
Efficient Enumeration of Four Node Graphlets at Trillion-Scale
Yudi Santoso

University of Victoria

BC, Canada

santoso@uvic.ca

Venkatesh Srinivasan

University of Victoria

BC, Canada

srinivas@uvic.ca

Alex Thomo

University of Victoria

BC, Canada

thomo@uvic.ca

Figure 1: Four node graphlets: a 3-path, a 3-star, a rectangle or 4-cycle, a tailed-triangle, a diamond, and a 4-clique.

ABSTRACT
Graphlet enumeration is known to be a challenging task in graph

analysis. This is because the cost is exponential in the order of the

graphlet. Triangle is a graphlet of order three that has received

special attention because it is relatively small but non-trivial,

and can still be enumerated quite fast even for massive graphs

of millions of nodes and edges. In this paper, we propose an

efficient algorithm for enumerating four node graphlets, such as

4-cycles, 4-cliques, diamonds, etc by leveraging the most efficient

algorithm for triangle enumeration. We show that despite the

belief that any such enumeration algorithm cannot terminate in

reasonable time, our method can handle large graphs containing

trillions of such graphlets, using a single commodity machine,

within a reasonable amount of time.

1 INTRODUCTION
It is commonly thought that graphlets, beyond three nodes, are

difficult to enumerate. This is because the number of possible

instances grows as O(nk), where k is the order of the graphlet

and n is the order of the graph. Thus, for massive graphs, it

was believed that an enumeration algorithm, which has to touch

each graphlet, cannot terminate in a reasonable time [11]. Indeed,

previous methods, such as Fanmod [18] and Rage [8], do not scale

well and take a very long time to run on million scale graphs.

Other proposed solutions, such as Arabesque [17] and PGD [1]

use distributed platforms. However, our focus is to explore the

limits of what can be achieved using single-machine algorithms.

There are several algorithms proposed in the literature to

count the number of the graphlets. They are either estimates

using approximation methods, such as Graft [13], or exact count-

ing without full enumeration, notably Orca [6] and Escape [11].

However, what if we need to find each of the graphlet instances?

Knowing where the graphlets are is useful in analysing the lo-

cal structures of the graph. For example, enumerating graphlets

is important in detecting cancer through differential graphlet

communities [19]. Also, enumeration can yield graphlet degree

counts which are useful for uncovering biological network func-

tions [9].

It is worth noting that there have been plenty of studies on

triangle enumeration. It was found that triangles can be enumer-

ated quite efficiently using the compact forward edge-iterator

algorithm [7]. In general, graphlets of order k can be enumerated

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

using an algorithm with runtime O(ndk−1) where d is the maxi-

mum degree [15]. However, in [14] it was shown that through

careful preprocessing, triangle enumeration using edge-iterator

can be significantly faster than O(nd2) time. Can we achieve a

better runtime than O(ndk−1), for higher order graphlets?
In this paper we show that efficient enumeration for triangles

can be leveraged to enumerate higher order graphlets, in partic-

ular four node graphlets. Our algorithm achieves a significantly

improved runtime, which depends on the number of three-node

graphlets and is able to handle large graphs efficiently on a single

machine. Moreover, unlike most in the literature, our solution

yields the counts of all four node graphlets in a single run.
Our contributions are as follows:

(1) We propose a new algorithm to enumerate all types of
four node graphlets of an undirected graph on a single

run. Enumeration is done carefully so that no graphlet is

listed more than once.

(2) We provide detailed analyses on the algorithm correctness

and time complexity. We refine the time upper-bound

of enumeration to depend on the number of three-node

graphlets and thus be significantly better than O(nd3) for
real-world networks.

(3) We create an efficient implementation of the algorithm for

a single machine. Our algorithm is able to run on graphs

of millions nodes and edges, which contain trillions of

graphlets, within reasonable time.

2 RELATEDWORK
Chiba and Nishizeki published several subgraph listing algo-

rithms [5] which can be considered as a pioneering work on

graphlet enumeration. Milo et al. [10] analysed frequent subgraph

patterns, and called them network motifs. Since then, there have

been many studies on how to find and count small subgraphs

within a graph or network, including those we already discussed

in the Introduction. Also, Silvestri [16] provided another com-

plexity analysis on subgraph enumeration. To the best of our

knowledge, there has not been a solution using the method that

we propose here, to simultaneously, and fully, enumerate all the

graphlets (of order four) through triangles and wedges, and that

can scale to large graphs using a single machine.

