making is broadly recognized.
Further, several lines of recent work have argued that critical
opportunities for improving data quality and representativeness,
controlling for bias, and allowing humans to oversee and impact
computational processes are missed if we do not consider the
lifecycle stages upstream from model training and deployment.
Yet, very little has been done to date to provide system-level sup-
port to data scientists who wish to develop responsible machine
learning methods. We aim to fill this gap and present FairPrep,
a design and evaluation framework for fairness-enhancing in-
terventions, which helps data scientists follow best practices in
ML experimentation. We identify shortcomings in existing em-
pirical studies for analyzing fairness-enhancing interventions
and show how FairPrep can be used to measure their impact.
Our results suggest that the high variability of the outcomes of
fairness-enhancing interventions observed in previous studies is
often an artifact of a lack of hyperparameter tuning, and that the
choice of a data cleaning method can impact the effectiveness of
fairness-enhancing interventions.

1 INTRODUCTION
While the importance of incorporating responsibility — ethics
and legal compliance — into machine-assisted decision-making
is broadly recognized, much of current research in fairness, ac-
countability, and transparency focuses on the last mile of data
analysis — on model training and deployment. Several lines of
recent work argue that critical opportunities for improving data
quality and representativeness, controlling for bias, and allowing
humans to oversee and influence the process are missed if we do
not consider earlier lifecyle stages [5, 9, 10, 15]. Yet, very little
has been done to date to provide system-level support for data
scientists who wish to develop and evaluate responsible machine
learning methods. In this paper we aim to fill this gap.

We build on the efforts of Friedler et al. [4] and Bellamy et
al. [1], and develop a generalizable framework for evaluating
fairness-enhancing interventions called FairPrep. FairPrep im-
plements a modular data lifecycle, enables the re-use of existing
implementations of fairness metrics and interventions, and the
integration of custom feature transformations and data cleaning
operations from real world use cases. Our framework currently
focuses on data cleaning (including different methods for data
imputation), and model selection and validation (including hyper-
parameter tuning), and can be extended to accommodate earlier
lifecycle stages, such as data integration and curation.
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FairPrep by example. Consider Ann, a data scientist at an on-
line retail company who wishes to develop a classifier for de-
ciding which payment options to offer to customers. Based on
her experience, Ann decides to include customer self-reported
demographic data together with their purchase histories. Follow-
ing her company’s best practices, Ann will start by splitting her
dataset into training, validation, and test sets. Ann will then use
pandas, scikit-learn, and the accompanying data transformers to
explore the data and implement data preprocessing, model selec-
tion, tuning, and validation. She will identify missing values, and
fill these in using a default interpolation method in scikit-learn,
replacing missing values with the most frequent value for that
feature. Finally, following the accepted best practices at her com-
pany, Ann implements model selection and tuning. She identifies
several classifiers appropriate for her task, and then tunes hyper-
parameters of each classifier using k-fold cross-validation. As a
result of this step, Ann selects a classifier that shows acceptable
accuracy, while also exhibiting sufficiently low variance.

No fairness issues were explicitly surfaced in Ann’s workflow
up to this point. This changes when Ann considers the accuracy
of the classifier more closely, and observes a disparity: the accu-
racy is lower for middle-aged women, and for female customers
who did not specify their age as part of their self-reported de-
mographic profile. Ann goes back to data analysis and observes
that the value of the attribute age is missing far more frequently
for female users than for male users. Further, she compares age
distributions by gender, and notices differences starting from
the mid-thirties. Ann hypothesizes that age is an important clas-
sification feature, revisits the data cleaning step, and selects a
state-of-the-art data imputation method such as datawig [2] to
fill in age (and other missing values) in customer demographics.

Having adjusted data preprocessing to reduce error rate dis-
parities, Ann is now faced with several related challenges:
• How should the data processing pipeline be extended to incor-
porate additional fairness-specific evaluation metrics?

• How can the effects of fairness-enhancing interventions be quan-
tified and judiciously validated? These interventions may range
from an improved data cleaning method that helps reduce vari-
ance in the outcomes for a demographic group, to a fairness-
aware classifier, and they may be incorporated at different
pipeline stages.

