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ABSTRACT
Data structures like indexes are typically used to accelerate
dataflow execution locating and accessing data more efficiently.
The automated management of data structures has been a chal-
lenging problem, traditionally constrained by the time and stor-
age required to build and maintain them. As cloud computing is
becoming an attractive platform for the execution of dataflows
with the usage of compute and storage resources being charged
by cloud providers, monetary cost is becoming an equally impor-
tant factor for the user to consider. In this work, we identify the
opportunity of interleaving dataflow and index build operators
in the execution schedule to utilize idle slots for the creation of
indexes which may be beneficial for future dataflows. In that
way, the cost of building indexes can be eliminated without im-
pacting dataflow execution. We propose an online auto-tuning
approach to assess the importance of indexes for the workload
based on historical data taking into account the trade-off between
the dataflow speed-up they offer and the monetary cost needed
to maintain them. The results show that the proposed approach
can dynamically adapt to the workload and significantly reduce
the average execution time and cost spent per dataflow building
and maintaining a proper set of indexes.

1 INTRODUCTION
Modern applications face the need to process large amounts of
data using complex functions for analysis [40], data mining [32],
Extract-Transform-Load processes (ETL) [45], and more. Such
rich tasks are typically expressed in high-level languages like Pig
Latin [39], optimized and transformed into data processing flows,
or simply dataflows, that describe computations (operators) and
flow dependencies between them [34],[33],[48].

Dataflows are usually executed on distributed systems to pro-
cess independent operators in parallel and reduce overall ex-
ecution time. Among these, clouds have evolved to a popular
platform for large-scale data processing, mainly due to the lack
of any upfront investment and elasticity (the ability to lease re-
sources on demand for as long as needed). Cloud providers offer
compute resources in the form of virtual machines (VMs) which
are typically charged based on a per quantum pricing scheme
(e.g. one hour) such as Amazon EC2 [3], and storage resources
which are usually charged per GB per month [5].
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Data structures like indexes and materialized views are addi-
tionally used to improve the performance of dataflows, encapsu-
lating prior computations to access data more quickly and avoid
unnecessarily large data movements during dataflow execution
[36]. Building and maintaining indexes may be costly in terms
of computation and storage, often exceeding the gain in perfor-
mance [30]. However, in several cases the costs can be amortized.
For example, the time overhead required for the creation of in-
dexes may be reduced by building them in parallel. Also, indexes
are usually associated to multiple dataflows and can thus be ex-
ploited for the execution of future dataflows. As the existence
of indexes may improve application performance, but may also
affect the monetary cost incurred [22, 41], it is important to find
a good trade-off between these two conflicting objectives. Hence,
index tuning (the selection of indexes based on their usefulness)
is required to avoid uncontrolled creation and maintenance of
data structures. This task may become even more challenging,
when the workload is not known a-priori and the set of indexes
may change dynamically over time.

We envision a Query-as-a-Service (QaaS) platform to man-
age the execution of complex dataflow workloads on clouds,
like Google’s BigQuery1. Dataflows, such as exploratory data-
intensive queries, are issued sequentially by the user, e.g. a data
scientist, to extract knowledge from data. Each dataflow is asso-
ciated with a set of indexes that can benefit its execution. The
service incorporates automated management of suggested in-
dexes by creating and deleting them based on their usefulness
on the dataflow workload. These indexes can either be computed
automatically or incorporate feedback from administrators to
generate useful recommendations [16, 29, 43]. This is an orthog-
onal problem and the integration of already proposed solutions
would easily work with our approach. For example, most index
advisors can output a set of indexes that might be useful (e.g., by
doing a what-if analysis). This would be the input to our system.

Building a generic model that captures dataflows and indexes
is an open research problem, mainly because operators may have
arbitrary user code that is often impossible to analyze, and the
usefulness of an index may be specific to each dataflow. However,
this is beyond the scope of this work. We identify five generic
categories of dataflow operators where indexes can be useful:
• Lookup. The complexity of finding a particular record from an
input table of size n isO(n) when no data structure is used and
can be reduced to O(loд n) using a B-tree index or O(1) using
a hash index.

