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ABSTRACT
Interval data are found in a wide range of applications (e.g., va-
lidity intervals in temporal databases, ranges of uncertain values
in probabilistic databases, etc.) We study the efficient (parallel)
evaluation of band joins for interval data. Specifically, given two
collections R and S of intervals, the objective is to find all pairs
(r , s), such that r ∈ R, s ∈ S , and the difference gap between r and
s is at most equal to a given threshold ϵ . We first show how this
problem can be solved by directly applying the state-of-the-art
domain-based partitioning approach for interval joins, after ex-
tending the intervals by ϵ . Then, we propose a novel partitioning
strategy for the original intervals, which defines the partitions
using the threshold ϵ and achieves much better performance, on
most datasets, for reasonably large values of ϵ .

1 INTRODUCTION
The evaluation of joins with non-equality predicates finds many
applications, especially in data domains where values are approxi-
mate by nature (e.g., temporal data). For example, one application
is finding pairs of events whose time difference is not greater
than a given threshold ϵ . This bounded-difference join is also
called band join [6], since for each value v in one join input, the
objective is to find the values in the other input, which are inside
an [−ϵ, ϵ] band around v .

Although the evaluation of band joins has already been stud-
ied for offline (disk-resident) [6, 10] and streaming data [1, 7],
previous work focuses on joins between collections of values
(not intervals). In addition, the possibilities of parallel evalua-
tion using modern hardware are not fully explored. In this paper,
we study the evaluation of band joins between two collections
of intervals. Specifically, given two collections R and S of inter-
vals and a band constraint ϵ , our objective is to find all pairs
(r , s) of intervals, such that r ∈ R, s ∈ S , and the difference gap
between r and s is at most ϵ . More precisely, for two intervals
r = [r .start , r .end] and s = [s .start , s .end] to qualify the join, it
should be s .start ≤ r .end + ϵ and r .start ≤ s .end + ϵ .

To our knowledge, this problem has not been studied before,
although it has important applications. For example, the user of a
temporal database [9] may often be interested in finding pairs of
intervals that qualify some overlap or distance constraints (e.g.,
find pairs of flights which do not have a difference gap larger
than 2 hours). Band joins can also be useful for coalescing pairs of
intervals that overlap or they are close to each other [2]. Another
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application is in probabilistic databases, where uncertain values
are often approximated by confidence intervals [5, 11]. Finding
pairs of values that differ less than a threshold ϵ can be modeled
and solved as a band interval join problem. XML queries can be
modeled as joins between intervals that capture the positions
and ancestor-descendant relationships scope of nodes in XML
trees [4]. Queries over data streams [1] also constrain the time
differences between events, which could be instantaneous or
with a temporal duration (i.e., intervals); hence, streaming data
analytics could benefit from fast band join evaluation algorithms.

In our previous work [3], we studied the parallel evaluation of
interval overlap joins, where the objective is to find the pairs of
intervals from two collections that overlap (i.e., share at least one
value). This is a special case of the problem that we study here
for ϵ = 0. We proposed a domain-based partitioning approach,
which divides the data from the two collections into partitions
and processes the partitions independently and in parallel, while
avoiding duplicate results.

In this work, we extend our framework to evaluate interval
band joins. An intuitive and straightforward approach in this
direction is to expand the intervals in both collections by ϵ (e.g.,
by adding ϵ to endpoint x .end of each interval x). The interval
overlap join between the two collections of expanded intervals
is equivalent to the interval band join on the original data inputs
and, hence, we can directly apply the original approach of [3]. On
the other hand, expanding the intervals increases data replication,
which could slow down the evaluation of the join.

This motivated us to design an alternative approach that par-
titions the original intervals, as in an overlap join, but sets the
width of each partition to ϵ . Our new algorithm joins each par-
tition Ri from R with exactly two partitions from S , Si and Si+1
(and vice versa), corresponding to the same and the next ϵ-wide
stripes of the domain. As we show, the Ri Z Si band join re-
duces to a cross-product, while the Ri Z Si+1 band join can be
processed very efficiently, after further dividing the intervals in
each partition into classes, based on the way they intersect the
corresponding stripe.

We evaluate the proposed algorithm on four real datasets and
varying ϵ thresholds and confirm that the ϵ-wide stripes approach
is superior to the baseline adaptation of [3] on most datasets, for
reasonably large values of ϵ .

2 BACKGROUND
In this section, we review the domain-based partitioning ap-
proach of [3] for interval overlap joins, which is necessary for
understanding our solutions to the band interval join problem.

