
Differentially-Private Next-Location Prediction
with Neural Networks

Ritesh Ahuja

University of Southern California

riteshah@usc.edu

Gabriel Ghinita

University of Massachusetts Boston

gabriel.ghinita@umb.edu

Cyrus Shahabi

University of Southern California

shahabi@usc.edu

ABSTRACT
The emergence of mobile apps (e.g., location-based services,

geo-social networks, ride-sharing) led to the collection of vast

amounts of trajectory data that greatly benefit the understand-

ing of individual mobility. One problem of particular interest is

next-location prediction, which facilitates location-based adver-

tising, point-of-interest recommendation, traffic optimization,

etc. However, using individual trajectories to build prediction

models introduces serious privacy concerns, since exact where-

abouts of users can disclose sensitive information such as their

health status or lifestyle choices. Several research efforts focused

on privacy-preserving next-location prediction, but they have

serious limitations: some use outdated privacy models (e.g., k-

anonymity), while others employ learning models with limited

expressivity (e.g., matrix factorization). More recent approaches

(e.g., DP-SGD) integrate the powerful differential privacy model

with neural networks, but they provide only generic and difficult-

to-tune methods that do not perform well on location data, which

is inherently skewed and sparse.

We propose a technique that builds upon DP-SGD, but adapts

it for the requirements of next-location prediction. We focus

on user-level privacy, a strong privacy guarantee that protects

users regardless of how much data they contribute. Central to

our approach is the use of the skip-gram model, and its negative

sampling technique. Ourwork is the first to propose differentially-

private learning with skip-grams. In addition, we devise data

grouping techniques within the skip-gram framework that pool

together trajectories from multiple users in order to accelerate

learning and improve model accuracy. Experiments conducted on

real datasets demonstrate that our approach significantly boosts

prediction accuracy compared to existing DP-SGD techniques.

1 INTRODUCTION
The last decade witnessed a rapid development in mobile de-

vices capabilities, accompanied by the emergence of numerous

locations-centric applications, such as point-of-interest (POI)

search, geo-social networks, ride-sharing services, etc. As a re-

sult, vast amounts of rich trajectory data have become available.

Coupledwith recent advances inmachine learning, these data can

benefit numerous application domains, such as traffic analysis,

location-based recommendations, homeland security, etc.

Mobile users share their coordinates with service providers

(e.g., Google Maps) in exchange for receiving services customized

to their location. The service providers analyze the data and

create powerful machine learning models. Subsequently, these

models can be (i) placed on user devices to improve the qual-

ity of location-centric services; (ii) shared with business affili-

ates interested in expanding their customer base; or (iii) offered

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

in a Machine-Learning-as-a-Service (MLaaS) infrastructure to

produce business-critical outcomes and actionable insights (e.g.,

traffic optimization). Figure 1 illustrates these cases. Given his-

torical trajectories, several approaches exploit recent results in

neural networks to produce state-of-the-art POI recommender

systems [10, 35, 58]. Even though individual trajectory data are

not disclosed directly, the model itself retains significant amounts

of specific movement details, which in turn may leak sensitive

information about an individual’s health status, political orienta-

tion, entertainment preferences, etc. The problem is exacerbated

by the use of neural networks, which have the tendency to overfit

the data, leading to unintended memorization of rare sequences

which act as quasi-identifiers of their owners [9, 13]. Hence, sig-

nificant privacy risks arise if individual location data are used in

the learning process without any protection.

User 2

User N

Mobile Users

...

User 1

Search

Ride Sharing

Machine 
LearningNetworking

Service Providers

Location 
Updates

Publish 
Model

Business Insights

Targeted 
Advertisement

Next-POI
Recommendation

Figure 1: System Model

The research literature identified several fundamental privacy

threats that arise when performing machine learning on large

collections of individuals’ data. One such attack is membership
inference [25, 52] where an adversary who has access to the

model and some information about a targeted individual, can

learn whether the target’s data was used to train the model.

Another attack called model inversion [56] makes it possible to

infer sensitive points in a trajectory (e.g., a user’s favorite bar)

from non-sensitive ones (e.g., a user’s office). Within the MLaaS

setting—where a third party is allowed to only query the model—

this implies extracting the training data using only the model’s

predictions [20].

Iterative procedures such as stochastic gradient descent (SGD) [7]

are often used in training deep learning models. Due to the re-

peated accesses to the data, they raise additional challenges when

employing existing privacy techniques. In order to prevent the

inference of private information from the training data, recent ap-

proaches rely on the powerful differential privacy (DP)model [14].

Sequential querying using differentially private mechanisms de-

grades the overall privacy level. The recent work in [2] provides

a tight-bound analysis of the composition of the Gaussian Mech-

anism for differential privacy under iterative training procedures,

enabling the utility of a deep learning model to remain high [39],

 

 

Series ISSN: 2367-2005 121 10.5441/002/edbt.2020.12

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.12


while preventing the exposure of the training data [6, 27]. While

integrating differential privacy techniques into training proce-

dures like stochastic gradient descent is relatively straightfor-

ward, computing a tight bound of the privacy loss over multiple

iterations is extremely challenging (see Section 6 for a summary

of results).

The seminal work in [2] provided record-level privacy for a

simple feed-forward neural network trained in a centralized man-

ner. The approach provides protection only when each individual

contributes a single data item (e.g., a single trajectory). When

an individual may contribute multiple data items, a more strict

protection level is required, called user-level privacy. McMahan

et. al. [39] showed that one can achieve user-level privacy pro-

tection in a federated setting for simple learning tasks. However,

ensuring good utility of the trained model for datasets with var-

ious characteristics remains a challenge. McMahan et. al. [39]

remove skewness in their inputs by pruning each user’s data to

a threshold, thus discounting the problems of training neural

models on inherently sparse location datasets, usually having

density around 0.1% [60]. Existing work on privacy-preserving

deep learning either assume large and dense datasets, or are eval-

uated only on dummy datasets [21] that are replicated to a desired

size using techniques such as [38]. Such techniques overlook the

difficulty of training models on smaller or sparse datasets, which

often prevent models from converging [40]. Moreover, they re-

quire extensive hyperparameter tuning to achieve good accuracy,

and the rough guidelines offered to tune these parameters [37] do

not extend to more complex neural architectures, or to datasets

different from those used in their work.

We propose a technique that can accurately perform learning

on trajectory data. Specifically, we focus on next-location predic-

tion, which is a fundamental and valuable task in location-centric

applications. The central idea behind our approach is the use of

the skip-gram model [41, 43]. One important property of skip-

grams is that they handle well sparse data. At the same time, the

use of skip-grams for trajectory data increases the dimensional-

ity of intermediate layers in the neural network. This creates a

difficult challenge in the context of privacy-preserving learning,

because it increases data sensitivity, and requires a large amount

of noise to be introduced, therefore decreasing accuracy.

To address this challenge, we capitalize on the negative sam-
pling (NS) technique that can be used in conjunction with skip-

grams. NS turns out to be extremely valuable in private gradient

descent computation, because it helps reduce the gradient update

norms, and thus boosts the ratio of the useful signal compared

to the noise introduced by differential privacy. In addition, we

introduce a data grouping mechanism that makes learning more

effective by combining multiple users into a single bucket, and

then training the model per bucket. Grouping has a dual effect:

on the positive side, it increases the information diversity in each

bucket, improving learning outcomes; on the negative side, it

heightens the adverse effect of the introduced Gaussian noise. We

study closely this trade-off, and investigate the effect of grouping

factors in practice.

Our specific contributions are:

(1) We propose a private learning technique for sparse loca-

tion data using skip-grams in conjunction with DP-SGD.

To our knowledge, this is the first approach to combine

skip-grams with DP to build a private MLmodel. Although

our analysis and evaluation focus on location data, we be-

lieve that DP-compliant skip-grams can also benefit other

scenarios that involve sparse data.

(2) We address the high-dimensionality challenge introduced

by skip-grams through the careful use of negative sam-
pling, which helps reduce the norm of gradient descent

updates, and as a result preserves a good signal-to-noise

ratio when perturbing gradients according to the Gauss-

ian mechanism of DP. In addition, we group together data

from multiple users into buckets, and run the ML process

with each bucket as input. By increasing the diversity of

the ML input, we are able to significantly boost learning

accuracy.

(3) We perform an extensive experimental evaluation on real-

world location check-in data. Our results demonstrate

that training a differentially private skip-gram for next-

location recommendation clearly outperforms existing

approaches for DP-compliant learning. We also perform

a thorough empirical exploration of the system parame-

ters to understand in-depth the behavior of the proposed

learningmodel. Our findings show that DP-compliant skip-

grams are a powerful and robust approach for location

data, and some of the trends that we uncovered can also

extend to other types of sparse data, beyond locations.