3 PRELIMINARIES
In this paper we solely work on simple undirected graphs. We

denote a graph by G(V , E) where V is the set of nodes and E is

the set of edges. Let n = |V | andm = |E |. The degree of a node is
the number of edges incident on it. For simple graphs, there is no

self-loop and the degree is equal to the number of neighbours. We

Short paper

Series ISSN: 2367-2005 439 10.5441/002/edbt.2020.52

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.52

Algorithm 1 Triangle Enumeration

Input: An undirected graph G(V , E) in an adjacency list repre-

sentation

1: for all vertex u ∈ V (G) do
2: for all vertex v ∈ N (u) do
3: if v > u then
4: for allw ∈ N (u) ∩ N (v) do
5: if w > v then
6: EnumerateTriangle (u,v,w)

denote the set of neighbours of node u by N (u), and the degree

of u by d(u) = |N (u)|. A subgraph of G(V (G), E(G)) is a graph

H (V (H), E(H)) such thatV (H) ⊆ V (G) and E(H) ⊆ E(G). We use

the notation H ⊆ G to say that H is a subgraph ofG . A subgraph

H ⊆ G is an induced subgraph if any edge (u,v) (which = (v,u)
for undirected graphs), with u,v ∈ V (H), is in E(H) if and only

if (u,v) is in E(G). A subgraph is connected if every pair of nodes

in it is connected by a path of edges. We assume the following

definition: A graphlet is an induced connected subgraph.

There are two kinds of graphlets of three nodes: wedge (Hence-

forth labeled as д1) and triangle (д2). Note that for induced sub-

graphs, wedges and triangles cannot be on top of each other (i.e.,

a wedge and a triangle cannot have the same set of three nodes

within the same graph.). For four nodes, we have six types of

graphlets, depicted in Figure 1. These are 3-path (or four-node-

path) (д3), 3-star (д4), 4-cycle or rectangle (д5), tailed-triangle
(д6), diamond (д7), and 4-clique (д8). The labels that we use here
follow the common labelling used by some papers in the litera-

ture [2, 12].

Notice that д6, д7 and д8 contain triangle(s). A д6 contains

one triangle, a д7 contains two triangles, and a д8 contains four
triangles. This fact suggests that we can find them through the

triangles in the graph. Whenever we find a triangle, we can check

if this triangle is a part of anyд6,д7 and/orд8. Similarly,д3,д4 and
д5 contain two, three and four wedges, respectively. Therefore,

we can find them through wedges.

We list graphlets by their nodes. Thus, for example, (u,v,w, z)8
is a д8 with nodes u, v , w and z. In enumeration, some care is

needed to avoid multiple listing. Without lost of generality, we

can use label 1, 2, 3, 4 to represent the nodes in a graphlet. Clearly,

1 < 2 < 3 < 4, so 1 represents the smallest node.

There are 3! = 6 permutations of three nodes. Therefore, for

wedges, we have (1, 2, 3)1, (1, 3, 2)1, (2, 1, 3)1, (2, 3, 1)1, (3, 1, 2)1
and (3, 2, 1)1. However, (1, 2, 3)1 is the same wedge as (3, 2, 1)1,

(1, 3, 2)1 is the same as (2, 3, 1)1, and (2, 1, 3)1 is the same as

(3, 1, 2)1. Thus, we have only three possible wedges, only one

can be present (for induced case). Our convention is to list with

the smaller leg first, i.e. (1, 2, 3)1, (1, 3, 2)1, and (2, 1, 3)1. We can

divide these into two types: those with the smallest node at the

center of the wedge (type 1), i.e., (2, 1, 3)1, and those with the

smallest node at one of the legs (type 2), i.e., (1, 2, 3)1 and (1, 3, 2)1.

We will see that they require separate treatment. For triangles,
all six permutations are isomorphic. Therefore, we only need one

to list. We choose the one with the nodes ordered ascendingly:

(1, 2, 3)2.