In order to process the join efficiently and in parallel, this ap-
proach first divides the data domain into disjoint regions (stripes),
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Figure 1: Example of domain-based partitioning

the union of which covers the entire domain. For each of the
two input collections R and S , we then define one partition per
stripe and assign each interval to all stripes that the interval
overlaps. Hence, an interval may span multiple partitions. After
this partitioning phase, partition Ri (respectively, Si ) includes all
intervals from R (respectively, S) which overlap the i-th stripe.
During the join phase, each partition Ri only has to be joined with
the corresponding partition Si . Moreover, each of the Ri Z Si
partition-to-partition joins can be evaluated independently from
the others and the joins can be processed in parallel. Figure 1(a)
illustrates an exemplary domain partitioning to four stripes and
two intervals; r ∈ R is assigned to partitions R1, R2, and R3 and
s ∈ S is assigned to partitions S1 and S2.

However, a brute-force implementation of the join phase may
produce duplicate results. For example, in Figure 1(a), join pair
(r , s)would be reported by both R1 Z S1 and R2 Z S2. Duplicates
can be avoided by reporting a pair (r , s) in a partition-to-partition
join Ri Z Si only if at least one of r or s starts inside the i-th
stripe. Otherwise, the pair would also be detected in the join of a
previous stripe. Hence, in our example, pair (r , s) is reported by
R1 Z S1, but the pair is pruned, after being detected by R2 Z S2.

Instead of eliminating duplicates this way, the approach of
[3] goes one step further, by avoiding the generation of such
duplicates overall. The idea is to further divide each partition Ri
into threemini-partitionsRAi ,R

B
i , andR

C
i ;R

A
i takes all intervals in

Ri which start in stripe i , RBi takes all intervals in Ri which start
before stripe i and end inside stripe i , and RCi takes all intervals
that start before stipe i and end after stripe i . Figure 1(b) shows
examples of three intervals from R2 that go to different mini-
partitions. Now, each Ri Z Si can be computed by performing 5
mini-joins between the mini-partitions, as shown in Figure 2:

• RAi Z SAi is computed as a typical interval overlap join;
• RAi Z SBi and RBi Z SAi are computed as a special case of
an interval join, where the start point of every interval in
SBi (resp. RBi ) precedes all start points of all intervals in
RAi (resp. SAi ) [3].

• RAi Z SCi and RCi Z SAi are cross products, hence their
computation requires no comparisons;

• RBi Z SBi , R
B
i Z SCi , R

C
i Z SBi , and RCi Z SCi do not have

to be computed because they would produce duplicate join
results (guaranteed to be found in previous stripes).

Mini-joins are evaluated by an optimized version of a forward
scan algorithm based on plane-sweep (also proposed in [3]).

3 EVALUATING BAND JOINS
3.1 Evaluation based on interval overlap joins
As discussed in the Introduction, a baseline evaluation algorithm
for interval band joins transforms the problem to an interval
overlap join. For this purpose, it expands the intervals from both
input collections by ϵ . Without loss of generality, each interval
r ∈ R and s ∈ R becomes r ′ = [r .start , r .end + ϵ] and s ′ =

Mini-joins breakdown
for each domain-partition, 3 types of intervals à 9 mini-join tasks

(1) (2) (3) (4) (5)

(8)(6) (7) (9)

Same complexity 
as original join

Single scan of join inputs Cross product: no comparisons

No need to evaluate: they would generate duplicates

5

3

RAi SAi RAi SBi RBi SAi RAi SCi RCi SAi

RBi SBi RBi SCiRCi SBi RCi SCi

Figure 2: Breakdown of Ri Z Si into mini-joins

[s .start , s .end + ϵ], respectively. We can easily show that if r ′
overlaps s ′ then s .start ≤ r .end + ϵ and r .start ≤ s .end + ϵ hold,
i.e., pair (r , s) satisfies the band join predicate.

This baseline can be straightforwardly implemented using the
approach of [3]. The expansion of the input intervals takes place
before they are assigned to the partitions, while the mini-joins
breakdown operates exactly as discussed in the previous section.

3.2 Evaluation on ϵ-wide partitions
Despite its simplicity, the baseline exhibits two shortcomings.
First, due to expanding intervals by ϵ ,data replication increases
(compared to the replication in the overlap interval join prob-
lem). This increases the cost of the partition-to-partition joins.
The second drawback is that the domain-based partitioning is
agnostic to the input parameter ϵ . For instance, a pair of intervals
located at the two different ends of a stripe may not qualify the
band join predicate; nevertheless, they need to be checked.

To address these issues, we next propose our second solution
for band joins. The key idea of the method is to split the domain
into disjoint ranges (stripes), such that the width of each stripe
is ϵ (in case the domain cannot be divided exactly by ϵ , the last
stripe is narrower). The input intervals from R (resp. S) are not
expanded, but directly assigned to every partition Ri (resp. Si )
they intersect, as described in Section 2.