1Google Big Query, https://cloud.google.com/products/big-query
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• Range select. Selecting records in a particular range from the
input can be efficiently performed using a B-Tree index because
the leaves of the tree are sorted. The complexity isO(loд n)+k
where k is the number of records in the range.
• Sorting. The complexity of operators that perform sorting is
O(n · loд n) and can be reduced to O(n) using a B-Tree index.
• Grouping. Grouping can be efficiently performed using sorting,
as described above.
• Join. Several algorithms, such as nested loops join, hash join,
sort-merge join, can be used. Such algorithms are faster when
an appropriate index is provided. For example, the complexity
of sort-merge join is O(n +m) if the inputs (of size n andm)
are sorted.
In this work, we propose an online auto-tuning approach to

assess the usefulness of indexes for the execution of dataflows
taking into account the trade-off between the dataflow speed-
up they offer and the monetary cost needed to maintain them
(the storage cost in the cloud). We identify the opportunity to
build indexes and eliminate their cost using slots of idle time on
compute resources. These may be created due to data dependency
constraints between the execution of dataflow operators but also
the provider’s quantized pricing policy. Building entire indexes
sequentially using idle compute resources may not be feasible
due to the large data volume [41]. Hence, indexes on partitions
of tables or files are built independently. In this way, indexes
can be built in parallel and, most importantly, may fit inside
idle slots. The approach proposed in this work is generic and
can be used in several large-scale data processing platforms, like
Hadoop [7], Hive [46], or Pig [39]. Several systems like [26, 35,
46] have been developed to provide highly scalable distributed
architectures for data processing on the Cloud; however, the
monetary cost and the quantized pricing of resources need to be
considered [23]. To the best of our knowledge, there is no index
management solution that takes into account the monetary cost
of using cloud resources, while related work on execution time
and cost optimization of dataflows does not consider building
and maintaining indexes.

The main contributions of this work are the following:
• We identify the opportunity to use idle slots on compute re-
sources created when executing data-intensive flows due to
data dependency constraints between operators but also the
quantum-based pricing policy of compute resources.
• We propose an online auto-tuning approach to assess the
importance of indexes based on the trade-offs between the
dataflow execution speed-up they offer and the monetary cost
needed to maintain them.
• We develop two index interleaving algorithms, namely linear
program based interleaving and online interleaving algorithms,
to utilize idle slots in the dataflow execution schedule and build
indexes in parallel without increasing the monetary cost and
the time required for the execution of each dataflow.
• We provide an experimental evaluation to show the effective-
ness of the proposed approach to accelerate dataflow execution
and eliminate the related monetary costs.
The rest of the paper is organized as follows. Related work

is discussed in Section 2. The problem description follows in
Section 3, while the optimization problem is defined in Section 4.
The online auto-tuning approach and interleaving algorithms
proposed are described in Section 5. The experimental evaluation
and its results follow in Section 6, while Section 7 concludes the
paper.

2 RELATEDWORK
A considerable body of work focuses on VM consolidation to
exploit underutilized resources for the execution of multiple
workloads [14, 51]. However, consolidating different workloads
may greatly affect application performance due to interference,
as consolidated VMs may compete for resources [53]. In con-
trast, the idea of this work is to interleave dataflow and index
build operators in the execution schedule to accelerate dataflow
execution while eliminating the cost of building indexes.

Offline algorithms for index tuning on centralized systems
like [10, 16] do not consider a dynamic environment where the
service is unaware of the dataflows and a priori predictions of
how long to keep and when to delete indexes cannot be made.
Our approach is closer to online algorithms like [9, 38, 52]. How-
ever, we target a distributed and elastic environment where VMs
are allocated dynamically and compute resources are prepaid
for the whole time quanta. Also, what-if optimizations that im-
prove index tuning [16] are complementary to our work and
can be used to accelerate the computation of index usefulness.
Approaches that incorporate feedback from administrators to
improve index recommendations [29, 43] are also orthogonal to
our work, as user feedback can be beneficial for the computation
of index usefulness. The problem of index interactions has also
been studied [42, 44]. Such efforts could be leveraged in our work
to delete indexes that become obsolete when index interactions
in the dataflow workload are identified.

