
Elastic scaling in VectorH
Industrial Paper

Steffen Kläbe
TU Ilmenau, Germany

steffen.klaebe@tu-ilmenau.de

Kai-Uwe Sattler
TU Ilmenau, Germany
kus@tu-ilmenau.de

Stephan Baumann
Actian Germany GmbH

stephan.baumann@actian.com

Michael Rink
Actian Germany GmbH
michael.rink@actian.com

ABSTRACT

Cloud infrastructures allow to dynamically adapt to work-
load changes by provisioning additional resources or de-
provisioning resources to reduce costs. This offers also
opportunities for scalable distributed data management.
However, elastic scaling in databases requires to migrate
or even repartition data. In this work, we present an ap-
proach implemented in Actian’s MPP solution VectorH
that speeds up the elastic resizing process by minimizing
partition reassignments while still achieving load balancing.
Moreover, we describe a buffer matching and pre-filling
technique to further increase performance after the resize
step. The experimental evaluation shows that our solution
significantly outperforms the non-elastic way of scaling
using a system restart by a factor of 2 up to 4 and reduces
downtimes during resizing to less than one minute.

1 INTRODUCTION

Cloud computing gained extraordinary importance over
the past several years with the advent of enabling technolo-
gies like distributed systems, virtualization or fast network.
While consumers moved their business applications to the
cloud environment, important technology companies like
Amazon, Google or Microsoft directed their focus towards
cloud technologies, competing with each other for the lead-
ership position in this promising new market. One of the
decisive properties for the success of cloud computing is
elasticity, providing users with flexibility to meet require-
ment changes in the fast moving technology world we live in.
In the context of the cloud environment, elasticity describes
a system’s ability to adapt to changes in user demands and
can be achieved in every system layer, e.g. storage, network
or computing power. Therefore, developing software that is
optimized for the cloud environment requires the software
to support elastic changes in the underlying environment.

Actian Avalanche is the Software as a Service version of
Actian VectorH [4], a massively parallel processing (MPP)
solution for data analytics. The software is deployed in
public cloud environments like Amazon web services (AWS)
or Microsoft Azure, which both offer an elastic environment.
As the VectorH MPP solution was originally designed to
run on a static cluster, it does not exploit the opportunities
provided by those environments. Furthermore, the currently

© 2020 Copyright held by the owner/author(s). Published in Pro-
ceedings of the 23rd International Conference on Extending Database
Technology (EDBT), March 30-April 2, 2020, ISBN 978-3-89318-
083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0.

implemented partition management is not designed to cope
with non-static clusters and needs to be overhauled.

As the cloud environment offers elasticity, the main goal
is to make VectorH able to utilize the provided elasticity
of computing and storage resources. For this purpose, we
focus on three major goals:

∙ Develop an elastic resize feature: Nodes need
to be efficiently added or removed from a VectorH
cluster during the system uptime, avoiding the draw-
backs of a full restart. This is the key feature to
enable elastic scaling.

∙ Provide a partition strategy applicable for
the cloud environment: Partitioning is the key
concept of VectorH to distribute work among nodes.
As scaling the system becomes a frequent operation
in the elastic environment, the partition strategy has
to support elastic scaling by minimizing partition re-
assignments to nodes while providing load balancing.

∙ Smoothen the performance after a cluster re-
size: Although the partition strategy in intended to
minimize partition reassignments, each cluster resize
operation involves changes in data responsibilities.
These changes should be transparent to the user
by providing the full system performance once the
scaling process finished.

The remainder of this paper is organized as follows. We
give an overview over related work in Section 2, including
a discussion of commercial products available on the mar-
ket and how they provide elasticity. Section 3 provides an
overview over the basic concepts of VectorH, before describ-
ing the design of the elastic scaling feature in Section 4.
We compare different approaches for partition manage-
ment and present the implemented approach in Section 5.
Based on experiments, we describe the design of the buffer
matching and filling mechanism in Section 6, which is an
optimization on top of elastic scaling. Finally, we evaluate
our solution in several experiments in Section 7, before
concluding and giving an outlook in Section 8.

2 RELATED WORK

Achieving elasticity for cloud database systems is solved in
different ways in the research community. ElasTraS [6] as
an example is explicitly designed for the cloud environment
and supports elasticity by the separation of storage and
compute resources. The system distinguishes between high
level transaction managers (HTM) and owning transaction
managers (OTM). While HTMs handle user connections
and execute queries using their local caches, OTMs are

Industry and Applications Paper

 

 

Series ISSN: 2367-2005 498 10.5441/002/edbt.2020.61

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.61


responsible for the actual data access. Depending on the cur-
rent load, both HTM and OTM can be scaled independently
and tasks are distributed among all running managers. As
a different approach, Albatross [7] uses virtualization and
live migration of databases to provide elasticity. The sys-
tem aims at multi-tenant databases, which often face the
problem of efficiently migrating single tenants instead of
the whole system. To accelerate migration performance
Albatross creates a database snapshot, which is placed in a
network storage, and only migrates caches and active trans-
action states to a newly provisioned system. Afterwards,
the system is switched using an atomic handover operation.
In addition to elasticity, the system ensures serializability
and correctness in failure cases. The experiments show
that this approach does not abort any active transactions,
harms query latency only in a negligible way and makes the
database unavailable only for a small time window of about
300ms. A similar concept is used by ShuttleDB [1]. In con-
trast to Albatross, ShuttleDB can be seen as a middleware
to make an arbitrary database management system elastic.
It uses virtualization techniques to be transparent from the
actual database instance and therefore works with common
database systems without changes in their engine. On top
of the live migration concept for single tenants, ShuttleDB
offers automated elasticity. The system monitors query
latencies of database tenants, automatically chooses ten-
ants to scale and migrates them to another instance after
deciding for a suitable migration strategy.

While ElasTraS, Albatross and ShuttleDB are mainly
evolved from a cloud provider point of view, meaning max-
imizing utilization while fulfilling user demands, the King-
fisher system presented in [14] deals with elasticity from a
customer point of view. Exploiting cloud pricing models,
Kingfisher dynamically provisions virtual server capacity
while being cost-aware. Using monitoring and forecasting
of the query workload in combination with solving a linear
optimization problem, the system minimizes infrastructure
costs (e.g. cores, servers) and transition costs (time and
costs to change environment).

In the field of commercial systems, Snowflake [5] was
build from scratch for the cloud environment. It uses so
called micro-partitions of several MB size to automatically
partition and cluster data. Based on that, work distribu-
tion among nodes is realized using consistent hashing. In
combination with work stealing, this approach automati-
cally handles node failures as well as elastic scaling, while
also minimizing the reassignment of micro-partitions as a
property of the consistent hashing algorithm. As a second
example, Amazon Redshift [9] divides compute nodes into
the abstract concept of slices and assigns data to these
slices. For scaling, the system offers two possibilities. While
the “classic resize” deploys a new cluster in the background
and sets the system in a read-only mode for several hours,
the “elastic resize” reduces the downtime by saving a snap-
shot to the cloud file system, adding/removing nodes and
reassigning work by reshuffling the abstract slices between
nodes. This way, the downtime for the scaling process is
reduced to several minutes. Nevertheless, user queries are
on hold during the scaling. Third, Googles BigQuery relies
on the concept of overpartitioning to avoid repartitioning
in the elastic environment. In the case of scaling, tasks in
the Dremel execution engine [13] are resized and data is

read again from the storage layer, trusting in the speed
of Google’s Jupiter network technology and the Colossus
storage system.