Since the width of each stripe i is (at most) ϵ , it is guaranteed
that every pair of interval (r , s) with r ∈ Ri , s ∈ Si forms a
result of the band join. In other words, r .end + ϵ < s .start or
s .end + ϵ < r .start cannot hold; otherwise, r and s would not
have been assigned to the same partition. Hence, we can directly
report all pairs (r , s) with r ∈ Ri , s ∈ Si as results. However, the
same pair of intervals could co-exist in other stripes as well (e.g.,
the (i − 1)-th and/or the (i + 1)-th). Therefore, as in the interval
overlap join case, we should only report a pair if it is not a join
result in a previous stripe, i.e., if at least one of r or s start inside
stripe i . To avoid this test, we can divide each partition Ri (and Si )
again into three mini-partitions RAi , R

B
i , R

C
i (and SAi , S

B
i , S

C
i ), as

explained in Section 2 and then evaluate all RAi Z SAi , R
A
i Z SBi ,

RBi Z SAi , R
A
i Z SCi , and R

C
i Z SAi mini-joins as cross-products.

However, we are not done yet. There could also be band join
results (r , s), such that r ends in stripe i , s starts in stripe i + 1
and r .end + ϵ ≤ s .start (and the symmetric case). The current
decomposition has no explicit partition for all intervals that end
in stripe i , i.e., the mini-partitionRAi does not distinguish between
the intervals r ∈ R that end in stripe i from those that end after
stripe i . To this end, we define an additional mini-partition RA1i ,
which contains the intervals r ∈ Ri that both start and end inside
stripe i . Mini-partition RA1i is a subset of RAi , but their contents
are sorted differently to enhance the join evaluation, as we discuss
in the next paragraph. Figure 3 shows examples of four intervals
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Figure 3: Mini-partitions for band joins
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Figure 4: Mini-joins breakdown in band joins

which are assigned toRA2 ,R
B
2 ,R

C
2 , andR

A1
2 . Observe that intervals

which are assigned to RA12 are also assigned to RA2 .
In Figure 4, we illustrate the set of mini-joins that have to be

evaluated by the new algorithm. Besides the 5 cross-products
between mini-partitions in the same stripe, we have to perform
four mini-joins RA1i Z SAi+1, R

B
i Z SAi+1, S

A1
i Z RAi+1, S

B
i Z RAi+1,

at every pair i and i + 1 of neighboring partitions. All these
mini-joins can be evaluated efficiently in a similar manner as
mini-join RBi Z SAi of the interval overlap join problem (illus-
trated in Figure 2). Specifically, the intervals in mini-partitions
RA1i , RBi , S

A1
i , SBi are sorted by r .end or s .end and the intervals

in mini-partitions RAi and SAi are sorted by r .start and s .start ,
respectively. Then, at each of the four mini-joins, we can compute
the result by concurrently scanning the join inputs only once.

Consider, for instance, the mini-join between RA1i (sorted by
r .end) and SAi+1 (sorted by r .start ). We first check whether r .end+
ϵ ≥ s .start holds for the first r in RA1i and the first s in SAi+1. If
so, (r , s) is a band join result. At the same time, we can conclude
that for all intervals r ′ that follow r in RA1i , (r ′, s) is also a band
join result, since r ′.end ≥ r .end holds (due to sorting). Note that
all these join results are generated without any comparisons.
Afterwards, we advance to the next interval s ∈ SAi and repeat
the test r .end + ϵ ≥ s .start . If the test is negative, we advance
to the next interval r ∈ RA1i and repeat the test, etc. As soon as
either r or s is out of bounds, i.e., the input mini-partitions are
fully scanned, the join algorithm terminates.

For example, in Figure 5, we first consider intervals r1 and s1.
As r1.end + ϵ ≥ s1.start holds, all intervals in RA1i form band
join pairs with s1. Next, we examine s2 and repeat the test to
find again that r1.end + ϵ ≥ s2.start . Hence, we also report all
intervals in RA1i paired with s2 as band join results. However,
when we advance to s3, we observe that r1.end + ϵ < s3.start ,
so (r1, s3) is not a join result. At this point, we consider the next
intervals r from RA1i while r .end+ϵ < s .start holds and stop at r3,
where we have r3.end + ϵ ≥ s3.start . Again, we report join pairs
(r3, s3) and (r4, s3) and advance to s4. Since r3.end + ϵ < s4.start ,
we finally advance to r4; since, r4.end + ϵ ≥ s4.start holds, we
report join pair (r4, s4). At this point, both mini-partitions are
completely scanned and the algorithm terminates.