The rest of the paper is organized as follows: we provide back-

ground information in Section 2. Section 3 introduces the system

architecture, followed by the details of our private location rec-

ommendation technique in Section 4. We perform an extensive

experimental evaluation in Section 5. We survey related work in

Section 6, followed by conclusions in Section 7.

2 BACKGROUND
2.1 Differential Privacy
Differential Privacy (DP) [17] represents the de-facto standard in

protecting individual data. It provides a rigorous mathematical

framework with formal protection guarantees, and is the model

of choice when releasing aggregate results derived from sensitive

data. The type of analyses supported by DP range from simple

count or sum queries, to the training of machine learning models.

A popular DP flavor that is frequently used in gradient descent

due to its refined composition theorems is (ε,δ )-differential pri-
vacy. Given non-negative numbers (ε,δ ), a randomized algorithm

M satisfies (ε,δ )-differential privacy iff for all datasets D and D ′

differing in at most one element, and for all E ⊆ Range(M), the

following holds:

Pr [M(D) ∈ E] ≤ eεPr [M(D ′) ∈ E] + δ (1)

The amount of protection provided by DP increases as ε and δ
approach 0. Dwork et al. [17] recommend setting δ to be smaller

than 1/n for a dataset of cardinality n. The parameter ε is called
privacy budget.

Datasets D and D ′ that differ in a single element are said

to be neighboring, or sibling. When the adjacency between the

datasets is defined with respect to a single data record, then the

DP formulation provides record-level privacy guarantees. The

amount of protection can be extended to account for cases when

a single individual contributes multiple data records. In this case,

the sibling relationship is defined by allowing D and D ′ to differ

only in the records provided by a single individual. This is a

stronger privacy guarantee, called user-level privacy.

122



To achieve (ε,δ )-DP, the result obtained by evaluating a func-

tion (e.g., a query) f on the input data must be perturbed by

adding noise sampled from a random variable Z . The amount

of noise required to ensure the mechanism M(D) = f (D) + Z
satisfies a given privacy guarantee depends on how sensitive the

function f is to changes in the input, and the specific distribution

chosen for Z . The Gaussian mechanism (GM) [16] is tuned to

the sensitivity Sf computed according to the global ℓ2-norm as

Sf = supD≃D′ | | f (D) − f (D ′)| |2 for every pair of sibling datasets

D, D ′ . GM adds zero-mean Gaussian noise calibrated to the

function’s sensitivity as follows:

Theorem 2.1. For a query f : D → R, a mechanism M that
returns f (D) + Z , where Z ∼ N(0, σ 2S2

f ) guarantees (ε,δ )-DP if

σ 2ε2 ≥ 2ln(1.25/δ ) and ε ∈ [0, 1] (see [17] for the proof).

The composability property of DP helps evaluate the effect on

privacy when multiple functions are applied to the data (e.g., mul-

tiple computation steps). Each step is said to consume a certain

amount of privacy budget, and the way the budget is allocated
across multiple steps can significantly influence data utility.

2.2 Neural Networks
Modern machine learning (ML) models leverage the vast expres-

sive power of artificial neural networks to dramatically improve

learning capabilities. Convolutional networks have shown ex-

ceptional performance in processing images and video [30]. Re-

current networks can effectively model sequential data such as

text, speech and DNA sequences [12, 28]. A neural network is

composed of one or more interconnected multilayer stacks, most

of which compute non-linear input-output mappings. These lay-

ers transform the representation at one level (starting with the

raw input) into a representation at a higher, more abstract level.

The key to improving inference accuracy with a neural net is to

continually modify its internal adjustable parameters.

Stochastic gradient descent (SGD) is the canonical optimiza-

tion algorithm for training a wide range of ML models, including

neural networks. It is an iterative procedure which performs

parameter updates for each training example xi and label yi .
Learning the parameters of a neural network is a nonlinear opti-

mization problem. At each iteration, a batch of data is randomly

sampled from the training set. The error between the model’s

prediction and the training labels, also called loss, is computed

after each iteration. The loss is then differentiated with respect

to the model’s parameters, where the derivatives (or gradients)

capture their contribution to the error. A back-propagation step

distributes this error back through the network to change its

internal parameters that are used to compute the representation

in each layer from the representation in the previous layer. Each

internal parameter of the model θ is brought closer to predicting

the correct label as follows:

θ = θ − η · ∇θJ(θ ;x (i);y(i))

where η is the learning rate hyper-parameter and J is the loss

function. Iteratively recomputing gradients and applying them

to update the model’s parameters is referred to as descent, and
this operation is performed until the model’s performance is

satisfactory.

2.3 Differentially Private-SGD (DP-SGD)
Introduced in [1], DP-SGD integrates (ε,δ )-DP with neural net-

works. It modifies traditional SGD in that after calculating the

Table 1: Summary of Notations

Notation Definition
U , P Sets of users and check-in locations, respec-

tively

N ,L Cardinalities of setsU and P , respectively

Uu Historical record of user u’s check-ins

dim Dimension of location embedding space

b,η Batch size and learning rate, respectively

q User sampling probability per step

m Expected user sample size per step

ε,δ Privacy parameters of Gaussian mechanism

σ Noise scale

λ Data grouping factor

H Set of training buckets

C Per-layer clipping norm

changes in its internal parameters, it obfuscates the gradient

values with noise sampled from the Gaussian distribution.

DP-SGD averages together multiple gradient updates induced

by training-data examples, clips (i.e., truncates) each gradient

update to a specified maximum ℓ2-norm, and adds Gaussian ran-

dom noise to their averaged value. Clipping each gradient bounds

the influence of each training-data example on the model. Ac-

cordingly, the sensitivity of the average query can be adjusted as

desired, and due to the added noise tuned to the sensitivity of the

query, differential privacy is ensured in each iteration. Typically,

repeatedly executing a query results in sharp degradation of the

privacy protection, as more information is leaked by multiple

usages of private iterations. The moments accountant technique
[1] computes the privacy loss resulting from the composition

of Gaussian mechanisms under random sampling. It tracks the

moments of the privacy loss variable in each step of the descent,

and provides a much tighter upper bound on privacy budget

consumption than the standard composition theorem [17].

3 SYSTEM ARCHITECTURE
In Section 3.1 we define the problem statement. We outline the

learning model architecture in Section 3.2 and we show how

it is utilized in Section 3.3. Table 1 summarizes notations used

throughout the paper.

3.1 Problem Statement
Data Representation. The input to our learning model consists

of check-in data from a set of N usersU = {u1,u2, ...,uN }. The
set of L check-in locations (e.g., points of interest) is denoted

as P = {l1, l2, ..., lL}. Each user u ∈ U has a historical record of

check-ins denoted as Uu = {c1, c2, ...}, where each element ci is
a triplet ⟨u, l , t⟩ comprised of user identifier, location and time.

Learning Objective. The objective of our model is to predict

the location that a given user u will check into next, given a

time-ordered sequence of previous check-ins of the user. The

past check-ins can represent the user’s current trajectory or

his entire check-in history. For each scenario, we describe the

usage of the model in Section 3.3. In an initial step, we employ

an unsupervised learning method, specifically the skip-gram

model [43], to learn the latent distributional context [50] of user

movements over the set P of possible check-in locations. A latent

representation of every location in a reduced-dimension vector

space is the intermediate output. Next, we determine for each user

123



u its inclination to visit a particular location l by measuring how

similar l is in the latent vector space to the locations previously

visited by u.

0

0

0

1

0

.    .    .    .
.   .

X

x1

x2

x3

xi

xL

Input layer

Hidden layer y1

y2

y3

yj

yL

Output layer
Softmax

0

0

0

1

0

.    .     .
.   .

X

dim-dimensional vector

h1

h2

hdim

.    .    .    .    .    .    

W (L x dim)

Embedding of location li  

Embedding Matrix

W (L x dim)

Embedding of location li  

Embedding Matrix

W′ (dim x L)W′ (dim x L)

Context Matrix

B′ (1 x L)B′ (1 x L)

Bias Vector

Figure 2: Architecture of the location-recommendation
model

3.2 Learning Model
The skip-gram negative sampling (SGNS) model [41, 43] was

initially proposed to learn word embeddings from sentences.

However, several recent efforts [10, 35, 58] show that the model

is also appropriate for location recommendation tasks. Specifi-

cally, the model is used to learn location embeddings from user

movement sequences, where each location corresponds to a word,

and a user’s check-in history to a sentence.

Given the set of check-ins of a user, we treat the consecutively

visited locations as a trajectory that reflects her visit patterns.

A data pre-processing step is required to make the data format

compatible with the input of a neural network: every location in

P is tokenized to a word in a vocabulary of size L = |P |. Given a

target location check-in c , a symmetric window of win context

locations to the left and win to the right is created to output

multiple pairs of target and context locations as training samples.