3 VECTORH OVERVIEW

Actian VectorH [4] is the scale-out version of the Vector-
wise/X100 system [3] running on Hadoop clusters. It offers
high and scalable query performance by exploiting oppor-
tunities of modern CPUs (e.g. SIMD, caching) with its
vectorized execution engine. As a key for parallel process-
ing of data the system uses hash partitioning and exploits
co-located foreign-key joins for efficient node-local join
processing, while partitions are assigned to nodes using a
round-robin assignment. Furthermore, it reduces I/O costs
by advanced compression methods and data skipping.

The Hadoop distributed file system (HDFS) is used as
the storage layer and provides fault tolerance and scalability.
Although HDFS is append-only, VectorH offers efficient
updates by using Positional Delta Trees [11]. In order to
efficiently read data from HDFS, the system is aware of
data locality and replication. Nevertheless, processing data
that is already in memory is another key to high query
performance. Therefore, VectorH allocates a configurable
bufferpool on system startup and maintains buffered blocks
over different buffer policies [15].

For data exchange among cluster nodes, VectorH uses
the Message Passing Interface (MPI) for implementing
exchange operators described in the Volcano model [8]. The
MPI library offers point-to-point communication as well as
collective communication and is based on the concept of
groups. Nodes within a group are identified using a rank
starting at 0 and they are able to communicate with each
other using a so called intra-communicator related to this
group. In addition to that, so called inter-communicators
allow communication among groups.

In order to scale a VectorH installation, the cluster con-
figuration has to be changed and the system has to perform
a restart, which has two major drawbacks. During the start
process the system replays the write-ahead log, which might
be a long-running operation depending on the log size. In
addition to that, allocated memory is freed during the
system shutdown. As a result, buffers are empty after a
restart and data needs to be read again from storage, which
impacts the performance of the first queries. Therefore, we
need a solution to scale a running MPI application without
performing a full restart. In addition to that, we want to
avoid a performance degradation after the scaling opera-
tion by adapting the buffer management using the buffer
matching and filling mechanism presented in Section 6 and
by being aware of this issue when assigning work to nodes
in a scaled environment.

Scaling can be invoked by the user to achieve one of the
following goals. Either performance should be increased
while keeping the data size fixed, or the system should be
enabled to handle larger data sizes (while keeping perfor-
mance constant). While the first goal refers to Amdahl’s
law, the second one is the use case for Gustafson’s law
(both in [10]). For VectorH, work distribution among clus-
ter nodes is realized using partitioning, where the optimal
number of partitions per table is approximately the total
number of parallel threads the cluster offers. Assuming a

499



homogeneous cluster, this is equal to the number of nodes
multiplied with the number of physical cores per node.
In order to support both mentioned scaling cases while
avoiding an expensive repartitioning, we use the concept
of overpartitioning, initially splitting tables into more par-
titions than necessary for the initial cluster configuration.
The chosen number of partitions is crucial in terms of per-
formance and the ability to scale the cluster size. Figure 1
shows the runtime of the TPC-H [2] query set on scale
factor 1000 GB as a function of the number of partitions.
The experiments were made on a cluster of 4 to 6 nodes
with 24 cores each, providing a parallelism of 96 to 144
threads. First, the results show that increasing the cluster
size while keeping the data size constant can lead to a per-
formance benefit. Second, one can observe that increasing
the number of partitions above the optimal partitioning
of one partition per thread comes with an increasing per-
formance penalty, which is caused by the introduction of
an Union operator on top of table scans. Furthermore, in-
creasing the number of partitions heavily impacts update
performance, as update operations have to be performed on
more fine-grained partitions. As a consequence, the number
of partitions should not be chosen too large. Third, one can
observe that VectorH is able to handle underpartitioning
to a certain degree by performing node-local splits dur-
ing table scans, achieving the assignment of one partition
per thread. However, this resplitting harms node-local join
processing and is therefore not a desired behaviour.

0 100 200 300 400 500 600 700 800 900 1,000
0

20

40

60

80

100

120

140

Number of partitions

R
u
n
ti
m
e
T
P
C
-H

S
F
10
00

[s
]

Queries 4 nodes
Queries 6 nodes
Updates 4 Nodes

Figure 1: Dependency of Partitioning on TPC-H
SF1000 runtime

4 ELASTIC SCALING

This section presents the design and implementation a
dynamic cluster resize functionality for VectorH. With this
feature we want to face the problem of scaling VectorH and
solve the first goal stated in Section 1. Two new functions,
add nodes and remove nodes, were implemented using the
VectorH syscall functionality, allowing to issue commands
against the system without forming SQL queries.

The new cluster resize functionality exploits the op-
portunities of the MPI group and communicator manage-
ment. The basic approach of adding nodes using MPI
routines is illustrated in Figure 2. Starting from an exist-
ing group of current nodes with an intra-communicator
(A), a new group of processes is spawned by starting the
application on the newly provisioned cluster nodes us-
ing the MPI COMM SPAWN routine. All nodes of the
new process group are able to communicate with each

other using their own intra-communicator (B) and with
the old group of nodes using the inter-communicator (C)
returned by the MPI routine. In order to abstract from
these different types of communication in a second step,
both groups form a new intra-communicator (D) using the
MPI INTERCOMM MERGE routine and replace group
communicators (A), (B) and (C). After new nodes are
added in the add nodes call, the master node has to broad-
cast the current partition mappings as described in Sec-
tion 5 in order to provide the new nodes with the correct
initial partition assignments. Afterwards the current nodes
have to follow the new nodes’ startup, as there are various
synchronization points within the startup procedure. To
simulate a collective start of all servers, the current servers
have to perform all of these synchronizations to make the
added servers finish their initialization, before performing
the buffer matching mechanism described in Section 6. The
cluster resize functionality has to be compatible with the
following optimization made in VectorH. In order to re-
duce memory consumption, the creation of storage objects
and minmax indexes is skipped for partitions a node is
not responsible for. After adding nodes, this responsibil-
ity assignment changes as some partitions of the current
nodes get assigned to the newly added ones. As a result,
current nodes hold structures for partitions they are not
responsible for anymore. Each node checks for these kind
of unused structures by iterating over all tables in their cat-
alogs, dropping information and freeing memory whenever
possible. This could also be done in a lazy way by checking
for unused information within a partition responsibility
check during query execution. But as these checks are very
frequent operations and are called multiple times within
each query, the decision was made to cleanup the unused
structures directly as part of the add nodes operation.

Removing nodes reverses the presented mechanism. In
the first step the nodes are divided into two distinct groups
S and R with corresponding intra-communicators using
a MPI COMM SPLIT routine. While nodes of group S
perform a collective shutdown as a second step, the nodes
of group R form the new cluster. Passing a list of hostnames
to the function call, each node checks whether it is included
in S and should terminate or not. It is currently not allowed
to terminate the master node, so remove nodes returns an
error in this case. The remaining nodes (group R) now
update their partition mappings as described in Section 5.
Removing nodes assigns more partitions to the remaining
nodes, and, as the nodes were not responsible for these
partitions before, the creation of storage structures and
minmax indexes was skipped. In order to reconstruct the
missing information, an adapted replay of the write ahead
log is performed. Within this replay, all log actions are
skipped except those related to storage and minmax indexes
for tables the node is now responsible for and was not
responsible for before. This information is provided by the
partition manager.