Now for four nodes, there are 4! = 24 permutations. For 3-
paths, by symmetry we only need half (i.e. twelve) of them. For

3-stars, we have four distinct ones depending on which one is

the centre. For 4-cycles, the cyclic symmetry gives us a factor

of four, while the clockwise counter-clockwise symmetry gives

Algorithm 2 Graph-Prep

Input: An undirected graph G(V , E)
1: Sort V based on the degrees, in ascending order.

2: Relabel the vertices according to their new order.

3: Build adjacency list of the sorted and relabeled vertices.

4: Cut out the smaller neighbours from each neighbour list.

us a factor of two. Therefore, we have only 24/8 = 3 distinct

permutations. For tailed-triangles, the distinguishing nodes are
the end node and the centre node, giving us

(
4

2

)
or twelve distinct

configurations. For diamonds, we have a pair of triangles. Let
us call the two end nodes of the shared edge as the connecting

nodes, and the other two nodes as the opposing nodes. There

are symmetries between the two opposing nodes, and between

the two connecting nodes, giving us 24/2/2 = 6 distinct configu-

rations. For 4-cliques, we can exchange any pair of nodes and

get the same clique. Thus there is only one unique configuration,

and we choose to list the nodes in order: (1, 2, 3, 4)8.

4 THE ALGORITHMS
The algorithm that we use for triangle enumeration is an edge

iterator algorithm (Algorithm 1) combined with nodes order-

ing. This combination is similar to the Compact-Forward algo-

rithm [7] but with the ordering done in a pre-processing before

the enumeration (Algorithm 2).

Algorithm 3 Triangle and Wedge Enumeration

Input: An undirected graph G(V , E) in an adjacency list repre-

sentation

1: for all vertex u ∈ V (G) do
2: for all vertex v ∈ N (u) do
3: if u < v then
4: for all u ′ ∈ N (u) and v ′ ∈ N (v) do
5: if (u ′ > u) ∧ (v ′ > u) then
6: if u ′ = v ′ > v then
7: EnumerateTriangle (u,v,u ′)

8: if (u ′ < v ′) ∧ (u ′ > v) then
9: EnumerateWedgeType1 (v,u,u ′)

10: if u ′ > v ′ then
11: EnumerateWedgeType2 (u,v,v ′)

The graph preprocessing is based on the following observa-

tions: (i) Because of lines 3 and 5 of Algorithm 1 we need to

consider only bigger neighbours of every vertex, i.e., N >(u) =
{v ∈ N (u)|v > u}. (ii) The triangle count in a graph will not

change if we relabel the vertices.

Algorithm 1 can be modified to enumerate the wedges as well.

This is shown in Algorithm 3. Notice that by condition on line

3 we assure that u is always smaller than v . To avoid multiple

listing, when we iterate neighbours of v we consider only those

that are bigger than u (line 5). However, we need to include

smaller neighbours of v (i.e. those between u and v) to catch all

of the wedges.

We extend each of the EnumerateTriangle and Enumer-

ateWedge functions above to search for four-node graphlets.

Whenever we find a triangle, (u,v,w)2, we call the ExploreTri-

angle function (Algorithm 4), which checks for the intersections

among the neighbour sets of the three triangle nodes, N (u), N (v)
and N (w). If we find a z ∈ N (u) ∩ N (v) ∩ N (w), then (u,v,w, z)

440

Algorithm 4 Explore Triangle

Input: Given triangle (u,v,w)2, u < v < w : N (u), N (v), N (w).

1: Compute intersections among the three neighbour sets.

2: for all z ∈ N (u) ∩ N (v) ∩ N (w) with z > w do
3: Enumerate4Cliqe (u,v,w, z)8

4: for all z in two sets and z > opposite node do
5: EnumerateDiamond (.)7

6: for all z in one set only do
7: EnumerateTailedTriangle (.)6

is a four-clique (i.e. д8). A node z that is in two of the three

neighbour sets gives us a diamond (i.e. д7), while a z that is in
only one of the three neighbour sets gives us a tailed triangle

(i.e. д6). For 4-cliques, we can use the sets of larger neighbours.