Online algorithms for distributed environments like [13, 20,
41, 47] focus on replicated databases, investigating which sets of
indexes to build on each replica and how to route queries prop-
erly to take advantage of them. Such approaches can be used in
combination with our proposed approach since multiple replicas
for each partition are typically created in distributed environ-
ments to increase efficiency and fault tolerance [24]. Indexing
mechanisms on clouds like [11, 15, 36] mainly focus on the opti-
mization of application performance and ignore the monetary
cost of using the resources. The monetary cost of data structures
has been considered in multi-user environments [30, 49] to dis-
tribute the creation and maintenance costs of data structures
among multiple users. However, our work focuses on single-user
environments where resources allocated to the user are dedicated
and data structures built are not shared among multiple users.
This way, each user is independent and the provider’s pricing
policy for compute and storage resources like Amazon Elastic
MapReduce [4] can be directly used, without considering com-
plex cost sharing policies that users may or may not agree with.
Finally, the work in [21] considers the problem of data structure
reuse by future queries, materializing and storing the output
of operators of MapReduce jobs. To the best of our knowledge,
there is no index management approach for single-user environ-
ments that takes into account the monetary cost of using cloud
resources.

3 PROBLEM DESCRIPTION
Figure 1 shows the architectural framework envisioned in this
work. The typical users of the QaaS service are data scientists that
issue exploratory query tasks to extract knowledge from data,
such as data intensive transformations that perform processing
and aggregations on data read from tables or files. The data can
be partitioned for flexibility, performance, and fault tolerance
and indexes on each partition of tables or files can be built. Each
user interacts with the service by issuing dataflows sequentially,
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…	  

Time	  
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Historical	  

Running	  

Queued	  

Figure 1: The setting of the QaaS service.

usually observing the results obtained from the execution of
a single dataflow before submitting the next one. The service
executes the dataflows on top of clouds according to selected
execution schedules with desired time-money trade-offs using
compute and storage services offered by cloud providers. The
execution of the dataflow is interleaved with the execution of
build index operators and the indexes created are stored in the
cloud storage. Each dataflow submitted for execution has access
to currently available indexes and each operator can make use of
those associated to partitions it accesses.

Motivation. A dataflow example is shown in Figure 2a. As can
be seen in the graph of the DAG (left part of the figure), the
dataflow uses two partitions,A.0 andA.1, of an input tableA and
performs processing (Q1, Q2), partitioning (P ), and aggregations
(Q3). The dataflow is associated to a set of indexes (A_DS .0 and
A_DS .1) built for the table partitions (A.0 and A.1, respectively)
as shown in the right part of the figure. There are two indexes to
be built: A built in three parts A0,A1 and A2 and B built in parts
B0, B1 and B2. Parts can be created in parallel using different
VMs. Figure 2b shows an execution schedule of the dataflow
operators when using 3 VMs (VM1,VM2,VM3). Arrows show
the idle slots created due to data dependency constraints and the
quantized pricing policy (f 1 − f 6). For example, slot f 4 onVM2
remains idle asQ3 cannot be executed until allQ2 operators have
finished. Such idle slots can be used for the building of indexes
without incurring any additional cost, as shown in Figure 2c.
Different indexes can be built in parallel such as the case of A1
and B0. The execution of the index build operator A1 at VM2
is stopped as it is not completed before the execution of the
dataflow operator P starts so that the execution of the dataflow
is not delayed. Similarly, B2 is stopped before the time the leased
quantum expires to avoid unnecessary costs for building indexes.

Application Model. A dataflow d is modelled as d(expr ,R,N , t),
where expr is its definition expressed in an appropriate language,
R is the set of input tables, N is the set of indexes that can accel-
erate its execution, and t is the time point that the dataflow is
issued to the service. The dataflow is modelled as a DAG where
the nodes correspond to operators and the edges to data de-
pendencies (flows) between them. An operator is modelled as
op(cpu,memory,disk, time), where cpu is the CPU utilization,
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(a) dataflow and build index DAGs.
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(b) Execution schedule of the dataflow DAG.
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(c) Interleaving of dataflow and build index operators.

Figure 2: Execution of an example dataflow and indexes

mem is the maximum memory needed for its normal opera-
tion, disk is the disk resources, and time is its execution time.
A flow between two operators is labelled with the size of the
data transferred between them. The estimations of operators can
be computed analytically or can be collected by the system at
runtime [37]. Since we target large datasets, the statistics (e.g.,
histograms) do not change radically over time (a 10GB update
on 1TB dataset is not large enough to change the statistics). The
dataflow processing rate is much higher than the rate at which
the data is updated. This is the typical case in many settings:
updates are done every few days and the datasets are processed
much more frequently [27]. Also, operators come from a set that
does not change frequently, which is typical for exploratory data
analysis [36].