• How does one continue to follow best practices for ML evalu-
ation when incorporating fairness considerations into these
pipelines? For example, how does Ann ensure an appropri-
ate level of isolation of the test set, and how does she tune
hyperparameters in light of additional objectives?
To address these challenges, Ann will turn to existing develop-

ment and evaluation frameworks: that by Friedler et al. [4] and
IBM’s AIF360 [1]. While these frameworks are certainly a good
starting point, they will unfortunately fall short of meeting Ann’s
needs because they (1) are designed around a small number of
academic datasets and use cases, (2) lack the flexibility to inte-
grate additional data preprocessing steps that are a crucial part
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Figure 1: Data life cycle in FairPrep, designed to enforce isolation of test data, and to allow for customization through
user-provided implementations of different components. An evaluation run consists of three different phases: (1) Learn
different models, and their corresponding data transformations, on the training set; (2) Compute performance / accuracy-
related metrics of the model on the validation set, and allow the user to select the ‘best’ model according to their setup;
(3) Compute predictions and metrics for the user-selected best model on the held-out test set.

of existing machine learning pipelines, and (3) are not designed
to enforce best practices.

This paper makes the following contributions:

• We discuss shortcomings and violations of sound experimen-
tation practices in existing empirical studies and software for
analyzing fairness-enhancing interventions (Section 2).

• We propose FairPrep, a design and evaluation framework that
promotes data to a first-class citizen in fairness-related stud-
ies (Section 3).

• We demonstrate how FairPrep can be applied to illustrate the
impact of violations of best practices of ML experimentation,
and how it enables the inclusion of incomplete data into studies,
which is not supported by existing frameworks (Section 4).

In what follows, we briefly describe these contributions, see
our technical report for additional information [14]. FairPrep is
open-sourced at https://github.com/DataResponsibly/FairPrep.

2 SHORTCOMINGS OF PREVIOUS WORK
We inspect the code base of an existing study [4] and of an
evaluation framework [1] for fairness-enhancing interventions,
and identify a set of shortcomings and violations of best practices
that potentially invalidate some the findings of these studies.
Insufficient isolation of held-out test data. A major require-
ment for the evaluation of ML algorithms is to simulate real world
scenarios as closely as possible. In the real world, we train our
model (and select its hyperparameters) on observed data from the
past. This model is later used to make predictions for unseen tar-
get data for which the ground truth is unknown. To emulate this
real-world deployment scenario, we evaluate the trained model
on a test set that was randomly sampled from observed historical
data. It is crucial that this test set be completely isolated from the
process of model selection, which, consequently, is only allowed
to use the training data (the remaining, disjunct observed histor-
ical data). Unfortunately, we encountered violations of the test
set isolation requirement in the existing benchmarking frame-
work by Friedler at al. [4], bringing into question the reliability
of reported study results. Further, we found that the architecture
of the IBM AIF360 toolkit [1] does not support data isolation best
practices for feature transformation.

Hyperparameter selection on the test set. Grid search for hy-
perparameters1 of fairness-enhancing models and interventions
in [4] computes metrics for all hyperparameter candidates on the
test set, and returns the candidate that gave the best performance.
This strongly violates the isolation requirement. Instead, an eval-
uation procedure should maintain an additional validation set to
select hyperparameters, and only evaluate prediction quality of
the resulting single best hyperparameter candidate on the test
set, to measure how well the model generalizes on unseen data.
Lack of hyperparameter tuning for baseline algorithms.
We additionally found that the study by Friedler et al. [4] did not
tune the hyperparameters of the baseline algorithms2 for which
pre-processing and post-processing interventions are applied,
even though they tuned the hyperparameters of the fairness
interventions. This is problematic because there is no guarantee
that the baseline algorithm will converge to a good solution with
the default parameters. Friedler et al. [4] found a high variability
of the fairness and accuracy outcomes with respect to different
train/test splits, which could be an artifact of the described lack
of hyperparameter optimisation.
Lack of feature scaling. We observed that both existing frame-
works [1, 4] do not normalise the numeric features of the input
data, but keep them on their original scale. While some ML mod-
els such as decision trees are insensitive to feature scaling, many
other algorithm components, such has the L1 and L2 regularizers
of linear models, implicitly rely on standardized features.
Removal of records with missing values. Another point of
critique is that the study of Friedler et al. [4] ignored records
with missing values (by removing them before running experi-
ments), which means that the study’s findings do not necessarily
generalize to data with quality issues. Thereby, existing frame-
works are unable to investigate the effects of fairness enhancing
interventions on records with missing values, which could be es-
pecially important for cases where a protected group has a higher
likelihood of encountering missing values in their data [8].

1https://github.com/algofairness/fairness-comparison/blob/
4e7341929ba9cc98743773169cd3284f4b0cf4bc/fairness/algorithms/
ParamGridSearch.py#L41
2https://github.com/algofairness/fairness-comparison/tree/
35fb53f7cc7954668eeee28eac5fb20faf89b3d8/fairness/algorithms/baseline
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Figure 2: Impact of hyperparameter tuning on the accuracy and fairnessmetrics of logistic regressionmodels (in combina-
tion with various preprocessing and postprocessing interventions) on the germancredit dataset. Hyperparameter tuning
(red dots) often results in higher accuracy and reduced variance of the fairness outcome compared to no tuning (gray dots).