For diamonds, we can use the sets of neighbours larger than u.
For the tailed triangles, however, we need to include all of the

neighbours. Due to this last case we lost some of the advantage of

the graph preprocessing. As a result, the runtime might be much

longer compared to the triangle enumeration time, depending

on the maximum degree.

Algorithm 5 Explore Wedge Type-1

Input: Given wedge (v,u,w)1, u < v < w : N >u (u), N >u (v),
N >u (w).

1: Compute intersections among the three neighbour sets.

2: for all z ∈ N >u (v) ∩ N >u (w) with z < N >u (u) do
3: EnumerateRectangle (u,v, z,w)5

4: for all z ∈ N >u (u) only do
5: if z > w then
6: Enumerate3Star (u,v,w, z)4

7: for all z ∈ N >u (v) only do
8: Enumerate3Path (w,u,v, z)3

9: for all z ∈ N >u (w) only do
10: Enumerate3Path (v,u,w, z)3

For the wedges, we call two different functions depending

on the type of the wedge, either Algorithm 5 or 6. In this two

functions we only need sets of neighbours that are larger than u,
but this is not done in a pre-processing. Notice that in Algorithm 6

w can be smaller than v , which is the center of the wedge.

Algorithm 6 Explore Wedge Type-2

Input: Given wedge (u,v,w)1, u < v , u < w : N >u (u), N >u (v),
N >u (w).

1: Compute intersections among the three neighbour sets.

2: for all z ∈ N >u (v) only do
3: if z > w then
4: Enumerate3Star (v,u,w, z)4

5: for all z ∈ N >u (w) only do
6: if z , v then
7: Enumerate3Path (u,v,w, z)3

5 ANALYSIS
Theorem 1. Algorithm 3 correctly enumerates wedges and tri-

angles in an undirected graph.

Proof. Each edge (u,v), with u < v , is iterated once and only
once. For each, we enumerate all the intersecting neighbours

(i.e., triangles), and non-intersecting neighbours (i.e., wedges).

Thus, all wedges and triangles in the graph would be found.

For triangles, we avoid multiple listing by imposing condition

u ′ = v ′ > v . For type-1 wedges we impose condition u ′ > v . For
type-2 wedges, sinceu < v ′

there will be no double counting. □

Theorem 2. Algorithms 4, 5 and 6, combined with algorithm 3,
correctly enumerate all four node graphlets in an undirected graph.

Proof. As proven above, all triangles and wedges are enu-

merated once. For each triangle, the three neighbour sets are

checked. Each node that is in only one of the sets yields a tailed-

triangle. All tails would be found in the sets. A node that is in

the intersection of two sets yields a diamond. By asserting that

this node is larger than the opposite node in the diamond we

assure that any diamond would be listed just once. A node that

is in the intersection of all three sets yields a 4-clique. We assert

that this node is larger than any node in the triangle to assure

that the clique has not been listed in any previous iteration. For

wedges, similarly, all four node graphlets attached to each wedge

would be found. Multiple listing is avoided by considering only

3-paths, 3-stars and 4-cycles, and by careful conditions on the

node ordering. For the 3-paths we make sure that the smallest

node is always in the first half of the path. For the 3-stars we

make sure that the fourth node is greater than the third node.

The center node does not need to be the smallest. For 4-cycles we

make sure that the fourth node is opposite to the first node. □

Theorem 3. The runtime of the four node graphlet enumeration
is bounded by O((N∆ + N∠)dmax + T3д), where N∆ (N∠) is the
number of triangles (wedges), and T3д is the time to enumerate
triangles and wedges.

Proof. For each triangle andwedge the algorithm runs through

the neighbor sets to check the intersections with cost ≤ (d(u) +
d(v) + d(w)). □

Note that in general (N∆ + N∠) ≲ nd2
max

, with the upper

value is satisfied by a regular graph. However, for all real world

networks, we have (N∆ + N∠) ≪ nd2
max

. Also, T3д ≪ nd2
max

using efficient enumeration. Therefore, in practice, our runtime

is much less than worst case bound of O(nd3
max

).

6 EXPERIMENTS
The networks that we study are listed in Table 2. All of the

datasets were downloaded from the Laboratory for Web Algorith-

mics [3, 4], http://law.di.unimi.it/datasets.php. We symmetrized

them and got rid of any loops to get simple undirected graphs.