Cloud Model. Compute resources are offered in the form of
VMs (or containers) with a fixed capacity of resources, CPU,
memory, disk, and network, respectively. Each VM is charged
at a fixed price (Mc ) per time quantum (Q) and can be dynam-
ically allocated and deallocated based on the workload needs.
In this work, homogeneous VMs are assumed. This is typical
for many installations; most VMs are of the same size and only
few VMs which run critical services are significantly larger (like
namenodes of Hadoop [7]). An idle VM (a VM that is not used)
is deleted when its currently leased time quantum expires, since
the resources are prepaid for whole time quanta [3]. Each VM
has a local disk that can be used to store temporary results or
data. After deleting a particular VM, the files stored in its local
disk cannot be recovered.
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A storage service is used to store data persistently; VMs re-
trieve data from the storage service and cache it to their local
disks and transfer data to the storage service after the execu-
tion of an operator finishes. This scheme is flexible as compute
from storage resources are decoupled. Typically, cloud providers
charge a fixed amount of money per GB per month (MC). In the
model used, the cost of storing data,Mst , is measured in GB per
time quantum (Q). As a year has approximately 365.25 days and,
assuming that Q is measured in minutes, we compute Mst as
(MC · 12 ·Q)/(365.25 · 24 · 60).

Data Model. Tables can be partitioned and stored to the stor-
age service of the cloud. As mentioned, allocated VMs can cache
table partitions to their local disk to avoid network overheads
when possible. Data updates are performed in batches periodi-
cally (every day or week). Each update creates a new version of
the table partitions changed [2], invalidating old versions and
indexes built on them. A table t in the database is modelled by
its schema (i.e., the names and types of its columns), its ordered
set of partitions, and its statistics: t(schema, P, S). A partition
p ∈ P is modelled by its id , its number of records n and a partic-
ular path in the storage service where the partition is located:
p(id,n,path). The statistics contain the average size of the fields
of each column.

An index idx built on table t is modelled as idx(t,C,T ), where
C is the ordered set of columns based on which the index is built
and T is the ordered set with the respective creation time points
of its partitions. Each index consists of several index partitions
built on different table partitions. Index partitions can be built
on different time periods. The index size is computed by adding
the sizes of its partitions. The size of a partition can be computed
based on the type of the index (e.g. Hash, B+Tree). We assume
without loss of generality that B+Trees are used. The size of
partition p of index idx is computed as follows:

size(idx,p) = (1 − k logk (p .n)) · RecSize/(1 − k),

where RecSize is the average size of the record in the index,
computed from column statistics, and k is the width of the tree
computed from the block size on the disk and the record size
RecSize . Assuming that the tree is balanced, its size is computed
using geometric series as follows: the total number of records
including the non-leaf blocks is

∑m
i=0 k

i = (1−km )/(1−k), where
m is the height of the tree computed asm = logk N . Parameter
N represents the number of records in the partition. The time
to build an index idx , ti (idx), is computed by adding the time
to build all the index partitions of the corresponding table. The
time to build the index on a partition p is computed as:

tip (idx,p) = tio (idx,p) +C(idx) · p.n · logk (p.n)/TQ ,

where C(idx) is a constant calculated using the columns in the
index. The time to read and write the partition tio (p) is computed
as:

tio (idx,p) = (p.n · RecSize + size(idx,p))/cont .net,

where cont is the container to which the build index operator is
assigned for execution. The building of indexes can be expressed
as a DAGwith operators that take as input one partition and build
the partial index on that partition. Operators are independent
to each other (there are no edges between the operators in the
DAG) and as a result there is a large degree of parallelism. Hence,
indexes can be built incrementally (not all index partitions need
to be built in order to use the index) and in parallel (two or more
index partitions can be built simultaneously). The storage cost of

index idx for a time periodW (given in time quanta) is computed
by adding the cost stp(idx,p,W ) of storing each index partition
p for that period, where

stp(idx,p,W ) =W · size(idx, idx .t .P[p]) ·Mst .

Our approach can work with different pricing models. A pric-
ing model is plugged to the scheduler by using the appropriate
pricing formulas for the cost of a VM (MC ) and the cost of storage
(Mst ). Also, although we consider a homogeneous environment
with a single VM type, the scheduler can consider slots at different
VM types.