3 FRAMEWORK DESIGN
The identified shortcomings motivate us to propose FairPrep, an
evaluation and experimentation framework.
Design principles. We implement FairPrep on top of scikit-
learn [11] and AIF360 [1], and design it based on two principles:
(i) Data isolation — to avoid target leakage, user code should only
interact with the training set, and never access the held-out test
set. User code can train models or fit feature transformers on the
training data, which will be applied by the framework to the test
set later on. The framework should furthermore especially take
care of data with quality problems. For example, it should allow
experimenters to quantify the effects of their code on records
with missing values by computing metrics and statistics sepa-
rately for these records. (ii) Explicit modeling of the data lifecycle
— the evaluation framework defines an explicit, standardized data
lifecycle that applies a sequence of data transformations and
model training in a particular, predefined order. Users influence
and define the lifecycle by configuring and implementing particu-
lar components. At the same time, the framework should support
users in applying best practices from ML experimentation.
Data lifecycle. Figure 1 illustrates the data lifecycle during the
execution of a run of FairPrep: 1○ Model selection on the training
set and validation set: we train different models on the training
data, where we apply the following consecutive steps: (i) resam-
pling of training data (e.g., bootstrapping or balancing, optional);
(ii) treatment of records with missing values (either removal or
imputation); (iii) feature transformation (e.g., scaling of numeric
values, one-hot encoding of categorical values); (iv) potential
application of a preprocessing intervention; (v) model training
using grid search; (vi) computation of predictions on the train
and validation set; (vii) potential application of postprocessing
intervention to predictions from train and validation set. 2○ User-
defined choice of the best model: Users can choose between the
explored models based on accuracy-related and fairness-related
metrics computed on the validation set, trading these off as ap-
propriate in their context. 3○ Application of the best model on
the test set: The user-selected best model (and its corresponding
data transformations) are finally applied to the test set, and the
resulting accuracy of fairness are reported by FairPrep.

4 EXPERIMENTAL EVALUATION
We now demonstrate how FairPrep can be used to showcase
one of the shortcomings from Section 2, and how it enables

experimentation on incomplete data. For all experiments, data is
randomly split into 70% training, 10% validation, and 20% test.
Impact of hyperparameter tuning on the variability of ac-
curacy and fairness. In the first experiment, we aim to investi-
gate the effect of the lack of hyperparameter tuning of baseline
models during experimentation (as discussed in Section 2).

For consistencywith Friedler et al. [4], we use the germancredit
dataset3, which contains 20 demographic and financial attributes
of 1000 individuals, including the sensitive attribute sex. The task
is to predict each individual’s credit risk. We use two baseline
models (logistic regression and decision tree) in two different
variants each: (i) without hyperparameter tuning, where we just
use the default hyperparameters of the baseline model; (ii) with
hyperparameter tuning, where we apply grid search (over 3 reg-
ularizers and 4 learning rates for logistic regression; over 2 split
criteria, 3 depth params, 4 min samples per leaf params, 3 min
samples per split params for the decision tree) and five-fold cross
validation on the training data. We apply three different fairness-
enhancing interventions that preprocess the data: ‘disparate im-
pact remover’ (‘di-remover’ in the plots) [3] with repair levels
0.5 and 1.0, and ‘reweighing’ [6]. Additionally, we experiment
with two fairness-enhancing interventions that post-process the
predictions: ‘reject option classification’ [7] and ‘calibrated equal
odds’ [12]. We use 16 different random seeds and execute 1,344
runs in total. We report metrics computed from predictions on
the held-out test set.
Results. We plot the results of this experiment in Figure 2, where
we show the resulting accuracy and several fairness related mea-
sures4 between the privileged and unprivileged groups, includ-
ing disparate impact (DI), the difference in false negative rates
(FNRD), and the difference in false positive rates (FPRD). The red
dots denote the outcome when we apply hyperparameter tuning
to the baseline model, while the gray dots denote the outcome
using the default model parameters, without tuning. We observe
a large number of cases where the tuned variant results in both a
higher accuracy and a lower variance in the fairness outcome. Ex-
amples are (i) accuracy and disparate impact for the ‘di-remover’
and ‘reweighing’ interventions in Figure 2(a), (ii) accuracy and
false negative rate difference for ‘di-remover’ in Figure 2(b); and
(iii) accuracy and false positive rate difference for ‘di-remover’
in Figure 2(c). We obtained similar results for the decision tree
model and omit the corresponding plots due to lack of space.