The assumption is that if a model can distinguish between actual

pairs of target and context words from random noise, then good

location vectors will be learned.

Figure 2 illustrates the neural network used in our solution.

The model parameters consist of three tensors θ = {W ,W ′,B′}
and two hyper-parameters representing the embedding dimen-

sions dim and the negative samples drawn neд. Consider a target-
context location pair (lx , ly ). First, both locations are one-hot

encoded into binary vectors ®x and ®y of size L. The multiplication

of ®x with embedding matrixW produces the embedding vector

for the input location lx (i.e., the ith row of matrixW ).W × x

represents the mapping of input location x to a vector
®h in an

dim-dimensional space. Next, for each positive sample (i.e., true

target/context pair), a neд number of negative samples are drawn.

The context location vector ®y along with the negative samples

are passed through a different weight matrixW ′ and bias vector

B′. Finally, a sampled softmax loss function is applied to calculate

the prediction error. At a high level (we refer the reader to [49] for

a detailed look), the parameters are modified such that the input

word (and the corresponding embedding) is tugged closer to its

neighbors (i.e., paired context locations), and tugged away from

the negative samples. As a result, during back-propagation, only

neд+1 vectors inW orW ′ are updated instead of entire matrices.

In the original work [41, 43], negative sampling was devised to

improve computational efficiency, as updating the entire model

in each iteration can be quite costly. In private learning, it also

plays an important role in controlling the adverse affects of noisy

training.

We remark here that techniques such as Noise Contrastive

Estimation [23] and Negative Sampling use a non-uniform dis-

tribution for drawing the samples—for example, by decreasing

the sampling weight for the frequent classes—whereas, we use a

sampled softmax function with a uniform sampling distribution.

This is a necessity for preserving privacy, since estimating the

frequency distribution of locations from user-submitted data will

cause privacy leakage. Lastly, the embedded vectors are normal-

ized to unit length for efficient use in downstream applications.

On top of improving performance [32, 55], normalizing the vec-

tors assists similarity calculation by making cosine similarity and

dot-product equivalent.

We detail the privacy-preserving learning model in Section 4.

In the remainder of this section, we show how the model, once

computed in a privacy-preserving fashion, can be utilized.

3.3 Model Utilization
We provide an overview of how our proposed privacy-preserving

next-location prediction model is utilized. Once our privacy-

preserving learning technique is executed, the resulting model

can be shared with consumers, since the users who contributed

the data used in the training are protected according to the seman-

tic model of DP. While the utilization of our model is orthogonal

to our proposal, we include it in this section in order to provide a

complete, end-to-end description of our solution’s functionality.

A typical use of our model is for a mobile user to download
1
it

to her device, provide her location history as input, and receive a

next-location recommendation. Alternatively, a service provider

who already has the locations of its subscribers, will perform the

same process to provide a next-location suggestion to a customer.

We emphasize that, the model utilization itself does not pose any

privacy issues. In both cases above, neither the input, nor the

output to the model are shared, so there is no privacy concern.

The only time we need to be concerned about privacy is when

training the model, since a large amount of trajectories from

numerous users is required for that task.

Consider a user who has recent check-ins ζ in a relatively

short time period (e.g., last few hours). This set of locations forms

the basis for recommending to the user the next location to visit.

The normalized embedded matrixW in the fully-trained model

encodes the latent feature vector of all locations. For each loca-

tion check-in li ∈ ζ , the embedding vectorsw(li ) are extracted
and stacked on top of each other. More precisely, to obtain the

embedding vectorw(li ), the binary vector of li is multiplied with

W (similar to the first step of the training process). This process is

equivalent to extracting the dim-dimensional row corresponding

to location li . Then, the average of elements across dimensions

of the stacked vectors is computed to produce a representation

F(ζ ) of the recent check-ins of the user. Finally, cosine similarity

scores are computed as the dot-product of the vectorF(ζ ) to the
embedding vector of each location in the universe L. We rank

all locations by their scores and select the top-K locations as the

potential recommendations for the user.

In the case when the user has no recent check-ins, the rep-

resentation F() can be computed over her movement profile

1
To reduce communication costs, only the embedding matrix is deployed.

124



comprising of historical check-ins. Other methods include train-

ing an additional model to learn latent feature vectors of each

user from her preferences and locations visited. As in [19, 58], a

user’s feature representation can be used to determine her incli-

nation to visit a particular location. However, modeling each user

with such personalized representations, while at the same time

preserving user-level privacy, is a fundamentally harder problem

(in terms of both system design and privacy framework), and is

left as future work.

When the model is deployed at an untrusted location-based

service provider (LBS), additional privacy concerns must be ad-

dressed. In this case, the mobile user must protect the set ζ (or

F(ζ )) locally. Techniques such as geo-indistinguishability [3]

can be applied to protect the check-in history (discussed in Sec-

tion 6). For example, the check-in coordinates can be obfuscated

to prevent adversaries from pinpointing the user to a certain

location with high probability. Addressing these vulnerabilities

in the MLaaS setting is orthogonal to the scope of this paper.

4 PRIVATE LOCATION PREDICTION (PLP)
Section 4.1 presents in detail our proposed approach for private

next-location prediction. Section 4.2 provides a privacy analysis

of our solution.

4.1 Private Location Prediction (PLP)
PLP is a customized solution to location recommendation. It

learns latent factor representations of locations while control-

ling the influence of each user’s trajectory data to the training

process. Bounding the contribution of a single data record in the

SGD computation has been proposed in previous work [2, 53].

We make several extensions and contribute data grouping tech-

niques to boost model performance. Even while combining data

of multiple users, we guarantee user-level privacy (such as in

[21, 39]). By grouping data records of multiple users, we benefit

from cross-user learning to improve model performance.

Algorithm 1 depicts the procedure of this learning process.

Model hyperparameters labeled batch size β , learning rate η
and loss function J are related to gradient descent optimization,

whereas hyperparameters labeled grouping factor λ, sampling

probability q, gradient clipping norm bound C , noise scale σ and

privacy parameters ε,δ are introduced to create an efficient and

privacy-preserving system. We briefly describe each component

in isolation before coupling them together to illustrate the big

picture.

User Sampling. Given a sampling probability q =m/N , each

element of the user set is subjected to an independent Bernoulli

trial which determines whether the element becomes part of

the sample. As a consequence, the size of sampled set of users

Usample is equal tom only in expectation. This is a necessary

step in correctly accounting for the privacy loss via the moments

accountant [2].

DataGrouping. Data grouping is essentially a pre-processing
technique that significantly boosts model performance. It has

a dual purpose. The first is to reduce the effects of skewness

and sparsity inherent to location data, where the frequency of

check-ins of users at locations follows the Zipf’s law [11]. The

second is to provide cross-user learning to smooth updates in the

model parameters produced by the function in lines 15-22. The

underlying intuition is simple: to ensure good performance of

the context model, each update of a training step must contribute

to the final result. By combining the profiles of multiples users

U1

U2

U3

U5

U6

U4
User 

Subsampling
With

Probability
q = 0.66

User-partitioned 
data

Data 
Grouping

With 
grouping 

factor
 λ = 2

Training buckets H 

E[ |Usample| ] = m

Usample = 
{U1,U2,U4,U6}

H 2 ={U4,U6} 

H 1 ={U1,U2} 

Figure 3: Data sampling and grouping

we also reduce minor observation errors that may be produced

from specific data points in a user’s profile.

Our data grouping technique agglomerates the data of multiple

users into bucketsH. Given a grouping factor λ, users (and their

entire data) are randomly assigned to buckets such that each

bucket contains λ users. This operation is encapsulated in the

дroupData(·) function in line 6. As a separate method, we also

tried equal frequency grouping, where a global pass over the

record count of each user is used to produce buckets such that

each contains approximately the same number of records (while

ensuring that the data records of each user are not split into

multiple buckets). However, we noticed no statistically significant

benefit in model accuracy from equal frequency grouping than

with a random grouping. Accordingly, we use the latter in the

rest of the work.

Figure 3 illustrates the data sampling and grouping process

(corresponding to lines 5-6) for a sampling probability of 0.66

and λ = 2. Grouped data in each bucket is organized as a sin-

gle array for processing by gradient descent optimization. Re-

call from Section 3.2 that a symmetric moving window is ap-

plied to create training examples, after the array is read by the

дenerateBatches() function (in line 17). A number β of target-

context location pairs are placed in each batch.