With the design of the elastic cluster resize feature we
achieved the possibility to scale the VectorH cluster without
restarting the existing nodes. We therefore ensured that
the scaled system state is similar to the state before the
scaling in terms of communication, metadata and catalog
state. Furthermore, we automatically achieve support for
updates that are resident in in-memory PDT structures

500



Figure 2: Schematic overview of cluster resize

mentioned in Section 3, as the log replay that is included
in both add nodes and remove nodes also covers PDT log
actions. As a result, the process reconstructs the update
information needed to ensure data consistency.

Our implementation relies on the following assumption.
For the add nodes functionality binaries, configuration files
and user data are accessible from the new nodes in the
same way (especially using the same directory paths) as
for the already running nodes. Triggering the operation
over a front-end, e.g., a web-based management tool, would
invoke starting the new nodes (dependent on the cloud
service provider) and synchronizing necessary data before
the add nodes operation is started. A functionality for
synchronizing the VectorH installation directory already
exists and is used for cluster deployment, so this assumption
is no restriction.

Besides assumptions the presented implementation comes
with some limitations. First, the resize functionality must
be issued in a separate session with no concurrent sessions.
The system is able to block/hold incoming session requests
when a scaling request is made. Second, the hosts to be re-
moved are restricted to be the ones with the highest ranks.
As all nodes except the master node are treated equally and
the user does not call this function directly but through a
frontend only providing the cluster size he wants to reach,
the frontend can choose the nodes to remove as the ones
that where added most recently. This ensures that only
the highest ranks are selected. In case this is considered as
too restrictive, one could extend the algorithm such that it
first rearranges the nodes before the resize operation and
assigns ranks in a way that fulfills the restriction. Third,
it is currently not allowed to remove the master node as
worker nodes are not able to replace a missing master node
(which also holds for master node failure).

5 PARTITION MANAGEMENT

In this section, we present a partition management ap-
proach that is suitable for the elastic cloud environment,
which corresponds to the second goal stated in Section 1.

5.1 Partition assignment approaches

We start by comparing basic approaches for partition as-
signment. The comparison is based on the following require-
ments, prioritized from most important to least important:

(1) Load balancing: Assigning an equal number of par-
titions to each node is crucial to achieve an optimal
query performance. As partitions are already built
using the partitioning method, the assignment strat-
egy can only affect the number of partitions per node,
not the size of each partition.

(2) Lookup time: The mapping 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 → 𝑛𝑜𝑑𝑒 is
evaluated numerous times within each query and
should therefore be an efficient operation.

(3) Update time: As resizing the cluster changes par-
tition assignments, the structures of the partition
assignment should be updatable in an efficient way.

Besides these main objectives, the partition assignment
strategies must fulfill the following side conditions for per-
formance reasons:

∙ Keep co-locality of foreign-key related tables
∙ Minimize the number of reassigned partitions on
cluster resize

Keeping the co-locality of related tables is a key for achiev-
ing optimal query performance by exploiting node-local
joins and is therefore an important demand. Reassigning
partitions has several effects and should therefore be min-
imized. First, it leads to storage access for reading the
partition, as the data is not present in the node’s buffer.
Second, nodes have to update their catalog information
when becoming responsible or loosing the responsibility for
a new partition, as described in Section 4.

We can state a lower bound for the minimum number of
partitions that have to be reassigned on cluster resize. Let
𝑑 be the total number of partitions for an arbitrary table
and we assume that partition assignment is balanced before
a resize operation. When adding 𝑛 nodes to an existing
cluster of 𝑛𝑜𝑙𝑑 nodes with 𝑛𝑛𝑒𝑤 = 𝑛𝑜𝑙𝑑 + 𝑛, it is clear that
every node has to be responsible for 𝑑

𝑛𝑛𝑒𝑤
partitions after

resizing to achieve load balancing. We assume that 𝑛𝑛𝑒𝑤 is
a divider of 𝑑 and if not, every node gets one additional
partition until the remaining partitions are assigned. As
every new node get’s 𝑑

𝑛𝑛𝑒𝑤
partitions, the minimum total

number of reassigned partitions is 𝑑
𝑛𝑛𝑒𝑤

· 𝑛. For removing

𝑛 nodes from an existing cluster of 𝑛𝑜𝑙𝑑 nodes it can be
easily seen that 𝑑

𝑛𝑜𝑙𝑑
· 𝑛 partitions have to be reassigned,

as every node was responsible for 𝑑
𝑛𝑜𝑙𝑑

partitions before

501



resizing. Overall we can state the lower bound of

reassigned partitions ≥ 𝑑

𝑛𝑚𝑎𝑥
· 𝑛

with 𝑛𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑛𝑛𝑒𝑤, 𝑛𝑜𝑙𝑑} for adding/removing 𝑛 nodes.
Round-robin assignment: Round-robin assignment

is the currently used assignment strategy in VectorH. It is
clear that this strategy provides load balancing and as it can
be evaluated using an arithmetic operation, has a very fast
lookup time while not needing additional data structures.
Nevertheless, with respect to the additional cluster resize
functionality, round-robin is one of the worst choices as it
reassigns nearly all partitions when not resizing the cluster
with a factor that is a power of two, as shown in Figure 3.
Doubling the number of nodes leads to a reassignment
of half of the partitions, which is basically the minimum
for achieving load balancing. But increasing the number
of nodes by a factor being an arbitrary number and not
being a power of two leads to a reassignment of nearly all
partitions. Therefore, this strategy is not applicable for the
cloud environment.

Figure 3: Round-robin partition assignment on
cluster resize

Consistent hashing: The requirement of minimizing
the number of reassignments on cluster resize directly leads
to the method of consistent hashing, which places elements
and buckets on a logical ring representing the set of hash
values produced by the hash function. In order to improve
load balancing, buckets can be replicated on the logical
ring. It is shown that removing/adding one hash bucket
leads to a reassignment of 𝑘

𝑛
keys, with 𝑘 being the total

number of keys and 𝑛 being the number of hash buckets [12].
With keys being partitions and hash buckets being nodes,
this is the lower bound of reassigned partitions we stated
before. If a node is removed, only the partitions assigned
to the removed node have to be reassigned and adding
a node leads to a reassignment of all partitions between
the added node and its last predecessor on the logical ring.
Consistent hashing can be implemented by holding a sorted
array or list of nodes, so a lookup operation to find a node
responsible for a partition takes time 𝑂(log(𝑛 · 𝑟)) with
𝑟 being the replication factor and using binary search on
that list. Updating the number of nodes leads to resorting
the list with a complexity of 𝑂(𝑛 · log(𝑛)), for example
using insertion sort for adding a few nodes or merge sort
for adding a sorted list of nodes. Holding the list consumes

memory in the size of 𝑂(𝑛 · 𝑟), which is independent from
the number of partitions.

Explicitly storing and maintaining the assignment
mapping: This approach tries to provide a minimal lookup
time and a best possible load balancing by explicitly main-
taining and storing the mapping [𝑑] → [𝑛] from the set of
partitions to the set of nodes for each possible partitioning
using a partition manager structure. The mapping can be
stored as an array with the size 𝑑, providing lookup time
𝑂(1). Tables with equal number of partitions 𝑑𝑖 build an
equivalence class 𝑖 ∈ 𝐸𝑞, so as a side effect, this guarantees
co-location of foreign-key related tables when assuming
them to have equal partition numbers (otherwise node-
local joins would not be possible anyway). Maintaining
the mapping explicitly ensures that the best possible load
balancing is achieved. As a drawback, this approach has a
quite high memory consumption of 𝑂(

∑︀
𝑖∈Eq 𝑑𝑖), which is

especially not independent from the number of partitions
and increases with the number of distinct numbers of par-
titions. Nevertheless, the number of different partitionings
and therefore the number of equivalent classes is typically
small in user scenarios.