We implemented our code in Java with parallel streams, and use

Webgraph library [4]. We used a Linux machine with dual Xeon

E5-2620 processors of 24 threads and 128 GB of RAM. We no-

tice, however, that the memory usage is < 1 GB throughout the

experiment.

The graphlet counts are listed in Table 1. We can check that

for all of these graphs, N∆ +N∠ ≪ nd2
max

using their dmax values

from Table 2. For example, for amazon, N∆ + N∠ ≈ 42M and

nd2
max

≈ 853B, a four order of magnitude difference. For all of

the graphs that we consider here the difference is from three to

five orders of magnitude.

The runtimes are shown in Table 3. We include the triangle

enumeration time, T∆, for comparison. As wedges cannot take

full advantage of the pre-processing, they take longer time for

enumeration, henceT3д is larger thanT∆. Notice that the prepro-
cessing time, TPrep, is just about the same magnitude as T∆.

441

Table 1: Counts of the graphlets. The dewiki dataset needs longer than our time limit to terminate.

Graph д1 д2 д3 д4 д5 д6 д7 д8

enron 40,309,453 1,067,993 2,511,039,670 8,043,804,283 21,598,984 582,841,848 46,141,288 5,001,773

cnr 7,798,287,209 20,977,629 6,118,026,632 41,392,015,937,553 37,876,822,234 79,429,334,745 42,974,515,602 159,814,399

dblp 81,529,950 7,005,235 2,678,518,695 3,545,925,764 1,483,611 543,447,587 21,608,538 40,910,658

amazon 38,015,403 4,464,791 372,366,885 609,961,827 2,689,696 9,232,707 13,096,219 4,192,682

dewiki 51,141,107,679 88,611,282

ljournal 8,726,048,197 411,155,444 1,812,284,632,329 8,847,128,736,944 8,551,292,956 189,716,360,703 26,962,410,402 16,129,080,442

Note thatT4д , the time required to enumerate all 3 and 4-node

graphlets, does not strongly depend on the size of the graph, but

rather on the degrees and the numbers of triangles and wedges,

validating our analysis. For example, comparing ljournal with
amazon, the ratio of their (N∠ + N∆)dmax values is about four

thousand, while the ratio of theirT4д values is about six thousand,

i.e. approximately the same order. This observation experimen-

tally validates the statement of Theorem 3 relating the runtime

to the (N∠ + N∆)dmax value.

Interestingly, cnr requires longer runtime than ljournal. Even
though it is smaller by an order ofmagnitude it hasmore graphlets.

The amazon dataset, which has relatively small maximum de-

gree can be processed in merely 14 seconds. The dewiki dataset
has enormous number of wedges and large maximum degree and

the algorithm did not terminate even after running for four days.

Table 2: The undirected graphs. Here, dBG
max

is the effec-
tivemaximumdegree when only larger neighbours are in-
cluded after the preprocessing.

Dataset n m dmax dBG
max

davg

enron 69,244 254,449 1,634 87 7.35

cnr 325,557 2,738,969 18,236 85 16.83

dblp 986,324 3,353,618 979 118 6.80

amazon 735,323 3,523,472 1,077 16 9.58

dewiki 1,532,354 33,093,029 118,246 490 43.19

ljournal 5,363,260 49,514,271 19,432 756 18.46

Table 3: The runtime, in seconds, for preprocessing, for
triangle enumeration, for wedges and triangles together,
and for all three and four node graphlets together.

Graph TPrep T∆ T3д T4д

enron 0.87 1.03 3.49 76.50

cnr 1.93 1.75 57.03 176K

dblp 4.87 1.93 3.45 62.05

amazon 5.80 1.73 2.53 14.05

dewiki 26.45 12.79 517.3 > 300K

ljournal 46.68 32.96 257.1 82K

7 CONCLUSIONS
In this study we have shown that it is possible to enumerate

all types of four node graphlets simultaneously with runtime

O((N∆+N∠)dmax+T3д). Wedges and triangles can be enumerated

relatively fast (in a pre-run) and the result can be used to estimate

the time needed to enumerate the four node graphlets. We found

that the runtime upper bound depends more on the maximum

degree than on the size of the graph. Our algorithm can finish the

enumeration in seconds when the maximum degree is around 1K.