In brief, at each step of PLP, we sample a random subset of

users (line 5), combine the data of multiple users into buckets

(line 6), compute a gradient update with bounded ℓ2 norm from

each bucket (lines 7-8), add noise to the sum of the clipped gradi-

ents (line 9), take their approximate average, and finally update

the model by adding this approximation (line 10). Alongside, a

privacy ledger is maintained to keep track of the privacy bud-

get spent in each iteration by recording the values of σ and C
(lines 3 and 11). This tracker has the added benefit of allowing

privacy accounting at any step of the training process. Given a

value of δ and the recorded ledger, the moments accountant can

compute the overall privacy cost in terms of ε . This functionality
is provided by the cumulative_budget_spent() function in line

12, which implements the moments accountant from [2].

Privacy Mechanism. The gradient values computed in line

20 do not have an a-priori bound. This complicates the application

of the Gaussian Mechanism (GM), which is generally tuned to the

sensitivity of the performed query. In this particular use case, we

employ a Gaussian sum query in line 9, the results of which are

then averaged using a fixed-denominator estimator. To bound the

sensitivity of this query, a maximum sensitivity of C is enforced

125



Algorithm 1 Algorithm for Private Location Prediction with

user-level privacy.

Input: loss function J(θ ), grouping factor λ, learning rate η,
sampling probability q =m/N , gradient norm bound C , batch

size β , privacy parameters ε,δ

1: procedure TrainPrivateLocationEmbedding
2: Initialize: Model θ0 = {W ,W

′,B′},
3: Privacy Accounting ledgerA(δ ,q)
4: for each step t = 1, ... do
5: Usample ← a random sample ofmt users

6: Initialize buckets H← дroupData(Usample , λ)
7: for each data bucket dh ∈ H do
8: ḡh ← ModelUpdateFromBucket(θt ,dh )

9: ĝt =
1

|H |
(
∑
h∈H ḡh +N(0,σ

2C2I )) ▷ Noise.

10: θt+1 = θt + ĝt ▷ Model Update.

11: A.track_budget(C,σ )
12: if A.cumulative_budget_spent() ≥ ε then:
13: return θt−1

14:

15: functionModelUpdateFromBucket(θt ,dh )
16: Φ← θt
17: B ← дenerateBatches(dh , β)
18: for each b ∈ B do
19: Φ← Φ − η 1

|b |
∑
(xi ,yi )∈b ∇ΦJ(Φ,xi ,yi )

20: дh = Φ − θt

21: ḡh = дh/max(1,
∥дh ∥2
C ) ▷ Gradient Norm Clipping.

22: return д̄h

on every gradient computed on bucket h as follows (equivalent

to line 21):

∥ḡh ∥2 =

{
∥gh ∥2 for ∥gh ∥2 ≤ C
C for ∥gh ∥2 > C .

Gradient clipping places a strict limit on the maximum cont-

ribution—in terms of its ℓ2 norm—of the gradient computed on a

bucket. Formally, | |ḡh | |2 ≤ C . The sensitivity of the scaled gradi-

ent updates with respect to the summing operation is thus upper

bounded by C . Finally, dividing the GM’s output by the number

of buckets |H| yields an approximation of the true average of the

buckets’ updates.

We note that increasing the number of users in each bucket

increases the valuable information in each gradient update. At the

same time, the noise introduced by the Gaussian mechanism is

scaled to the sensitivity of each bucket’s update (i.e.,C). If too few
buckets are utilized, this distortion may exceed a limit, meaning

that too much information output by the summing operation

is destroyed by the added noise. This will impede any learning

progress. We treat the grouping factor λ as a hyper-parameter

and tune it.

In a multi-layer neural network such as the one described in

our work, each tensor can be set to a different clipping thresh-

old. However, we employ the per-layer clipping approach of [37],

where given an overall clipping magnitude C , each tensor is

clipped to C/
√
|θ |. In the skip-gram model, θ0 = {W ,W

′,B′},

hence |θ | = 3, so we clip the ℓ2-norm of each tensor to C/
√

3.

However, the effect of clipping on the three tensors is rather

different due to the difference in their dimensionality. Context

matrixW ′ is clipped to the same degree as bias vector B′, despite

the fact that they have dimensions (L × dim) and (1 × L), respec-
tively. While the dimensionality of the embedding matrixW is

(L × dim), only a fraction of the weights—proportional to neд,
instead of L—are considered for clipping due to the sampling of

neд number of negative examples in the sampled softmax func-

tion. Simply put, | |W | |2 is proportional to neд and when carefully

tuned, the clipping parameter is large enough that nearly all

updates are smaller than the clip value of C/
√
|θ |, improving the

signal-to-noise ratio over iterative computations. We discuss the

effect of this parameter in controlling the distortion of Gaussian

noise in Section 5.

4.2 Privacy Analysis
Recall that, our proposed system provides user-level differen-
tial privacy to individuals who contribute their check-in history

to the training data. This ensures that all individuals are pro-

tected, regardless of how much data they contribute (i.e., even

if the length of the check-in history varies significantly across

users). LetUk denote the data of a single user. The sensitivity of

the Gaussian Sum Query (GSQ) function w.r.t. to neighboring

datasets that differ in the records of a single user is defined as

SGSQ = max

{Usample ,Uk }
∥GSQ(Usample ∪Uk ) −GSQ(Usample )∥2

In Algorithm 1, GSQ is executed over the bucket gradients, which

complicates the analysis of the privacy properties of the algo-

rithm. We consider two distinct scenarios where a user’s data

may be assigned to: (i) exactly one bucket; or (ii) more than one

bucket. We define ω as the data split factor, meaning that a user’s

data may be placed in at most ω buckets.

Case 1 [ω = 1]. This represents the scenario where multiple

(up to λ) users’ data may be present in a single bucket, but a

single user’s data may be allocated to at most one bucket. Figure

4(a) depicts this case, which is assumed by default in Algorithm 1.

This is a sufficient condition to ensure that the per-user contribu-

tion to a bucket’s gradient update is tightly bounded. Formally,

there exists a unique dh ∈ H s.t.Uk ⊆ dh . In addition, when the

ℓ2 norm of the gradient | |ḡh | |2 computed on a data-bucket dh is

upper-bounded by the clipping factor C , we get

SGSQ ≤ max

{H,dh }
∥GSQ(H ∪ dh ) −GSQ(H)∥2 ≤ C

An informal proof that this approach satisfies (ε,δ )-DP is as fol-

lows: The sensitivity of the gaussian sum queryGSQ =
∑
h∈H ḡh

is bounded as SGSQ ≤ C , if for all buckets we have | |ḡh | |2 ≤ C .
By extension, if a sampled user (and his location visits) can be

assigned to exactly one bucket, sibling datasets that differ in the

data of a single user can change the output ofGSQ by at most C .
Therefore, Gaussian Noise drawn from N(0,σ 2C2I ) guarantees
user-level (ε,δ )-DP.

Case 2 [ω > 1]. If the data of a single user is split over multiple

buckets, then it is possible that even after scaling the bucket

gradients to C , the sensitivity of the Gaussian sum query is no

longerC w.r.t. to user-neighboring datasets. Figure 4(b) illustrates

an example with ω = 2. A similar split strategy (proposed in

[38]) is used in the empirical evaluation of [21], wherein a small

dataset is scaled up to amplify privacy accounting. However, the

authors fail to regulate their noise scale to reflect the altered

data sensitivity or alternatively recompute the achieved privacy

guarantee. We show that when the data of a user Uk is split

across multiple buckets, the sensitivity of the query increases to

126



ω. Assuming that |H| ≤ |Usample |, we can write,

ω = max

{Uk ∈Usample }
|{dh : dh ∈ H and dh ∩Uk , ∅}|

meaning that the data of a user can influence the gradients of at

most ω buckets. Accordingly, if for all buckets | |ḡh | |2 ≤ C , a sin-
gle user can change the output ofGSQ by at most ωC . Therefore,
to guarantee user-level (ε,δ )-DP, Gaussian Noise must be drawn

from N(0,σ 2ω2C2I ) .

Usample = 
{U1,U2,U4,U6}

(a) Buckets generated
with ω = 1  

H 2 ={U2,U6} 

H 1 ={U1,U4} 

U1

U2

U4

U6

ω = 1, λ = 2 ω = 2, λ = 1
H 4

{U2,U6} 

H 3

{U4,U6} 

H 2

{U2,U1} 

H 1

{U1,U4} 

(b) Buckets generated
with ω = 2 

Figure 4: Sensitivity of Gaussian Sum Query over Usample
users: (a) ω = 1, a single user’s data is placed in exactly
one bucket; (b) ω = 2, a single user’s data is split across
two buckets. Since gradients computed over the generated
bucketsH1, ...,H4, are bounded by C, a user can contribute
at most 2C to the computed sum.

We remark here that values of ω > 1 produced no positive

effect in our evaluation. We experimented withω = 2 by splitting

a user’s data to exactly two random buckets. We found that the

signal-to-noise ratio is adversely affected, since the marginally

improved signal from the split data is offset by the now quadru-

pled (proportional to ω2
) noise variance. In the rest of the work,

we set ω to 1.