The number of comparisons conducted by the above algorithm
(applied for all mini-joins which are not cross products) equals

7

RA1i SAi+1

r1 r2
r3

r4

ε
s1
s2

s3 s4

Figure 5: Mini-join between neighboring partitions

Table 1: Statistics of datasets
INFECTIOUS BOOKS TAXIS WEBKIT

Cardinality 415,912 2,312,602 14,212,261 2,347,346
Domain duration (secs) 6,946,360 31,507,200 2,592,000 461,829,284
Distinct domain points 81,514 5,330 2,229,932 174,471
Shortest interval (secs) 20 1 1 1
Avg. interval dur. (secs) 20 2,201,320 685 33,206,300
Longest interval (secs) 20 31,406,400 1,816,164 461,815,512

the total number of intervals in its two inputs (e.g., |RA1i |+ |SAi+1 |),
which means that mini-joins are evaluated very efficiently.
Parallel evaluation.As shown in [3], the best approach to paral-
lelize interval joins based on domain-based partitioning is to treat
every mini-join as an independent task. Each task is scheduled
to one of the available CPU threads. To maximize load balancing,
the tasks are greedily assigned to threads in decreasing order of
their expected costs (based on the size of the involved partitions).

4 EXPERIMENTAL EVALUATION
Our evaluation was conducted on a machine with 384 GBs of
RAM and a dual Intel(R) Xeon(R) CPU E5-2630 v4 clocked at
2.20GHz. All methods were implemented in C++, compiled us-
ing gcc (v4.8.5) with flags -O3, -mavx and -march=native. We
activated hyper-threading, allowing us to run up to 40 threads
and used OpenMP for multi-threaded processing. Every interval
contains two 64-bit domain point attributes (i.e., start and end)
while the workload accumulates the number of result pairs. All
data reside in main memory.
Methods. We compare our ϵ-wide partitioning join (denoted
by ϵ-WIDE) to the baseline (denoted by BSL). In addition, we
include a version of BSL (denoted by ϵ-BSL), which uses ϵ-wide
domain partitions, but it conducts an overlap join using the ex-
tended intervals, instead of the method described in Section 3.2.
Both variants of the baseline use our optimized forward scan
based plane sweep method from [3] and all our optimizations to
improve load balancing in domain-based partitioning.
Datasets. Table 1 details our 4 real-world experimental datasets.
INFECTIOUS [8] stores contact intervals between visitors at
an exhibition at the Science Gallery in Dublin from 2009/05
to 2009/07. BOOKS [3] includes periods of book lent outs at
Aarhus public libraries in 2013 (https://www.odaa.dk). TAXIS
(https://www1.nyc.gov/site/tlc/index.page) stores durations of
taxi trips in NYC, in Jan 2013. WEBKIT [3] records durations of
file versions in the git repository of the Webkit project from 2001
to 2016 (https://webkit.org).
Tests. To assess the performance of the methods, we measure
their response time while varying (i) threshold ϵ as a fraction of
the domain duration inside {0.001, 0.005, 0.01, 0.05, 0.1} and (ii)
the number of available CPU threads inside {5, 10, 15, 20, 25, 30,
35, 40}. We also experimented with uniformly sampled subsets of
the dataset as R and set the entire dataset as S ; for this purpose,
we varied the |R |/|S | ratio inside {0.25, 0.5, 0.75, 1}.
Results. Figures 6-8 summarize our experimental results. When
varying ϵ , we observe the following. First, ϵ-WIDE is consis-
tently faster than ϵ-BSL. This shows that applying the mini-joins
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described in Section 3.2 on the original intervals is faster than ap-
plying the mini-joins of [3] on the ϵ-extended intervals. However,
the number of ϵ-wide partitions can become extremely large for
small values of ϵ , which renders these approaches slower com-
pared to BSL. Note that BSL chooses the number of partitions,
according to the number of threads that can run in parallel as
suggested in [3]. On WEBKIT, TAXIS and INFECTIOUS, ϵ-WIDE
is up to a few time faster compared to BSL and ϵ-BSL for a wide
range of ϵ/domain ratios. On the other hand, on dataset BOOKS,
ϵ-WIDE is faster than the competition for ϵ/domain ratios larger
than 2%. When varying the number of threads, we observe that
all methods scale well until when the number of threads becomes
20, after which hyper threading comes into effect. The join on
INFECTIOUS is already very cheap and does not benefit from
increasing parallelism. Last, as expected all methods are affected
by increasing |R |/|S |; their execution time rises.

5 CONCLUSION
In this short paper, we studied the evaluation of band joins be-
tween two collections of intervals. We extended our framework
for interval overlap joins [3] in two directions; a baseline ap-
proach that expands all intervals by ϵ and then evaluates an
overlap join and a novel approach that uses ϵ to define the parti-
tions and then conducts cheaper joins between partitions. Our
experimental findings show that the second approach is more
efficient, unless ϵ is very small compared to the domain size.
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