Comparison: Table 1 compares the approaches of con-
sistent hashing and partition manager. The partition man-
ager approach outperforms consistent hashing in the most
important categories load balancing and lookup time, while
also minimizing partition reassignment. Assuming that the
number of different partitionings is quite small and hence
the number of equivalence classes is small, the time for
updating the structure and the memory consumption is
justifiable. As an example, a database consisting of 1000
tables sharing the same partitioning schema of 1000 parti-
tions would lead to a memory consumption of around 5KB
for 1000 4-byte-integer values and 1000 boolean values re-
garding the partition manager design shown in Section 5.2.
Even for 1000 different partitioning schemas with a max-
imum of 2000 partitions each we would get a few MB of
memory consumption. Therefore, the decision has been
made towards the partition manager approach.

5.2 Partition manager design

The partition manager structure, illustrated in Figure 4
maintains partition mapping objects for each equivalent
class, which consist of the number of partitions, a mapping
array and an is moved array, both of the size of the specific
number of partitions. Each position 𝑖 in mapping holds
the node ID of the node responsible for partition 𝑖. The
mappings are adapted during each cluster resize operation
to maintain load balancing. In addition to that, the boolean
is moved value at position 𝑖 indicates, whether the partition
was moved during the last cluster resize operation, which
is important to determine partitions to replay from the
log when removing nodes or to delete the storage objects
from when adding nodes. On top of the partition mapping
objects, the partition manager maintains a hash table of
partition mapping pointers to efficiently find the mapping
for a given number of partitions.

For implementing a partition assignment, two assump-
tions are stated. First, it is assumed that co-local partitions
have the same partition ID. This assumption is fulfilled by
the hash partitioning method, as tuples with same keys

502



Consistent hashing Partition manager

Load balancing Good, not guaranteed Best possible

Partition reassignment Minimized Minimized

Lookup time 𝑂(log(nodes · replication)) 𝑂(1)

Update Re-sort array Adapt every mapping
𝑂(equi classes · partitions)

Memory consumption 𝑂(nodes · replication) 𝑂(equi classes · partitions)
Table 1: Comparison of partition assignment strategies

Figure 4: Partition manager overview

(either primary or foreign keys) are mapped to the same
hash value, which is used as partition ID. Second, it is
assumed that tables with a foreign key relationship have
the same number of partitions specified. Having an unequal
number of partitions while using the currently implemented
hash partitioning violates the requirement of co-locality.
Especially, it is not ensured by the current hash function
that having a table 𝑇 with 𝑘 times the number of partitions
than it’s join partner 𝑆 results in a partitioning that maps
one partition of 𝑆 to exactly 𝑘 partitions of table 𝑇 .

Initialization:During server startup, the partition man-
ager structure is initialized to a global variable by creating
an empty hash table. When the partition manager gets
queried for a partition mapping that is not present in its
hash table, a partition mapping object for the queried
number of partitions is created and inserted into the hash
table using the number of partitions 𝑑 as key. The mapping
is initialized using a round-robin strategy, so for partition
ID 𝑖 we get 𝑚𝑎𝑝𝑝𝑖𝑛𝑔[𝑖] = 𝑖 mod 𝑑. The choice of this initial
strategy is arbitrary and could be replaced by any other
strategy that provides a balanced assignment for 𝑛 nodes.
The is moved array is initialized with FALSE at every
position. The described process has time complexity 𝑂(𝑑)
to initialize a single partition mapping.

Lookup: Knowing the structure of the partition man-
ager, the lookup implementation is straight forward by a
single hash table access and a single array access. Due to
the design, the lookup operation has complexity 𝑂(1).

Update: Whenever adding or removing nodes, all par-
tition mappings have to be adapted. Therefore, we iterate
over all entries in the partition manager’s hash table and
adapt every mapping using an algorithm divided into the
following steps:

(1) Compute the optimal load balancing for the new
cluster state by computing partitions per node and

a remainder if the number of nodes is not a divider
of the number of partitions.

(2) Compute a diffs array, with diffs[𝑖] indicating wether
node 𝑖 has to get additional partitions (positive en-
try) or get partitions removed (negative entry) to
achieve the computed load balancing. The sum over
all entries in the diffs array is 0, as the total number
of partitions does not change.

(3) Adapt the actual partition mapping by iterating
over the 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 array. If we find a partition whose
responsible node has a negative diffs entry, we move
the partition to a node with a positive diffs entry.

With step three being the dominant step in terms of run-
time, the algorithm runs in 𝑂(𝑑). As we adapt the mapping
of every equivalence class, the update operation has a total
runtime of 𝑂(

∑︀
𝑖∈Eq 𝑑𝑖).

Exchange: After new nodes are added to the system,
they check during startup whether they are added to an
existing cluster and if so, they prepare to receive the
current partition assignments. The current nodes trigger
this exchange functionality within the execution of the
add nodes query. The exchange operation is implemented
using MPI BCAST (broadcast), so it has to be performed
collectively. After broadcasting the number of mappings,
the number of partitions and the mapping array are broad-
casted for each partition mapping. This way it is ensured
that all nodes call the broadcast the same number of times.

As a result, the chosen approach minimizes the reassign-
ment of partitions in the case of scaling while providing
load balancing and efficient lookup and update functions.

6 BUFFER MATCHING AND
FILLING

We now motivate the problem of decreased performance
after a cluster resize operation and present the design
and the implementation of the buffer matching and filling
mechanism, solving the performance problem and therefore
being a solution to the third goal stated in Section 1.

For a brief intermediate evaluation of the cluster resize
functionality and the partition manager described in Sec-
tions 4 and 5, the TPC-H benchmark was run on scale
factor 300 using 8 of the 16 cluster nodes described in
Section 7. Afterwards, the remaining 8 nodes were added
and the benchmark was run again. Overall, it was observed
that queries are slower after adding nodes than before. As
an example, we pick query 1 of the benchmark, which is a
selection and aggregation query on the lineitem table. The
runtimes are shown in Figure 5. The query was run on 8
nodes with filled buffers (run 1) before adding 8 additional
nodes and running the query several times again (runs 2,

503



3, and 4). Doubling the number of resources, we would
expect a speedup up to factor 2, but the results clearly
show an increase in runtime for the first run after the resize
operation. However, the performance increases as expected
with more consecutive query runs.

1 2 3 4

0

2

4

6

Run

R
u
n
ti
m
e
T
P
C
-H

Q
u
er
y
1
[s
]

Figure 5: Runtime of TPC-H SF300 Query 1 in
consecutive runs with run 1 on 8 nodes and runs
2,3 and 4 on 16 nodes after a cluster resize

From a user perspective, this behavior is not satisfac-
tory, as he pays for extra resources without getting any
immediate benefit. The observed performance is a direct
consequence of the buffer management. Figure 6 shows the
qualitative performance (runtime and output cardinality)
of the scan operation of TPC-H query 1 for all threads on
all nodes. The right half of the plot, which covers the 8
nodes added by the cluster resize, shows a runtime that
is up to 5 times slower with respect to the left half of the
plot, which covers the 8 nodes that were already running
before the cluster resize. This is caused by filled buffers
of the old nodes, while the added nodes start with empty
buffers. In order to smoothen this runtime, we present the
buffer matching mechanism to fill the buffers of added
nodes during the cluster resize step. Doing so, we move
the overhead of filling the buffer from user queries to the
cluster resize operation, which is more justifiable to the
user, as the elapsed time between the user toggling a cluster
resize until finishing the resize also involves demanding new
cluster nodes from the cloud service provider, which is also
a potentially long-running operation and dependent on the
actual provider. General approaches for buffer pre-filling
must answer the following questions:

∙ Which data should be chosen to fill into the buffers?
∙ How is data brought to the buffers?