Dataflow and Index Management. The dataflows are issued
sequentially to the service. Historical dataflows (dataflows that
have already been executed) are stored in a list called Hd . An
execution schedule Sd of a dataflow graph d is a set of assign-
ments of its operators to containers. An execution schedule is
computed taking into account the network communication cost
using the model in [33]. The execution time of a dataflow in
schedule Sd , td (Sd ), is defined as the time period from the time
the first operator starts executing until the time the execution of
the last operator finishes. The monetary costmd (Sd ) is computed
taking into account the sum of the total time quanta of the VMs
leased. The monetary cost and execution time are measured in
quanta in order to have the same unit. An idle slot f (id,q, c, Sd )
in schedule Sd is a continuous time period inside the leased time
quantum q of the container, c , that has no operators running. The
fragmentation of the schedule is the set of all the idle slots in the
leased containers and shows the time the compute resources are
not used during the execution schedule, but they are charged by
the cloud provider.

Idle slots can be used for the building of indexes. We denote
as I the evolving ordered set of indexes built and maintained by
the service. The set of indexes available at time t is denoted as
I (t) and the set of all indexes created during the operation of
the service (independently of whether they are deleted or not)
is denoted as I . Potential indexes are indexes that are associated
with one or more dataflows, but they are not beneficial to build.
Indexes built on table partitions that are updated are deleted and
marked as not built to support index updates.

4 OPTIMIZATION PROBLEM
This work considers the problem of interleaving indexes with
the execution of dataflows so that dataflow execution, in terms
of execution time and monetary cost, is not affected. The aim
is to determine the set of beneficial indexes required to build
and maintain over time to achieve good trade-offs between the
dataflow speedup and the monetary cost required taking into
account the storage cost needed to maintain the indexes.

The optimization problem is formulated as a weighted single
objective problem using a linear function to express the different
tradeoffs between the time and money objectives:

max
I

[∑
i
Mc · (α ·δtd (di )+ (1−α) ·δmd (di ))−

∑
j
st(I [j])

]
, (1)

where d is the dataflow, st(I [j]) is the storage cost of index I (j),
δtd (di ) is the difference (given in quanta) in dataflow execution
time without and with the use of indexes and δmd (di ) is the
difference (quanta) in the monetary cost required without and
with the use of indexes. Parameter α essentially expresses how
much money a time quantum is valued, taking values between
0 and 1 that correspond to scenarios where the optimization
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Table 1: Notation used.

Parameter Meaning
TQ Quantum size
Mc VM price (per quantum)
Mst Storage cost (per GB per quantum)
I (t ) The set of indexes available at time t
a Parameter for time-cost trade-off
st (idx ,W ) Storage cost of index idx within a time windowW
дt (idx , t ) Gain in time for index idx at time t
дm(idx , t ) Gain in money for index idx at time t
dc(t ) Gain fading function
ti (idx ) Time for building index idx
mi (idx ) Monetary cost for building index idx

problem becomes one-dimensional. Small values of α indicate
that monetary cost (or money) is more important, while large
values of α indicate scenarios where time is more important. The
difference in time δtd (di ) is multiplied with the container price
per quantum (Mc ) so that the time and money objectives have
the same units.

In a dynamic environment where arbitrary dataflows are is-
sued at arbitrary time points using different sets of potential
indexes, it is hard to find the optimal sequence of index sets (I (t)),
i.e., determine when to build and delete indexes using Equation 1.
We formulate the optimization problem to a more suitable form
(Equation 2) for the computation in an online fashion:

I (t) = arдmax
I

[ ∑
idx ∈I

(α ·Mc ·дt(idx, t)+(1−α)·дm(idx, t))
]
, (2)

where functions дm(idx, t) and дt(idx, t) (described in Equa-
tions 4 and 5) compute the gain in money and time, respectively,
when using a particular index idx at time point t and within
a time window of predefined sizeW (e.g., two quanta). Table 1
summarizes the notation used to define the optimization problem.
Equation 2 can be approximated in an online fashion by comput-
ing the gain of each index individually, building and maintaining
only those that contribute in a positive way to the summation at
any given point in time. More specifically, an index idx is said to
be beneficial at time point t if its gain (the weighted summation
of time and money gain of Equation 3) is positive.