5 EXPERIMENTS
Section 5.1 provides the details of the experimental testbed. Sec-

tion 5.2 focuses on the evaluation of the proposed technique in

comparison with the state-of-the-art DP-SGD approach. In Sec-

tion 5.3 we evaluate in detail our approach when varying system

parameters, and provide insights into hyper-parameter tuning.

5.1 Experimental Settings
Dataset. We use a real dataset collected from the operation of a

prominent geo-social network, namely Foursquare [59]. The data
consist of a set of user check-ins. Every check-in is described by

a record comprising of user identifier, the latitude and longitude

of the check-in, and the identifier of the POI location. In order to

simulate a realistic environment of a city and its suburbs, we focus

on check-ins within a single urban area, namely Tokyo, Japan.

In particular, we consider a large geographical region covering

a 35 × 25km
2
area bounded to the South and North by latitudes

35.554, 35.759, and to the West and East by longitudes 139.496,

139.905. We filter out the users with fewer than ten check-ins,

as well as the locations visited by fewer than two users (such

filtering is commonly performed in the location recommendation

literature [33, 61]). The remainder of the data contains a total of

739, 828 check-ins from 4, 602 unique users over 5, 069 locations

during a time period of 22 months from April 2012 to January

2014.

Implementation.All algorithmswere implemented in Python

on a Ubuntu Linux 18.04 LTS operating system. The experiments

were executed on an Intel Xeon Platinum 8164 CPU, with 64GB

RAM. All data and intermediate structures (e.g., neural network

parameters, gradients) are stored in main memory. The proposed

neural model is built using Google’s Tensorflow library [1]. To

account for the privacy budget consumption of the complex iter-

ative mechanism used in learning, we use the privacy account-

ing method from [54], which allows for a tight composition of

privacy-preserving steps. At each step of the computation, we

calculate the (ε,δ ) tuple from moment bounds, according to the

moments accountant procedure introduced in [37].

Evaluation Metric. To evaluate the performance of loca-

tion recommendation, we adopt the “leave-one-out” approach,

which has been widely used in the recommender systems litera-

ture [10, 19, 26, 35, 57, 58]. This metric simulates the behavior of

a user looking for the next location to visit. Given a time-ordered

user check-in sequence, recommendation models utilize the first

(t − 1) location visits as an input and predict the t th location

as the recommended location. The recommendation quality is

measured by Hit-Rate (HR). HR@k is a recall-based metric, mea-

suring whether the test location is in the top-k locations of the

recommendation list. The outcome of the evaluation is binary:

1 if the test location is included in the output set of the recom-

mender, and 0 otherwise. In the rest of the section, we use the

terms prediction accuracy and HR@k interchangeably.

Model Training. Our testing and validation sets consist of

location visits of users who are not part of the training set. Since

we do not train models to learn user specific representations

(such as in [10, 35, 58]), this is an accurate representation of real-

life model utilization at a user’s device. Validation and testing

sets are created in a similar fashion. First, a randomly selected

set of 100 users and their corresponding check-ins are removed

from the dataset. From these, time ordered sequences of trajecto-

ries are generated. Each individual trajectory does not exceed a

total duration of six hours (following the work in [10, 34]). The

remaining 4402 users and their check-ins represent the training

dataset for learning the parameters of the proposed model.

To train the model, we utilize Adam [29], a widely adopted

optimization algorithm for deep neural network models that

has specific properties to mitigate disadvantages of traditional

SGD, such as its difficulty in escaping from saddle points, or

extensive tuning of its learning rate parameter. We implement

the optimizer in a differentially private manner by tracking an

exponential moving average of the noisy gradient and the squared

noisy gradient, as illustrated in [24]. We found that tuning the

initial learning rate and decay scheme for Adam only affects the

learning in the very first few steps. Typically, Adam does not

require extensive tuning [29] and a learning rate between 0.001

to 0.1 is most often appropriate. In our experiments, we found

that a learning rate value η ∈ [0.02, 0.07] produces similar results,

so we set it to 0.06 for all our runs.

Parameter Settings.We select the training hyper-parameters

of the skip-gram model via a cross validation grid search. Figure

5 depicts the validation accuracy over 200 data epochs using

the non-private learning approach. We plot the validation Hit-

Rate for k = 5, 10 and 20 candidates, respectively. We look for

those models that reach the highest accuracy. The embedding

dimension dim is set to 50. While a larger number of hidden units

127



allows more predictive power, the accuracy improvement reaches

a plateau when the embedding dimension is in the range [50, 150].

In non-private training, it is preferable to use more units, whereas

for private learning a larger model increases the sensitivity of the

gradient. We keep our model at the lower end of the dim range to

keep the number of internal parameters of the models low. The

batch size is set to b = 32, and the context window parameter

win = 2 (for a total window size of 5). These parameters are

also consistent with those utilized in previous work [10, 58].

Varying the number of negative examples sampled (denoted by

neд) marginally affects the non-private model, whereas with

private learning we find that it directly controls the sensitivity

of the private sum query (in Section 5.3 we show experiments

on how to tune it). The default value for negative samples is

neд = 16.

25 50 75 100 125
Embedding dim

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5
Skip Window win

16 32 64 128 256
Batch Size b

0.15

0.20

0.25

0.30

0.35

0.40

4 8 16 32 64
Negative Samples neg

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
vali HR@5 vali HR@10 vali HR@20

Va
lid

at
io

n 
Ac

cu
ra

cy

Figure 5: Non-private model hyperparameter tuning

For the privacy parameters, we fix the value of δ = 2× 10
−4 <

1/N as recommended in previous work on differentially-private

machine learning [2, 39]. For a given value of δ , the privacy

budget ε affects the amount of steps we can train until we exceed

that budget threshold. We set the default value of the hyper-

parameters to q = 0.06, σ = 2.5, C = 0.5, λ = 4 (please see

Table 1 for a summary of notations). Recall that, the sampling

ratio of each lot is q =m/N , so each epoch consists of 1/q steps.

0 50 100 150 200 250
1.5

2.0

2.5

3.0

3.5

4.0

4.5

Tr
ai
ni
ng

 L
os
s

0 50 100 150 200 250
Data Epochs

0.1

0.2

0.3

0.4

Pr
ed

ict
io
n 
Ac

cu
ra
cy

Loss
test HR@5

test HR@10
test HR@20

vali HR@5
vali HR@10

vali HR@20

Figure 6: Non-private model performance

5.2 Comparison with Baseline
We evaluate the performance of our proposed approach in com-

parison with two baselines: (i) a non-private learning approach

using SGD, and (ii) the state-of-the-art user-level DP-SGD ap-

proach from [2, 39].

First, we evaluate the non-private location prediction model

described in Section 3.2. Figure 6 illustrates the validation and

testing Hit-Rate at k = 5, 10 and 20. The model generalizes well

to the test set, and there appears to be no evidence of overfitting

up to 250 data epochs. The presented results are competitive with

existing approaches in [35, 58], suggesting that the model hyper-

parameters are suitable to capture the underlying semantics of

mobility patterns. The best testing accuracy of the non-private

model for the HR@10 setting is 29.5%.

Throughout our evaluation we found that, when the model is

trained in a differentially private manner, there is only a small

difference between the model’s accuracy on the training and the

test sets. This is consistent with both the theoretical argument

that differentially private training generalizes well [5, 15], and

the empirical evidence in previous studies [2, 39]. For brevity of

presentation, in the rest of this section we only show HR@10

evaluation results (similar trends were recorded for HR@5 and

HR@20).

Next, we evaluate our proposed Private Location Prediction

(PLP) approach in comparison with DP-SGD [2], which is summa-

rized in Section 2.We adapt themodel towork on user-partitioned

data, so that it guarantees user-level privacy. The improvements

of PLP over DP-SGD passed the paired t-test with significance

value p < 0.01.