Especially the second question is important for the cloud
setup. As cloud storage systems offer lower bandwidth and
higher latencies than node-local storages, sending buffered
data between nodes is also worth considering next to read-
ing data from storage.

The chosen solution for this problem is our buffer match-
ing mechanism. In order to discuss the mechanism from
an abstract point of view, we identify a sender side and
a receiver side, dividing the set of nodes into two distinct
sets. Nodes of the sender side are characterized by losing
the responsibility of partitions and having blocks in their
buffer they are not responsible for anymore, while nodes of
the receiver side become responsible for new partitions and
do not have any buffered data for them. Note that because
of our partition manager design in Section 5, a node is

either a sender or a receiver. During data exchange, each
node of the sender side can possibly have a connection to
each node of the receiver side.

Block selection: The first step of buffer matching is to
identify for each node the set of blocks that needs to be sent
to other nodes, as well as each block’s specific destination.
First we get a list of all blocks currently resident in the
buffer memory sorted by importance. The importance of a
block is determined by the actually used buffer replacement
policy. In addition to that, we identify the destination of
the blocks by querying the partition manager described in
Section 5 to get the responsible node. Blocks that belong to
a partition for which the node remains responsible are not
sent and therefore dropped from the list. All other blocks
are appended to a list of blocks per receiver, so as the
result of the block selection step, each sender node holds a
(potentially empty) list of blocks for each receiver node. One
special case needs to be handled. Due to data distribution
or due to buffering blocks of only a few partitions caused
by selection predicates, it might occur that receiver nodes
are intended to receive more blocks than they can actually
fit into their buffers. The calculated cardinality difference
is balanced between all senders to this receiver node and
each sender is informed about the number of blocks to send
before starting to send data. As the block lists are sorted
by importance, the sender just drops the end of the list in
this case.

Data exchange: We now want to answer the question
how buffer data is brought to nodes. As reading data from
cloud storage might be slow compared to usual local disks or
network transfer, the decision was made towards explicitly
sending data to nodes over the network. The implemented
data exchange mechanism follows three basic steps:

(1) Exchange the number of blocks to transfer between
each sender and receiver node.

(2) Exchange block metadata.
(3) Exchange buffer content.

The first step is important to establish synchronization
between senders and receivers. Each node of the receiver
side has to know about the number of blocks to receive
from each node of the sender side. After the block selection
step, each sender node holds a list of blocks per receiver.
The length of these lists is shared with the respective re-
ceivers using MPI GATHER routines, called within a loop
over all added nodes. A receiver node with rank 𝑖 becomes
the receiver of the MPI GATHER call in exactly one loop
iteration. In this round, all other nodes send the length
of their list 𝑖, indicating the number of blocks to send to
node rank 𝑖. As a result, node 𝑖 has the complete informa-
tion about the number of blocks to receive after success
of loop iteration 𝑖. In the second step, we transfer the
blocks metadata (e.g., used bytes, columnID or the ID of
the commit creating the block) to the receiver nodes. It
is important to note that metadata and actual data of a
block cannot be transferred all-in-one using a single MPI
call by default, as metadata and actual data are not placed
in consecutive memory areas due to the VectorH buffer
management, which preallocates the whole buffer memory
during startup. Constructing an additional structure hold-
ing both metadata and buffer data would lead to copying
major parts of the buffer, which is not desirable. Sending

504



Figure 6: Qualitative TPC-H scan performance of query 1 for run 2

the metadata is important for two reasons. First, the re-
spective block can be searched in the receiver’s catalog.
VectorH uses a replicated catalog, so a each block is already
created on the receiver side. Second, the metadata contain
information about the buffer content, like the actual data
size or a flag to indicate wether data has been changed.
This information is created during data load, so it needs
to be sent as we do not load data from storage. Sending
the metadata arrays is realized using non-blocking MPI
point-to-point communication. This eliminates the need
for explicit synchronization in this step. After receiving the
metadata, each receiver performs catalog lookups to get
pointers to the block structures and demands memory in
the buffer memory for each block, before the blocks are
inserted into the buffer replacement policy. In the third
step, we transfer the actual buffer data. As the data for
blocks is not placed in consecutive memory areas, they
have to be sent one-by-one. Using non-blocking MPI com-
munication like in the second step would therefore lead
to 𝑘 communication calls per sender and receiver with 𝑘
being the number of blocks to transfer between sender
and receiver, making it difficult to handle for the MPI
environment when scaling the problem up. Therefore, we
use synchronous, blocking communication for this step. To
avoid deadlocks and reduce waiting time, we handle the
communication in a multi-threaded way. For each point-
to-point connection between a sender and a receiver node,
having a non-zero number of blocks to transfer, both sender
and receiver node open a separate thread running their
side of the communication, resulting in a communication
network. Each thread blocks until the respective counter-
part of the communication is called. Upon receiving buffer
data for one block, the data is copied to the buffer memory
of the receiver node.

Fault tolerance: The buffer matching mechanism is
an addition to the cluster resize functionality. The success
of the buffer matching step is not indispensable for the
success of the whole cluster resize operation, but should
not lead to a undefined state on the occurrence of errors.
Therefore, the mechanism is designed to be fault tolerant.
We distinguish between different times of error occurrence.
If an error is detected before the block metadata in the
catalog of a receiver is changed, we can simply perform
a collective abort, as no durable changes were done yet.
This is realized using a synchronization point between the
second and the third step. If an error occurs during data
exchange within third step, we have to ensure that the
system handles the block’s buffer content in the right way.
After receiving a single block’s data and copying it to the
buffer memory, we verify the correctness of the data using
an already existing magic number in the block’s data. This
magic number is a fixed constant which is used to discover
transmission failures. This mechanism could be further
improved using a checksum. If the verification succeeds,

the block is flagged to be in memory. If the verification
fails or an error occurs during communication, the current
block is flagged as “LOAD”, leading the system to not use
the buffer content before an IO-thread loads the data from
storage (and adjusts the metadata again). Furthermore, all
pending blocks that have not been transferred yet are also
flagged as “LOAD”. All other communication threads are
not affected and may succeed.

Integration: The described mechanism is integrated
into the add nodes and the remove nodes call. For adding
nodes, the sender side is formed by the current nodes,
as they lose responsibilities for partitions and may have
buffered data for them, while all newly added nodes form
the receiver side. During the system startup of the added
nodes, buffer matching is integrated after the partition
mapping exchange and the log replay, but before the server
is able to handle user connections. This way the server
already has the full catalog information. The current nodes
perform buffer matching after following the server startup
communication of the new nodes. For scaling the cluster
size down, the removed nodes form the sender side of the
buffer matching mechanism, while the remaining nodes
form the receiver side. In order to enable removed nodes to
determine the target of their buffered blocks, they update
their partition mappings according to Section 5. Afterwards,
they perform buffer matching while the remaining nodes
perform it during execution of the remove nodes call. In
order to isolate the buffer matching communication from
all other communication, a separate MPI communicator
is build, being only valid during the buffer matching step.
Finishing the buffer matching step, this communicator is
destroyed. To provide the user the possibility to toggle the
buffer matching mechanism on/off, an additional parameter
is introduced into the VectorH configuration API.