Moreover, it does not require large memory space, and it would

run for even larger graphs (provided that we allow enough time).

Notably, we were able to process massive graphs of millions of

nodes and edges and enumerate about 40 trillions graphlets in a

single run, within a reasonable amount of time.

REFERENCES
[1] Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, and Nick Duffield. 2015.

Efficient graphlet counting for large networks. In 2015 IEEE International
Conference on Data Mining. IEEE, 1–10.

[2] Mansurul A Bhuiyan, Mahmudur Rahman, Mahmuda Rahman, and Moham-

mad Al Hasan. 2012. Guise: Uniform sampling of graphlets for large graph

analysis. In 2012 IEEE 12th International Conference on Data Mining. 91–100.
[3] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Lay-

ered Label Propagation: A MultiResolution Coordinate-Free Ordering for

Compressing Social Networks. In Proceedings of the 20th international confer-
ence on World Wide Web. ACM Press, 587–596.

[4] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Com-

pression Techniques. In Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). ACM Press, Manhattan, USA, 595–601.

[5] Norishige Chiba and Takao Nishizeki. 1985. Arboricity and subgraph listing

algorithms. SIAM Journal on computing 14, 1 (1985), 210–223.

[6] Tomaž Hočevar and Janez Demšar. 2014. A combinatorial approach to graphlet

counting. Bioinformatics 30, 4 (2014), 559–565.
[7] Matthieu Latapy. 2008. Main-memory triangle computations for very large

(sparse (power-law)) graphs. Theor. Comput. Sci. 407, 1-3 (2008), 458–473.

https://doi.org/10.1016/j.tcs.2008.07.017

[8] Dror Marcus and Yuval Shavitt. 2012. Rage–a rapid graphlet enumerator for

large networks. Computer Networks 56, 2 (2012), 810–819.
[9] Tijana Milenković and Nataša Pržulj. 2008. Uncovering biological network

function via graphlet degree signatures. Cancer informatics 6 (2008).
[10] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,

and Uri Alon. 2002. Network motifs: simple building blocks of complex

networks. Science 298, 5594 (2002), 824–827.
[11] Ali Pinar, C Seshadhri, and Vaidyanathan Vishal. 2017. Escape: Efficiently

counting all 5-vertex subgraphs. In Proceedings of the 26th International Confer-
ence on World Wide Web. International World Wide Web Conferences Steering

Committee, 1431–1440.

[12] Nataša Pržulj, Derek G Corneil, and Igor Jurisica. 2004. Modeling interactome:

scale-free or geometric? Bioinformatics 20, 18 (2004), 3508–3515.
[13] Mahmudur Rahman, Mansurul Alam Bhuiyan, andMohammadAl Hasan. 2014.

Graft: An efficient graphlet counting method for large graph analysis. IEEE
Transactions on Knowledge and Data Engineering 26, 10 (2014), 2466–2478.

[14] Yudi Santoso. 2018. Triangle counting and listing in directed and undirected
graphs using single machines. Master’s thesis. University of Victoria.

[15] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and

Karsten Borgwardt. 2009. Efficient graphlet kernels for large graph comparison.

In Artificial Intelligence and Statistics. 488–495.
[16] Francesco Silvestri. 2014. Subgraph enumeration in massive graphs. arXiv

preprint arXiv:1402.3444 (2014).
[17] Carlos HC Teixeira, Alexandre J Fonseca, Marco Serafini, Georgos Siganos,

Mohammed J Zaki, and Ashraf Aboulnaga. 2015. Arabesque: a system for

distributed graph mining. In Proceedings of the 25th Symposium on Operating
Systems Principles. ACM, 425–440.

[18] SebastianWernicke and Florian Rasche. 2006. FANMOD: a tool for fast network

motif detection. Bioinformatics 22, 9 (2006), 1152–1153.
[19] SereneWHWong, Nick Cercone, and Igor Jurisica. 2015. Comparative network

analysis via differential graphlet communities. Proteomics 15, 2-3 (2015), 608–
617.

442

	Efficient Enumeration of Four Node Graphlets at Trillion-ScaleYudi Santoso, Venkatesh Srinivasan, Alex Thomo