Figure 7 plots the prediction accuracy of the privately trained

models for varying levels of privacy ε . For each ε value, we con-
sider two settings each for sampling probability q = 0.06 (upper

left) and q = 0.10 (bottom right). We set σ = 1.5. We compare

PLP against the baseline DP-SGD for two values of the grouping

factor λ. As expected, a general trend we observed is that provid-

ing more privacy budget allows the models to train to a higher

accuracy. However, for the baseline approach, the convergence

of the model is thwarted because the model update computed

on the data of a single user contributes a limited signal, which
is often offset by the introduced Gaussian noise. On the other

hand, the results show that by incorporating data grouping in

its design, PLP is able to ameliorate the data sparsity problem

inherent to location datasets. The gain is more pronounced when

the grouping factor increases (i.e., higher λ).
Next, we measure the effect of sampling probability q on ac-

curacy. From the theoretical model [2], we know that q directly

affects the amount of privacy budget utilized in each iteration (q
is also called “privacy amplification factor”). A lower sampling

rate includes less data in each iteration, hence the amount of bud-

get consumed in each step is decreased. Our results in Figure 8

confirm this trend. We vary the rate of user sampling q from 4%

to 12%. For all runs, we fixed the budget allowance at ε = 2. For

a higher sampling probability, the privacy budget is consumed

faster, hence the count of total training steps is smaller, leading

to lower accuracy. Our proposed PLP method clearly outper-

forms DP-SGD, whose accuracy drops sharply with an increase

in q. We note that, due to the proposed grouping strategy, PLP is

more robust to changes in sampling rate, as its accuracy degrades

gracefully. In general, a larger bucket cardinality leads to better

accuracy, except for the lowest considered sampling rate, where

the small fraction of records included in the computation at each

128



0.5 1 2 3 4
Privacy parameter ε

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Pr
ed

ict
io
n 
Ac

cu
ra
cy

PLP, λ=6, q=0.06
PLP, λ=4, q=0.06
DP-SGD, q=0.06

PLP, λ=6, q=0.10
PLP, λ=4, q=0.10
DP-SGD, q=0.10

Figure 7: PLP vs DP-SGD: varying pri-
vacy budget ε

0.04 0.06 0.08 0.1 0.12
Sampling probability q

0.12

0.14

0.16

0.18

0.20

Pr
ed

ict
io
n 
Ac

cu
ra
cy

PLP,λ=6
PLP,λ=4
DP-SGD

Figure 8: PLP vs DP-SGD: varying sam-
pling ratio q

2 3 4 5 6
Grouping Factor λ

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ru
nn

in
g 
Ti
m
e 

 im
pr
ov

em
en

t f
ac

to
r

q=0.06, σ=2.5
q=0.06, σ=1.5
q=0.10, σ=2.5
q=0.10, σ=1.5

Figure 9: Running time, varying group-
ing factor λ

step prevents buckets from reaching a significant diversity in

their composition.

Finally, we provide a result on the runtime improvements

offered by PLP. The y-axis in Figure 9 depicts the multiplicative

factor by which PLP is faster that DP-SGD. We show results for

two values of q, and for each we present the runtime with two

values of noise scale. Linearly scaling the grouping factor has

two opposing effects: on the one hand, fewer buckets implies that

equally few bucket gradients need to be computed and averaged.

On the other hand, as each bucket gets assigned more users, it

takes longer to compute each bucket gradient. When fewer users

are sampled (i.e., q = 0.06) the latter effect begins to dominate for

λ > 5, whereas for λ ∈ [2, 5], the computational efficiency scales

from 1.6× to 2.5×. In the setting where sampling rate is higher,

at q = 0.10, the runtime improvements scale monotonically, to

over 4.8× for λ = 6. These results are consistently observed even

with a different number of total iterations (as a larger σ allows

more iterations).

In summary, our results so far show that PLP clearly out-

performs the existing state-of-the-art DP-SGD. Furthermore, its

accuracy was observed to reach values as high as 24%, which is

quite reasonable compared to the maximum of 29.5% reached

by the non-private learning approach. In the rest of the evalua-

tion, we no longer consider DP-SGD, and we focus on tuning the

parameters of the proposed PLP technique.

5.3 Hyper-parameter Tuning
The objective of tuning model hyper-parameters is to obtain a

good balance of accuracy and computational overhead of learn-

ing. We focus on the following parameters, which we observed

throughout the experiments to have a significant influence: group-

ing factor λ, noise scale σ , the magnitude of ℓ2 clipping norm,

and the number of negative samples neд.

1 2 3 4 5 6
Grouping Factor λ

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Pr
ed

ict
io
n 
Ac

cu
ra
cy

q=0.06, σ=2
q=0.06, σ=3
q=0.10, σ=2
q=0.10, σ=3

Figure 10: Effect of varying λ

Effect of Grouping factor λ. Figure 10 shows the influence on
accuracy of grouping factor λ. We consider two distinct settings

each of sampling parameter q and noise scale σ (for a total of

four lines in the graph). To limit sensitivity, we clip the gradient

norm of each tensor to a maximum l2 norm of 0.5. Choosing

the grouping factor must balance two conflicting objectives: on

the one hand, assigning the data of multiple users to the same

bucket improves the signal in each bucket gradient, by improving

the data diversity within the bucket. On the other hand, the

Gaussian noise must be scaled to the sensitivity of a bucket

gradient, and a larger bucket size results to fewer buckets, which

in turn increases the effect of added noise. Our results confirm

this trade-off: initially, when λ increases there is a pronounced

increase in accuracy. After a certain point, the accuracy levels

off, and reaches a plateau around the value of λ = 5. When the

grouping factor is increased further (not shown in the graph),

the accuracy starts decreasing, because there is no significant

gain in per-bucket diversity, whereas the relative noise-to-signal

ratio keeps increasing.

Effect of Noise Scale σ . The noise scale parameter σ directly

controls the noise added in each step. A larger σ leads to more

noise, but at the same time it decreases the budget consumption

per step, which in turn allows the execution of more learning

steps. Figure 11 depicts the model accuracy for varying settings

of noise scale. The results presented correspond to two settings

each of sampling rate and privacy budget (for a total of four lines).

We observe that for the lower-range of σ values, the accuracy

is rather poor, especially for smaller settings of privacy budget

ε . This is explained by the fact that too little noise is added per

step, and the privacy consumption per step is high. As a result,

only a small number of steps can be executed before the privacy

budget is exhausted, leading to insufficient learning. For larger ε
settings, the effect is less pronounced, because there is sufficient

budget to allow more steps, even when the noise scale is low.

Conversely, a larger σ allows more steps to be executed, so the

best accuracy is obtained for the largest σ = 3.0 setting. However,

we also note that the accuracy levels off towards that setting. For

larger σ values (not showed in the graph), we observed that

the noise magnitude is too high, and even if budget is slowly

exhausted, the training loss in each learning step is excessively

high, preventing the model from converging, and leading to very

low accuracy. We conclude that the choice of noise scale must

be carefully considered relative to the total privacy budget, such

that a sufficient number of steps are allowed to execute, while at

the same time the loss function value per step is not excessive.

The total number of executed steps also influences the compu-

tational overhead of learning. If execution time is a concern, one

129



may want to reduce the number of steps by reducing σ , in an

attempt to accelerate the learning (intuitively, since less noise is

added at each step, the model will converge faster). This approach

is still subject to ensuring that a sufficient number of steps are

executed, as neural networks need to perform several complete

passes over the dataset.

1.0 1.5 2.0 2.5 3.0
Noise Scale σ

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Pr
ed

ict
io
n 
Ac

cu
ra
cy

q=0.06, ε=2
q=0.10, ε=2

q=0.06, ε=4
q=0.10, ε=4

Figure 11: Effect of varying σ

Effect of Clipping norm C.We vary the clipping bound of

every tensor in the model θ0 = {W ,W
′,B′}. The value C rep-

resents the magnitude of per-tensor clipping, which is set to

be equal for every tensor in the model. Clipping more aggres-

sively decreases sensitivity, which in turn leads to a lower privacy

budget consumption per step, and allows additional learning iter-

ations to be executed. Conversely, setting the threshold too low

also limits the amount of learning that the model can achieve per

step. Figure 12 plots the obtained results for several combinations

of sampling probability and grouping factor.

We observe that the for the range of values considered, the

decrease in sensitivity has a more pronounced impact, and as

a result the smaller clipping bounds lead to better accuracy. Of

course, one cannot set the clipping bound arbitrarily low, as that

will significantly curtail learning. Another factor to consider is

the nature of the data, and the effect on gradient values. If the

norm of the resulting tensors following gradient computation is

high, then a low clipping threshold will destroy the information

and prevent learning. In our case, we were able to keep the

gradient norm low by using negative sampling, which in turn

allowed us to obtain good accuracy for that setting. In cases

where this is not possible, it is recommended to increase the

clipping threshold value.

Figure 12: Effect of varying ℓ2 clipping norm

Effect of Negative samples neд. In our final experiment, we

investigate the effect on accuracy of negative sampling, which is

an important factor in the training success of a skip-gram model.

We plot the model accuracy for various values of negative sam-

pling in Figure 13. The number of negative samples neд controls

the total fraction of weights that are updated for each training

sample, and as a side effect it helps keeping the gradient norm

low. We can observe a clear ‘U’-shaped dependency, reaching a

maximum at neд = 16. The observed trend is the result of two

conflicting factors: if the number of negative samples is too low,

training is slowed down, due to the fact that only a small part of

the layers are updated per step. Conversely, if too many samples

are drawn, then the correspondingly many parameters that need

to be updated lead to a large norm. Gradient clipping has an

aggressive effect, and as a result, the amount of information that

can be learned in each update is obliterated by the noise.