Optimizations: After describing the basic ideas behind
the buffer matching mechanism, we want to introduce two
additional optimizations to the concept: the deletion of un-
used blocks at the sender side and the use of an alternative
data exchange implementation. The strategies of the buffer
policies are designed to keep the most important elements
in the buffer by using priority queues. After performing
buffer matching, blocks a sender node is not responsible
for anymore may remain in its buffer queues. Due to the
behavior of the strategies, these blocks are displaced at
some time in the future. Nevertheless, a block may remain
a long time in the queues once it is categorized as very
important, depending on the actual displacement strat-
egy. As a consequence, this buffer page is useless for a
long time, blocking possibly important blocks from finding
their way into the buffer. Therefore, we explicitly drop sent
blocks from the buffer replacement policy on the sender
side. The third step of the buffer matching mechanism uses
blocking MPI calls to send the block’s data one-by-one,
as the buffered data of multiple blocks are not placed in

505



consecutive memory areas (in this case, one call pointing
to the start of the memory area would suffice). The MPI
environment can be configured to use several communica-
tion protocols and uses the Transmission Control Protocol
(TCP) in the VectorH integration. Therefore, each call to
send/receive a data block invokes communication setup,
as well as the common TCP slow start phase, which is
unnecessary overhead. As an optimization, we introduce a
second, socket-based data exchange implementation. Sim-
ilar to the described mechanism in the third step of the
data exchange step, each sender-receiver pair with non-zero
number of blocks to be transferred opens a thread on each
side. Instead of starting MPI communication, the nodes
establish a TCP stream socket connection. The receiver
node creates a socket, sends the socket address information
to the sender node using MPI and listens for an incoming
connection. The sender node connects to the socket and
sends data over the socket. As this single connection keeps
alive until all data is sent, the overhead of communication
establishment and slow start phase is reduced compared
to the MPI implementation. In order to provide the same
level of fault tolerance, each side of the socket checks the
socket status using select before sending/receiving data.
Furthermore, data blocks can be send in chunks, and only
after a full block is received, the receiver verifies the block.
Similarly to the fault tolerant behavior, blocks are flagged
on connection or communication errors.

7 EVALUATION

During the evaluation, we want to prove the superiority of
the implemented cluster resize feature over the inelastic way
of scaling. Furthermore, we want to show that the usage
of the buffer matching and filling mechanism improves
query performance after a cluster resize operation and is,
therefore, a useful extension. Due to expenditure reasons,
the evaluation was done on a private cluster of 16 nodes,
each with the following configuration:

∙ AMD Opteron Processor 3380 @2600MHz with 4
modules of 2 cores each

∙ 32 GB DDR3 RAM
∙ 3.5 TB disk space, distributed among 4 HDDs
∙ CentOS-7 64 Bit

The nodes are connected over a 1GBit/s ethernet connec-
tion and Hadoop 2.7.1 is installed on the cluster. Comparing
the hardware to resources available on Amazon Web Ser-
vices (AWS), this setup should be slower than all available
EC2 instances. Therefore, the measured runtimes in the
experiments can be seen as an upper bound and we expect
our implementation to perform better on any AWS clus-
ters with equal number of nodes. In addition, the TPC-H
benchmark [2] on scale factor 1000 GB provided test data
and test queries. This benchmark covers a well-understood
synthetical workload in order to evaluate and compare
data warehouse solutions with a dataset inspired by real
world applications. The large tables of the benchmark are
partitioned into 192 partitions, which is an overpartitioning
for the cluster of 16 nodes with 8 cores each.

Scaling performance: The first experiment evaluates
the performance of the implemented cluster resize feature.
For the investigation of the upscaling process we start with
a cluster of 4 nodes with filled buffers and vary the number

of added nodes, while we start with 16 nodes and vary the
number of removed nodes for the downscaling process. For
these experiments, we keep the size of the bufferpool at
10 GB and the block size at 1 MB. Figure 7 illustrates the
results of the experiment. One can observe that the runtime
for adding nodes without using buffer matching increases
in a linear way with the number of added nodes. The main
reason for this behavior is the collective startup of the nodes.
Starting more nodes at the same time increases the impact
of the various synchronization points within the startup
process. The buffer matching mechanism adds a nearly
constant overhead to the measured add nodes runtime. In
a more detailed consideration one can observe that the
buffer matching mechanism shows its minimum runtime
when adding 8 nodes. Adding more nodes also increases the
buffer matching data exchange parallelism (the number of
receiver nodes per sender node), so the minimum runtime
is expected to be at the number of physical cores, which
is 8 in the used hardware setup. The downscaling runtime
shows a slight increase when removing more nodes, which
is caused by the adapted log replay the remaining nodes
have to perform. Within this step, removing more nodes
leads to more log entries that have to be replayed in the
remaining nodes. The buffer matching mechanism was not
applied for the downscaling process, as buffers where totally
filled before scaling, so there was no buffer space left in
the remaining nodes to receive blocks from removed nodes.
Overall we can state that downscaling takes significantly
less time than upscaling, because the synchronization effort
for downscaling is lower. Once the nodes are split into
two groups within the remove nodes process, the group of
removed nodes can simply perform a shutdown.

2 4 6 8 10 12
0

20

40

60

Number of added/removed nodes

R
u
n
ti

m
e

in
se

co
n
d
s

Add nodesAdd nodes

Remove nodes

Buffer matching

Figure 7: Scaling performance for adding and re-
moving nodes

Scaled query performance: This experiment investi-
gates the impact of the cluster resize operations on query
performance. For this we repeatedly run a query while
changing the cluster size between runs. As the main im-
pact is expected to be within the scan operators, we use
a query scanning two columns of the lineitem table. In
order to fit the data into the buffer of the smallest cluster
configuration, we limit the number of tuples to 500 mil-
lion using a selection predicate, while setting the buffer

506



memory to 20 GB per node. This way we avoid I/O access
that would create an unintended bias in the measurements.
Moreover we minimize the network traffic by applying an
aggregation on each column, which is executed locally on
each partition and results in a single tuple that needs to
be send to the master node. Figures 8 and 9 show the
measured query runtimes. Regarding the case of upscaling,
we can observe that adding nodes accelerates the query
runtime as expected. However, the behavior varies between
different buffer matching configurations. With activated
buffer matching, query runtime drops and stays on the
same level for the respective query runs after cluster resize,
because the buffers already contain the needed data. On
the contrary, not using buffer matching leads to signifi-
cantly slower queries, especially for the first run after a
cluster resize. The reason for this behavior is that added
nodes have to read data from storage. In the following runs
the query performance improves as buffers of added nodes
fill. For the case of downscaling, we have to distinguish
between two use cases. On the one hand, the reason a user
triggers a downscale operation can be that the system is in
an overprovisioning state, so the system underutilizes the
provided hardware. In this case, removing server capacity
should not have an impact on the systems performance. For
VectorH we neglect this case as we aim to have more parti-
tions than nodes at every point in time. If this condition is
violated, a repartition operation is triggered by the system.
On the other hand, the user could invoke the downscaling
to save costs while accepting slower system performance,
e.g., when the expected load becomes less during specific
times of a day. This case is expressed by Figure 9. When
scaling down the cluster, we can observe a performance
degradation, again varying between buffer matching con-
figurations. Similar to the upscaling case, the runtime of
the first query run after cluster resize is significantly slower
when not using buffer matching, as remaining nodes become
responsible for data of removed nodes and have to read
it from storage. With activated buffer matching, data is
sent to the remaining nodes, leading to an immediately fast
runtime after resize. Overall, this experiment proves that
using the buffer matching mechanism during cluster resize
perceptibly increases query performance after resizing.