3https://archive.ics.uci.edu/ml/support/Statlog+(German+Credit+Data)
4We plot these measures regardless of whether the intervention optimizes for them.

397



Our results indicate that the high variability of the fairness
and accuracy outcomes with respect to different train/test splits
observed by Friedler et al. [4] may be an artifact of the lack of
hyperparameter tuning of the baseline models in these studies.
Enabling the inclusion of incomplete data. Next, we show-
case how FairPrep can be used to quantify the effect of including
records with missing values into an experimental study. These
records are commonly filtered out in other studies and toolkits,
as discussed in Section 2.

We use the adult dataset5 for this experiment, with a total
of 32,561 instances and 14 attributes, including the sensitive
attributes race and sex, and 2,399 instances with missing values.
The task is to predict whether an individual earns more or less
than $50, 000 per year. Fairness evaluation is conducted between
the privileged group of white individuals (85% of records) and the
underprivileged group of non-white individuals (15% of records).

Of the 14 attributes, three have missing values — workclass,
occupation, and native-country. Based on our analysis, miss-
ing values do not occur at random, as the records with missing
values exhibit very different statistics than the complete records.
For example, the positive class label (high income) is associ-
ated with 24% of the complete records, but with only 14% of
the records with missing values. Additionally, married individ-
uals are in the vast majority in the complete records, while the
most frequent marital-status among the incomplete records
is never-married. Furthermore, the records with missing values
from the privileged group are very different from the records
with missing values from the underprivileged group. For exam-
ple, the attribute native-country is missing four times more
frequently for non-white individuals than for white individuals.
Among the incomplete privileged records, 15% are associated
with a high income, the second largest age group consists of 60 to
70 year-olds, and the majority of the individuals is married. For
the incomplete records from the underprivileged group, however,
only 10.6% have a high income, there are very few individuals
over 60, and the majority of the individuals is unmarried.

We use logistic regression as the baseline learner, with hyper-
parameter tuning analogous to previous experiments. As before,
we apply two fairness enhancing interventions that preprocess
the data: ‘disparate impact remover’ [3] and ‘reweighing’ [7]. We
use three strategies to treat missing values: (i) complete case
analysis, removing incomplete records; (ii) retain all records
and impute missing values with ‘mode imputation’6 (replace a
missing value with the most frequent value for that feature);
(iii) retain all records and apply model-based imputation with
datawig [2]. We execute 530 runs and report metrics computed
on the held-out test set.
Results. We investigate the classification accuracy for complete
and incomplete records, under imputationwithmode and datawig.
First, we observe that records with imputed values achieve high
accuracy. This is a significant result, since these records could
not have been classified at all before imputation! Interestingly,
we observe higher accuracy for records with missing values com-
pared to the complete records. Based on our understanding of
the data, we attribute this to the higher fraction of (easier to clas-
sify) negative examples among the incomplete records. Further,
we do not observe a significant difference in accuracy between
mode imputation and datawig. We attribute this to the skewed
distribution of the attributes to impute — a favorable setting for

5https://archive.ics.uci.edu/ml/datasets/adult
6https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer

mode imputation. Because datawig does no worse than mode,
and is expected to perform better in general [2], we only present
results for datawig-based imputation in the final experiment.

We compute the accuracy and disparate impact of complete
case analysis (e.g., the removal of incomplete records) versus the
inclusion of incomplete records with datawig imputation. We
observe a minimally higher accuracy in the case of including
incomplete records, but in general find no significant positive or
negative impact on disparate impact. Taken together, the results
paint an encouraging picture: Imputation allows us to classify
records with missing values, and do so accurately, and it does
not degrade performance, either in terms of accuracy or in terms
of fairness, for the complete records.

5 CONCLUSION
We identified shortcomings in existing empirical studies on fairness-
enhancing interventions. Subsequently, we presented the design
of our evaluation framework FairPrep. This framework empow-
ers data scientists to conduct experiments on fairness-enhancing
interventions with low effort, and at the same time enforces ma-
chine learning best practices. We demonstrated how FairPrep can
be used to measure the impact of a lack of hyperparameter tun-
ing, and how it enables the inclusion of incomplete data. We aim
to extend FairPrep by integrating additional fairness-enhancing
interventions [13], datasets, preprocessing techniques, and fea-
ture transformations. Additionally, we intend to extend its scope
to scenarios beyond binary classification, and introduce human-
in-the-loop elements by providing visualisations and allowing
end-users to control experiments with low effort.

This paper is supplemented by a technical report [14]. FairPrep
is open-sourced at https://github.com/DataResponsibly/FairPrep.
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