4 8 16 32 64
Negative Samples neg

0.14

0.16

0.18

0.20

0.22

Pr
ed

ict
io
n 
Ac

cu
ra
cy

q=0.06, C=0.5
q=0.06, C=0.3

q=0.10, C=0.5
q=0.10, C=0.3

Figure 13: Effect of varying neд

6 RELATEDWORK
Location recommendation. The problems of location recom-

mendation and prediction have received significant attention in

the last decade. Recommending a location to visit to a user necessi-

tates modeling human mobility for the sequential prediction task.

Markov Chain (MC) based methods, Matrix Factorization (MF)

techniques, and Neural Network models (NN) are the schemes

of choice for this objective. MC-based methods utilize a per-user

transition matrix comprised of location-location transition prob-

abilities computed from the historical record of check-ins [62].

Themth
-order Markov chains emit the probability of the user

visiting the next location based on the latestm visited locations.

Private location recommendation over Markov Chains is stud-

ied in [63]. Aggregate counts of check-ins in discretized regions

are published as differentially private statistics. However, due to

the sparsity in check-in behavior and the general-purpose pri-

vacy mechanisms, their method can only extend to coarse spatial

decompositions (e.g., grids having larger than 5km2
cells). Factor-

izing Personalized Markov Chains (FPMC) [47] extend MC by fac-

torizing this transition matrix for the collaborative filtering task.

Matrices containing implicit user feedback on locations can also

be exploited for location recommendation via weighted matrix

factorization [33]. Private Matrix Factorization has been explored

in [36, 51], but we are not aware of any proposal for their appli-

cation to the problem we are considering. Neural Networks have

become a powerful tool in recommender applications due to their

flexibility, expressive power and non-linearity. Recurrent Neural

Networks (RNN) can model sequential data effectively, especially

language sentences [42]. Recurrent nets have also been adapted

for location sequences [34, 64]. However, RNNs assume that tem-

poral dependency changes monotonically with the position in a

sequence. This is often a poor assumption in sparse location data.

As a result, the state-of-art [10, 19, 35, 58] employs the skip-gram

130



model [43] to learn the distributional context of users check-in

behavior. Extensions incorporate temporal [19, 35, 61], textual

[10] and other contextual features [58]. However, none of these

studies provide any privacy features, which is the crux of our

work.

Differential Privacy (DP) and Neural Networks. A recent

focus in the differential privacy literature is to reason about cu-

mulative privacy loss over multiple private computations given

the values of ε used in each individual computation [8, 18, 44, 54].

A fundamental tool used in this task is privacy amplification

via sampling [4], wherein the privacy guarantees of a private

mechanism are amplified when the mechanism is applied to a

small random subsample of records from a given dataset. Abadi

et. al. [2] provide an amplification result for the Gaussian out-

put perturbation mechanisms under Poisson subsampling. Their

technique, called moments accountant, is based on the moment

generating function of the privacy loss random variable. Other

privacy definitions that lend themselves to tighter composition

include Rényi Differential Privacy [44] and zero-Concentrated

Differential Privacy [8], and their application to private learning

with data subsampling ([54],[31] respectively). However, these

privacy models are relatively new and the distinctions in privacy

guarantees at the user-end remain to be investigated. In practice,

(ε,δ )-differential privacy is the de-facto privacy standard [21, 39].
Location PrivacyWe overview literature that focuses on pre-

venting the location based service provider (the adversary) from

inferring a mobile user’s location in the online setting. Spatial

k-anonymity (SKA) [22] generalizes the specific position of the

querying user to a region that encloses at least k users. The result-

ing anonymity set bounds the adversary’s probability of identify-

ing the query user to at most 1/k . However, this syntactic notion
of privacy can be easily circumvented when the data are sparse,
i.e., the distribution of the number of location visits of an average

user over the universe of POIs is long-tailed. Moreover, check-ins

in sparse regions are especially vulnerable to an adversary with

background knowledge, significantly increasing the probability

that de-anonymization succeeds [45]. Another source of leakage

is when the querying user moves, disconnecting himself from

the anonymity set. DP can be used in the context of publishing

statistics over datasets of locations or trajectories collected from

mobile users. The Local Differential Privacy paradigm is well

suited for this purpose, and its application to location data is

explored in [46]. The Randomized Response mechanism is used

to report, in addition to users actual locations, a large number of

erroneous locations. Recommendation models that utilize these

statistics can at best leverage spatial proximity queries [48] or

apply to coarse spatial decompositions [46], and are incapable of

cross-user learning such as in the case of the skip-gram model.

Lastly, adapting the powerful guarantees of DP to protecting

exact location coordinates, Geo-indistinguishability (GeoInd) [3]

relaxes the DP definition to the euclidean space. It is the pri-

vacy framework of choice for obfuscating user check-ins in the

absence of a trusted data curator.

Note that, SKA and GeoInd rely on obfuscating individual

location records that make up the larger dataset, making them

suitable only for applications that utilize spatial proximity queries

(e.g., a user that sends noisy coordinates to obtain points of in-

terest in her vicinity). Utilizing these methods to publish data for

training ML models is not viable, since adding noise to the coor-

dinates wipes out any contextual information on the POI visited

(beginning with the POI identifier). Moreover, since the same

user may have numerous check-in records in a longitudinal loca-

tion dataset, data publishing with the common techniques suffers

from serious privacy leakages. User-level correlations (e.g., multi-

ple checkins of a user that are closely related) severely increase

the possibility of de-anonymization in the case of SKA. Likewise,

in the case of GeoInd, the cumulative privacy loss variable cal-

culated via a standard composition theorem exceeds reasonable

privacy levels.

7 CONCLUSIONS
We proposed a new approach for differentially-private next-

location prediction using the skip-gram model. To the best of

our knowledge, ours is the first technique that deploys DP-SGD

for skip-grams. We made use of negative sampling to reduce the

norms of gradient updates when dealing with high-dimensional

internal neural network layers, and provided a data grouping

technique that can improve the signal-to-noise ratio and allows

for effective private learning. Our extensive experiments show

that the proposed technique outperforms the state-of-the-art, and

they also provide insights into how to tune system parameters.

Although our results focus on location data, we believe that

our findings can be extended to other types of sparse data. In

future work, we plan to test the viability of our approach for

other learning tasks. Furthermore, we plan to investigate flexible

privacy budget allocation strategies across different stages of the

learning process, such that accuracy is further improved. Finally,

we will study more sophisticated data grouping approaches that

make informed decisions on which users to place together in the

same bucket. Since such decisions are data dependent, a careful

trade-off must be considered between the budget consumed per-

forming the grouping and the remaining budget used for learning,

such that prediction accuracy is maximized.

Acknowledgements. This research has been funded in part

by NSF grants IIS-1910950 and IIS-1909806, the USC Integrated

Media Systems Center (IMSC), and unrestricted cash gifts from

Microsoft and Google. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of any of the

sponsors such as the National Science Foundation.

REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine

learning. In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 265–283, 2016.

[2] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and

L. Zhang. Deep learning with differential privacy. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pages
308–318. ACM, 2016.

[3] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi. Geo-

indistinguishability: Differential privacy for location-based systems. In ACM
CCS, 2013.

[4] B. Balle, G. Barthe, and M. Gaboardi. Privacy amplification by subsampling:

Tight analyses via couplings and divergences. In Advances in Neural Informa-
tion Processing Systems, pages 6277–6287, 2018.

[5] R. Bassily, K. Nissim, A. Smith, T. Steinke, U. Stemmer, and J. Ullman. Algo-

rithmic stability for adaptive data analysis. In Proceedings of ACM Symposium
on Theory of Computing, pages 1046–1059, 2016.

[6] R. Bassily, A. Smith, and A. Thakurta. Private empirical risk minimization:

Efficient algorithms and tight error bounds. In IEEE Symposium on Foundations
of Computer Science, pages 464–473, 2014.

[7] L. Bottou. Large-scale machine learning with stochastic gradient descent. In

Proceedings of COMPSTAT’2010, pages 177–186. 2010.
[8] M. Bun and T. Steinke. Concentrated differential privacy: Simplifications,

extensions, and lower bounds. In Theory of Cryptography Conference, pages
635–658. Springer, 2016.

[9] N. Carlini, C. Liu, J. Kos, Ú. Erlingsson, and D. Song. The secret sharer:

Measuring unintended neural network memorization & extracting secrets.

131



arXiv preprint arXiv:1802.08232, 2018.
[10] B. Chang, Y. Park, D. Park, S. Kim, and J. Kang. Content-aware hierarchical

point-of-interest embedding model for successive poi recommendation. In

IJCAI, pages 3301–3307, 2018.
[11] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement

in location-based social networks. In Proc. of ACM SIGKDD Conf. on Knowledge
discovery and data mining, pages 1082–1090, 2011.