Buffer matching performance: In this experiment,
we want to evaluate the buffer matching performance for
both implemented data exchange mechanisms, using MPI
and using data streams over sockets. The two main pa-
rameters that have an impact on the buffer matching per-
formance are buffer size and block size. While the buffer
size affects the amount of data that is shipped during
the buffer matching data exchange, the block size affects
the granularity of shipped blocks and as a result also the
communication overhead. Trying to touch as much data
as possible, we use query 9 of the TPC-H benchmark for
this experiment, as it touches five of the 8 tables in the
benchmark and scans about seven billion tuples for the
used scale factor of 1000 GB.

The plot in Figure 10 shows the runtime of the buffer
matching mechanism as a function of the buffer size per
node for both data exchange implementations, using a con-
stant block size of 1 MB. For these measurements, we used
the up-scale step from 8 to 16 nodes. First of all, the results
show that the data exchange takes the major part (about

6

8

10

Q
u
er
y
R
u
n
ti
m
e

Buffer matching on

Buffer matching off

1 2 3 4 5 6 7 8

4

6

8

10

12

Query run

N
o
d
es

Number of nodes

Figure 8: Scaled query performance after adding
nodes (buffer matching impact highlighted)

6

8

10

12

Q
u
er
y
R
u
n
ti
m
e

Buffer matching on

Buffer matching off

1 2 3 4 5 6 7 8

4

6

8

10

12

Query run

N
o
d
es

Number of nodes

Figure 9: Scaled query performance after removing
nodes (buffer matching impact highlighted)

2 4 6 8 10 12 14
0

2

4

6

8

10

12

Buffer size in GB

B
u
ff

er
m

a
tc

h
in

g
ru

n
ti

m
e

in
se

co
n
d
s

MPI data exchangeMPI data exchange

Socket data exchange

Preprocessing

Figure 10: Buffer matching runtime for preprocess-
ing and actual data exchange as a function of the
buffer size for upscaling from 8 to 16 nodes with a
constant block size of 1 MB

507



98%) of the whole buffer matching step. Furthermore, the
plot illustrates the expected runtime increase when increas-
ing the buffer size and shows that they correlate in a linear
way. Comparing both data exchange implementations, we
can observe that the socket implementation is faster in
terms of runtime and also shows a smaller grow in runtime
when increasing the buffer size. As discussed in Section 6,
this behavior is presumably caused by the fact that the
MPI implementation has to re-initiate the communication
for each block, as the blocks may be randomly placed
within the buffer memory space. The socket implementa-
tion on the other hand initiates the communication once
before sending a data stream and therefore reduces the
communication overhead.

In a further experiment we evaluate the impact of varying
block sizes on the buffer matching mechanism. For this
we keep the buffer size constant at 10 GB and we only
consider the pure data exchange runtime, as we have seen
in Figure 10 that preprocessing only takes a minor part
of the overall runtime. Increasing the block size implies
an increase of the necessary memory to allocate blocks.
Therefore, we had to switch to scale factor 300 GB for this
experiment as the overall available memory did not suffice
for the largest tested block size of 8 MB and scale factor
1000 GB. Figure 11 shows the results of this experiment.
For both implementations we can observe a slight increase
in runtime when increasing the block size. This is caused by
increased data volume that has to be exchanged, as larger
block sizes come along with larger unused space or padding.
Besides that, the socket implementation is not heavily
impacted by varying block sizes, as data is simply written
to stream sockets not considering any block boundaries. On
the contrary, the MPI implementation profits from larger
block sizes, as the communication overhead shrinks with
the decreasing number of blocks to be sent. As a result, the
difference in runtime between both implementations also
shrinks with larger block sizes. Nevertheless, the choice of
the block size also impacts other parts of the system, so
this choice is usually fixed around a value of 1MB and can
not be changed after database creation. For these block
sizes, the socket implementation is surely the better choice
compared to the MPI implementation.

Cluster resize usability: In the last experiment, we
compare the implemented cluster resize functionality with
the “inelastic” scaling, which involves the following steps:

(1) Shutdown of the system
(2) Adjustment of a list that holds the VectorH node

names
(3) Restart of the system
(4) Run a query

These step are encapsulated in a script to reliably mea-
sure the runtime. We define the start state of the exper-
iment as a running VectorH system with filled buffers.
Furthermore, we define the end state as the moment we get
a query result from a scaled VectorH instance. The runtime
between start and end state is measured for the cluster re-
size feature with and without activated buffer matching, as
well as for the inelastic scaling process. As query workload
we choose query 1 and query 9 of the TPC-H benchmark.
The buffer size is set to 10 GB per node and we investigate
the cases of scaling from 8 to 16 nodes and vice versa.

0 2 4 6 8
0

1

2

3

4

Block size in MB

D
at
a
ex
ch
an

ge
ru
n
ti
m
e
in

se
co
n
d
s

MPI implementation

Socket implementation

Figure 11: Buffer matching data exchange runtime
as a function of the block size with constant buffer
size of 10GB when upscaling from 8 to 16 nodes

add nodes remove nodes

Q1 Q9 Q1 Q9

BM on 57.74 s 77.55 s 32.02 s 51.06 s
BM off 58.70 s 87.95 s 32.56 s 52.04 s
Inelastic 167.68 s 223.30 s 123.20 s 147.94 s

Table 2: Runtime for scaling the system using the
inelastic scaling process or the cluster resize fea-
ture with and without buffer matching (BM)

Table 2 shows the measured runtime results of the exper-
iment. For all cases, the implemented cluster resize feature
outperforms the inelastic scaling up to a factor 4. In addi-
tion to that, activated buffer matching shows a benefit in
runtime for the cases of scaling the system up, caused by
the buffer pre-filling. The amount of benefit is dependent
on the actual query for this experiment, so query 9 shows a
better speedup than query 1 using buffer matching. For the
case of removing nodes, buffer matching has a negligible
impact, as buffers of the remaining nodes are already filled.
Therefore, a buffer merging strategy could be a possible
optimization in the future. Moreover, we can state that
adding nodes to the system is slower than removing nodes,
both for inelastic scaling and the cluster resize feature. The
reason for this is that started servers perform a collective
startup with several synchronization points and do a full
log replay. Increasing the number of servers, this startup
time also increases, leading also the inelastic scale-up to be
slower than the scale-down. In the contrary, removed nodes
can shutdown independently after the remaining servers
form a new communicator (see Section 4), not influencing
the further query processing. This experiment is highly
dependent on the cluster configuration (e.g. network speed)
as well as the size of the write-ahead log that has to be
replayed. Therefore, this experiment should not be used
for a quantitative comparison, but is intended to show a
qualitative difference between the scaling methods.