д(idx, t) = α ·Mc · дt(idx, t) + (1 − α) · дm(idx, t) (3)

Indexes are built as soon as they become beneficial and are deleted
as soon as they become non beneficial.

The gain in money дm(idx, t) of index idx is computed by
adding the gain in money дmd (idx,di ) of the index on each
related dataflow di (the dataflows that use it and are evaluated
inside time window [t−W , t] and the currently running dataflow)
and the monetary cost required to build and store the index for
time periodW , as described in Equation 4:

дm(idx, t) =
∑
i

(
δ (di , t) · dc(δTdi ) ·Mc · дmd (idx,di )

)
−(Mc ·mi (idx) + st(idx,W ))

(4)

where δ (di , t) is 1 if the dataflow f has been executed during
time period [t −W , t] or else 0, δTdi is the number of quanta
passed since the dataflow di was executed (0 for the ones that are
currently running or queued) and dc(t) is a function that reduces
with time in order to fade the gain of the historical dataflows.
An exponential function is used to fade the gain: dc(t) = e−t/D ,
where parameter D controls the degree the historical dataflows
affect it. A small value of D means that dc(t) approaches quickly
to 0 and, as a consequence,дm(idx) becomes negative.We assume

Table 2: Dataflows Issued using Indexes A and B.

Dataflow Time Gain Money Gain
d1(−, −, {B }, 10) дtd (B, d1) = 1.0 дmd (B, d1) = 3.0
d2(−, −, {B }, 30) дtd (B, d1) = 2.0 дmd (B, d1) = 5.0
d3(−, −, {A, B }, 50) дtd (A, d1) = 2.0 дmd (A, d1) = 8.0

дtd (B, d1) = 3.0 дmd (B, d1) = 8.0
d4(−, −, {A}, 100) дtd (A, d1) = 3.0 дmd (B, d1) = 5.0

Figure 3: Gain over time of two indexes A and B.

that D is the same for all indexes. However, different values of
the controller D can be used for each individual index. Automatic
learning of the controller for each index based on predictions is
a direction for future work. Also,mi (idx) is the monetary cost
required to build the index, st(idx,W ) the storage cost required
to maintain it for a time windowW and дmd (idx,di ) is the gain
in money of dataflow di when using index idx which is computed
based on the time gain of the index on di . The gain in money
дmd (idx,di ) also includes the monetary cost spent to read the
index from the storage service, which is equivalent to the time
to read the index, as both of them are measured in quanta. If
dataflow di does not use index idx , then дmd (idx,di ) = 0.

Similarly, the time gain дt(idx, t) of index idx at time point t
is computed taking into account the gains of index idx on the
dataflows executed within the time windowW , subtracting the
time needed to build it as follows:

дt(idx, t) =
∑
i

(
δ (di , t) · dc(δTdi ) · дtd (idx,di )

)
− ti (idx) (5)

where дtd (idx,di ) is the gain in time of dataflow di when using
index idx .

An example to illustrate the proposed approach is presented.
Assume the dataflows shown in Table 2 are issued to the service
at the time points specified. The dataflows use two indexes, A (of
size 100MB) and B (of size 500MB). The time and money gain of
the indexes for each dataflow is included in the table. Figure 3
shows the gain of each index computed over time for the case of
α = 0.5 and D = 60. It can be seen that the gain of both indexes,
A and B, is negative in the beginning due to their storage cost.
As dataflows specify them as useful, the gain becomes positive at
some point (the indexes become beneficial) and then decreases
over time because of parameterD (that impacts index usefulness).
For example, index B becomes beneficial at time point 30 and
will be deleted at time point 125 where it stops being useful.

5 AUTO-TUNING APPROACH
In this section, we propose an auto-tuning approach to select and
build an optimal set of indexes over time. Statistics from historical
(issued) dataflows and their specified indexes are continuously
collected and used tomake decisions about which indexes to build
or delete at each time point. Dataflows to be executed can only use
indexes that are currently available, while new indexes to be built
are scheduledwith the currently issued dataflow. Indexes are built
using idle slots in the execution schedule of the issued dataflow
so that the dataflow execution is not affected. However, beneficial
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Figure 4: Index ordering based on α at time point t .

indexes to be built may not fit in the currently available slots
and selecting which beneficial indexes to build is required. Since
the goal is to maximize the optimization objective of Equation 2,
indexes are ranked based on their usefulness and the best subset
to be built is selected.