[12] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.

Natural language processing (almost) from scratch. Journal of machine learning
research, 12(Aug):2493–2537, 2011.

[13] Y.-A. De Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel. Unique in

the crowd: The privacy bounds of human mobility. Scientific reports, 3:1376,
2013.

[14] C. Dwork. Differential privacy: A survey of results. In Theory and Applications
of Models of Computation, pages 1–19, 2008.

[15] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. Roth. Gener-

alization in adaptive data analysis and holdout reuse. In Advances in Neural
Information Processing Systems, pages 2350–2358, 2015.

[16] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity

in private data analysis. In Theory of cryptography conference, pages 265–284.
Springer, 2006.

[17] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy.

Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.
[18] C. Dwork and G. N. Rothblum. Concentrated differential privacy. arXiv

preprint arXiv:1603.01887, 2016.
[19] S. Feng, G. Cong, B. An, and Y. M. Chee. Poi2vec: Geographical latent repre-

sentation for predicting future visitors. In Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

[20] M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that exploit

confidence information and basic countermeasures. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, pages
1322–1333. ACM, 2015.

[21] R. C. Geyer, T. Klein, and M. Nabi. Differentially private federated learning: A

client level perspective. arXiv preprint arXiv:1712.07557, 2017.
[22] M. Gruteser and D. Grunwald. Anonymous usage of location-based services

through spatial and temporal cloaking. In Proceedings of the 1st international
conference on Mobile systems, applications and services, pages 31–42. ACM,

2003.

[23] M. U. Gutmann and A. Hyvärinen. Noise-contrastive estimation of unnormal-

ized statistical models, with applications to natural image statistics. Journal
of Machine Learning Research, 13(Feb):307–361, 2012.

[24] R. Gylberth, R. Adnan, S. Yazid, and T. Basaruddin. Differentially private

optimization algorithms for deep neural networks. In 2017 International
Conference on Advanced Computer Science and Information Systems (ICACSIS),
pages 387–394. IEEE, 2017.

[25] J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro. Logan: Membership

inference attacks against generative models. Proceedings on Privacy Enhancing
Technologies, 2019(1):133–152, 2019.

[26] X. He, Z. He, J. Song, Z. Liu, Y.-G. Jiang, and T.-S. Chua. Nais: Neural attentive

item similarity model for recommendation. IEEE Transactions on Knowledge
and Data Engineering, 30(12):2354–2366, 2018.

[27] B. Hitaj, G. Ateniese, and F. Pérez-Cruz. Deep models under the gan: infor-

mation leakage from collaborative deep learning. In Proc. of ACM Conf. on
Computer and Communications Security, pages 603–618, 2017.

[28] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

[29] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[31] J. Lee and D. Kifer. Concentrated differentially private gradient descent with

adaptive per-iteration privacy budget. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 1656–
1665. ACM, 2018.

[32] O. Levy, Y. Goldberg, and I. Dagan. Improving distributional similarity with

lessons learned from word embeddings. Transactions of the Association for
Computational Linguistics, 3:211–225, 2015.

[33] D. Lian, C. Zhao, X. Xie, G. Sun, E. Chen, and Y. Rui. Geomf: joint geographical

modeling and matrix factorization for point-of-interest recommendation. In

Proc. of ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 831–840, 2014.

[34] Q. Liu, S. Wu, L. Wang, and T. Tan. Predicting the next location: A recurrent

model with spatial and temporal contexts. In Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

[35] X. Liu, Y. Liu, and X. Li. Exploring the context of locations for personalized

location recommendations. In IJCAI, pages 1188–1194, 2016.
[36] Z. Liu, Y.-X. Wang, and A. Smola. Fast differentially private matrix factor-

ization. In Proceedings of the 9th ACM Conference on Recommender Systems,
pages 171–178. ACM, 2015.

[37] H. B. McMahan and G. Andrew. A general approach to adding differential

privacy to iterative training procedures. arXiv preprint arXiv:1812.06210, 2018.
[38] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, et al. Communication-

efficient learning of deep networks from decentralized data. arXiv preprint

arXiv:1602.05629, 2016.
[39] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang. Learning differentially

private language models without losing accuracy. ICLR, 2018.
[40] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov. Exploiting unintended

feature leakage in collaborative learning. In IEEE Symposium on Security and
Privacy, 2019.

[41] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781, 2013.
[42] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur. Recurrent

neural network based language model. In Eleventh annual conference of the
international speech communication association, 2010.

[43] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed

representations of words and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–3119, 2013.

[44] I. Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer Security
Foundations Symposium (CSF), pages 263–275. IEEE, 2017.

[45] A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse

datasets. In 2008 IEEE Symposium on Security and Privacy (sp 2008), May 2008.

[46] D. Quercia, I. Leontiadis, L. McNamara, C. Mascolo, and J. Crowcroft. Spotme

if you can: Randomized responses for location obfuscation on mobile phones.

In 2011 31st International Conference on Distributed Computing Systems, pages
363–372. IEEE, 2011.

[47] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. Factorizing personalized

markov chains for next-basket recommendation. In Proc. of Intl. Conf. on
World Wide Web, pages 811–820, 2010.

[48] D. Riboni and C. Bettini. Differentially-private release of check-in data for

venue recommendation. In 2014 IEEE International Conference on Pervasive
Computing and Communications (PerCom), pages 190–198. IEEE, 2014.

[49] X. Rong. word2vec parameter learning explained. arXiv preprint
arXiv:1411.2738, 2014.

[50] M. Sahlgren. The distributional hypothesis. Italian Journal of Disability Studies,
20:33–53, 2008.

[51] H. Shin, S. Kim, J. Shin, and X. Xiao. Privacy enhanced matrix factorization

for recommendation with local differential privacy. IEEE Transactions on
Knowledge and Data Engineering, 30(9):1770–1782, 2018.

[52] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference

attacks against machine learning models. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 3–18. IEEE, 2017.

[53] S. Song, K. Chaudhuri, and A. D. Sarwate. Stochastic gradient descent with

differentially private updates. In 2013 IEEE Global Conference on Signal and
Information Processing, pages 245–248. IEEE, 2013.

[54] Y.-X. Wang, B. Balle, and S. Kasiviswanathan. Subsampled renyi differential

privacy and analytical moments accountant. arXiv preprint arXiv:1808.00087,
2018.

[55] B. J. Wilson and A. M. Schakel. Controlled experiments for word embeddings.

arXiv preprint arXiv:1510.02675, 2015.
[56] X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton. A methodology for formaliz-

ing model-inversion attacks. In 2016 IEEE 29th Computer Security Foundations
Symposium (CSF), pages 355–370. IEEE, 2016.

[57] X. Xin, X. He, Y. Zhang, Y. Zhang, and J. Jose. Relational collaborative filter-

ing: Modeling multiple item relations for recommendation. arXiv preprint
arXiv:1904.12796, 2019.

[58] C. Yang, L. Bai, C. Zhang, Q. Yuan, and J. Han. Bridging collaborative filtering

and semi-supervised learning: A neural approach for poi recommendation.

In Proc. of ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining,
pages 1245–1254, 2017.

[59] D. Yang, B. Qu, J. Yang, and P. Cudre-Mauroux. Revisiting user mobility and

social relationships in lbsns: A hypergraph embedding approach. In Proc. of
Intl. Conf. on World Wide Web, 2019.

[60] D. Yang, D. Zhang, L. Chen, and B. Qu. Nationtelescope: Monitoring and

visualizing large-scale collective behavior in lbsns. Journal of Network and
Computer Applications, 55:170–180, 2015.

[61] Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann. Time-aware point-

of-interest recommendation. In Proceedings of the 36th international ACM
SIGIR conference on Research and development in information retrieval, pages
363–372. ACM, 2013.

[62] C. Zhang, K. Zhang, Q. Yuan, L. Zhang, T. Hanratty, and J. Han. Gmove:

Group-level mobility modeling using geo-tagged social media. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1305–1314. ACM, 2016.

[63] J. D. Zhang, G. Ghinita, and C. Y. Chow. Differentially private location recom-

mendations in geosocial networks. In 2014 IEEE 15th International Conference
on Mobile Data Management, volume 1, pages 59–68. IEEE, 2014.

[64] S. Zhao, T. Zhao, I. King, and M. R. Lyu. Geo-teaser: Geo-temporal sequential

embedding rank for point-of-interest recommendation. In Proc. of Intl, Conf.
on World Wide Web, pages 153–162, 2017.

132


	Differentially-Private Next-Location Prediction with Neural NetworksRitesh Ahuja, Gabriel Ghinita, Cyrus Shahabi