Overall the evaluation proves that the implemented
cluster resize feature outperforms the “inelastic” scaling

508



method using a restart up to a factor of 4. The buffer match-
ing mechanism shows to add a minor runtime overhead to
the scaling step, but proves to have a major impact on the
query performance. The first queries after scaling show a
significant performance gain when using buffer matching,
which is caused by the pre-filling of buffers. As a result, the
user gets an immediate performance boost when deciding
to scale the VectorH installation up, which is the behavior
he expects when increasing his service cost. Furthermore,
the experiments prove that the socket implementation im-
proves the buffer matching data exchange step compared
to the MPI implementation, which was the expectation
this optimization was based on. As we evaluated our imple-
mentation using a private cluster, the time for acquiring
resources from a cloud service provider is not included in
our results.

8 CONCLUSION

In this paper, we presented our approach to adapt Ac-
tian VectorH for the elastic cloud environment. As the
first goal, we implemented an elastic cluster resize feature
for VectorH, enabling adding and removing nodes during
system uptime and therefore avoiding the drawbacks of a
full system restart, e.g. full log replay and empty buffers.
For the implementation of the feature we utilized group
and communicator management offered by the Message
Passing Interface (MPI), which is used for node-to-node
communication within VectorH. As a second contribution,
we designed a partition manager that is suitable for the
cloud environment. By using overpartitioning and explic-
itly managing partition-to-node mappings for equivalence
classes of partitionings, the implemented solution minimizes
partition reassignments, keeps partition co-locations, bal-
ances load on partition level and provides efficient lookup
and update functions. The partition manager replaces the
round-robin partition assignment in VectorH, which showed
to be not suitable for the elastic cloud environment. While
evaluating the cluster resize feature in combination with
the implemented partition manager, queries did not show
the expected speedup immediately after the resize, which
was caused by empty buffers. As an optimization, we intro-
duced the buffer matching and filling mechanism into the
cluster resize feature. After changing partition mappings,
nodes scan their buffers and send buffered data to other
nodes in order to pre-fill their buffers, leading to immediate
speedup after cluster resize. For the buffer matching data
exchange, we implemented two different approaches using
MPI communication and using data streams over sockets
and evaluated them against each other.

The experiments showed that the elastic cluster resize
feature significantly outperforms the inelastic scaling pro-
cess using a system restart. Activating the buffer matching
mechanism further increases the performance after the clus-
ter resize, enabling the user to immediately profit from
additional resources. Evaluating both buffer matching data
exchange mechanisms, the socket implementation showed
to be the better choice for all tested cases.

Future work includes the investigation on online scaling
allowing concurrent read and/or write transactions dur-
ing the scaling process, as well as query driven scaling,
optimizing a query for a given goal (e.g., cost, runtime)

by scaling the system automatically. In addition to that,
further data exchange mechanisms, such as RDMA (re-
mote direct memory access) based data exchange, will be
evaluated to accelerate the buffer matching data exchange
step. The buffer matching mechanism could also be further
extended with a predictive buffer filling strategy for adding
nodes or a buffer merging strategy for removing nodes.

REFERENCES
[1] Sean Barker, Yun Chi, Hakan Hacigümüs, Prashant Shenoy,

and Emmanuel Cecchet. 2014. ShuttleDB: Database-Aware
Elasticity in the Cloud. In 11th International Conference
on Autonomic Computing (ICAC 14). USENIX Association,
Philadelphia, PA, 33–43. https://www.usenix.org/conference/
icac14/technical-sessions/presentation/barker

[2] Peter Boncz, Thomas Neumann, and Orri Erling. 2014. TPC-
H Analyzed: Hidden Messages and Lessons Learned from an
Influential Benchmark. In Performance Characterization and
Benchmarking, Raghunath Nambiar and Meikel Poess (Eds.).
Springer International Publishing, Cham, 61–76.

[3] Peter Boncz, Marcin Zukowski, and Niels Nes. [n.d.]. Mon-
etDB/X100: Hyper-Pipelining Query Execution. ([n. d.]).

[4] Andrei Costea, Adrian Ionescu, Bogdan Răducanu,
Micha lSwitakowski, Cristian Bârca, Juliusz Sompolski,
Alicja Luszczak, Micha lSzafrański, Giel de Nijs, and Peter
Boncz. 2016. VectorH: Taking SQL-on-Hadoop to the Next
Level. In Proceedings of the 2016 International Conference on
Management of Data (SIGMOD ’16). ACM, New York, NY,
USA, 1105–1117. https://doi.org/10.1145/2882903.2903742

[5] Benoit Dageville, Jiansheng Huang, Allison W. Lee, Ashish
Motivala, Abdul Q. Munir, Steven Pelley, Peter Povinec, Greg
Rahn, Spyridon Triantafyllis, Philipp Unterbrunner, Thierry
Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes,
Jon Bock, Jonathan Claybaugh, Daniel Engovatov, and Martin
Hentschel. 2016. The Snowflake Elastic Data Warehouse. In Pro-
ceedings of the 2016 International Conference on Management
of Data - SIGMOD ’16. ACM Press, San Francisco, California,
USA, 215–226. https://doi.org/10.1145/2882903.2903741

[6] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2013.
ElasTraS: An Elastic, Scalable, and Self-managing Transac-
tional Database for the Cloud. ACM Trans. Database Syst. 38,
1, Article 5 (April 2013), 45 pages. https://doi.org/10.1145/
2445583.2445588

[7] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr
El Abbadi. 2011. Albatross: lightweight elasticity in shared
storage databases for the cloud using live data migration. Pro-
ceedings of the VLDB Endowment 4, 8 (May 2011), 494–505.
https://doi.org/10.14778/2002974.2002977

[8] G. Graefe. 1994. Volcano-an extensible and parallel query
evaluation system. IEEE Transactions on Knowledge and
Data Engineering 6, 1 (Feb. 1994), 120–135. https://doi.org/
10.1109/69.273032

[9] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza,
Rahul Pathak, Stefano Stefani, and Vidhya Srinivasan. 2015.
Amazon Redshift and the Case for Simpler Data Warehouses.
In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data - SIGMOD ’15. ACM
Press, Melbourne, Victoria, Australia, 1917–1923. https://doi.
org/10.1145/2723372.2742795

[10] John L. Gustafson. 1988. Reevaluating Amdahl’s Law. Com-
mun. ACM 31, 5 (May 1988), 532–533. https://doi.org/10.
1145/42411.42415

[11] Sandor Heman, Niels Nes, Marcin Zukowski, and Peter Boncz.
[n.d.]. Positional Delta Trees to reconcile updates with read-
optimized data storage. ([n. d.]), 11.

[12] Wolfgang Lehner and Kai-Uwe Sattler. 2013. Web-Scale Data
Management for the Cloud. Springer New York, New York,
NY. https://doi.org/10.1007/978-1-4614-6856-1

[13] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey
Romer, Shiva Shivakumar, Matt Tolton, and Theo Vassilakis.
2010. Dremel: Interactive Analysis of Web-scale Datasets. Proc.
VLDB Endow. 3, 1-2 (Sept. 2010), 330–339. https://doi.org/
10.14778/1920841.1920886

[14] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. 2011. A Cost-
Aware Elasticity Provisioning System for the Cloud. In 2011
31st International Conference on Distributed Computing Sys-
tems. 559–570. https://doi.org/10.1109/ICDCS.2011.59

[15] Micha l Switakowski, Peter Boncz, and Marcin Zukowski. 2012.
From cooperative scans to predictive buffer management. Pro-
ceedings of the VLDB Endowment 5, 12 (Aug. 2012), 1759–
1770. https://doi.org/10.14778/2367502.2367515

509


	Elastic Scaling in VectorHSteffen Kläbe, Kai-Uwe Sattler, Stephan Baumann, Michael Rink