5.1 Index Ranking
Equation 3 is used to compute the usefulness or gain of indexes at
each time point, as described earlier in Section 4. Non beneficial
indexes are not built or are deleted if they are already available.
Note that an index that is not used for a long time may become
non-beneficial because of the increased storage cost. We only
consider beneficial indexes with дm(idx, t) and дt(idx, t) (Equa-
tions 4 and 5) larger than 0 and among them higher values of gain
(Equation 3) are preferred. Essentially, indexes can be depicted
in a bi-dimensional space based on their time and money gain as
shown in Figure 4. Indexes at the lighter areas are prioritized. For
example, point 1 has the highest priority for a=0.7, while indexes
X1, X2, X3, and X4 are not beneficial.

5.2 Online Index Tuning
The online index tuning approach proposed is shown in Algo-
rithm 1. The algorithm schedules the issued dataflow along with
the subset of potential indexes that maximize the total gain. Ben-
eficial indexes are assigned to idle compute resources in the
dataflow execution schedule without violating the constraints (i.e,
the time and the monetary cost of the dataflow are not affected).
Indexes that are not beneficial or cannot fit to the schedule are
deleted. Note that partitions of a particular index can be built in
the context of several dataflows if there is not enough idle time
to build it entirely in the context of one dataflow. The algorithm
is triggered every time a new dataflow is issued, the execution of
a dataflow finishes or periodically at fixed time intervals to delete
indexes that become non beneficial when there is not any new
dataflow to be issued. In more detail, the procedure triggered
is the following. The gains in time and cost for each index are
computed and beneficial indexes are ranked (lines 2-9 of Algo-
rithm 1) as described in Section 5.1. Then, the algorithm calls the
index interleaving procedure to compute the skyline of execution
schedules of the dataflow d f interleaved with build index oper-
ators and selects from the skyline the schedule to be executed
(lines 10-11). Different methodologies can be used to choose the
schedule to be executed. In this work, the fastest schedule is
chosen. In lines 13-19 the algorithm identifies index partitions
that are not beneficial and need to be deleted.

Algorithm 1 Online Index Tuning
Input:

Hd : The historical dataflows.
Ai , Bi , Pi : The index lists.

df : The next dataflow to schedule.
Return:

Sdf : The schedule of the dataflow.
SBI : The schedule of the build indexes.
DI : The indexes that should be deleted.

1: GAINS ← ∅
2: for i ∈ Pi do
3: дt ← дt (i , Hd ∪ df )
4: дm ← дm(i , Hd ∪ df ) ▷ Compute the index gains
5: if дt > 0 and дm > 0 then
6: GAINS ← GAINS ∪ {i }
7: end if
8: end for
9: RANK ← rank2Dspace(GAINS ) ▷ rank the indexes
10: skyl ine ← schedule(df , Ai , RANK )

▷ Scheduling of both the dataflow and indexes
11: Sdf , SBI ← select (skyl ine) ▷ Select the schedule from skyline
12: DI ← ∅
13: for i ∈ Ad do
14: дt ← дt (i , Hd ∪ df )
15: дm ← дm(i , Hd ∪ df )
16: if дt ≤ 0 and дm ≤ 0 then
17: DI ← DI ∪ {i } ▷ Indexes to be deleted
18: end if
19: end for
20: return (Sdf , SBI , DI )

5.3 Index interleaving approaches
In this section, we propose two different approaches to schedule
dataflows interleaved with build index operators without using
additional monetary cost, namely the Linear program based in-
terleaving algorithm (LP) and the online interleaving algorithm.
The LP interleaving algorithm initially schedules the currently
issued dataflow and finds the idle slots in the compute resources.
Then, it uses a linear programming algorithm to determine the
subset of potential index partitions and tries to assign them on
the idle slots based on their ranking (gain). The online interleav-
ing algorithm schedules the current dataflow and the index build
operators together labeling the index build operators as optional
operators to be scheduled.

5.3.1 Linear program based interleaving algorithm. The LP
interleaving algorithm shown in Algorithm 2 schedules indexes
after the dataflows. More specifically, the algorithm initially up-
dates the operator runtimes based on the available index parti-
tions. Estimations of runtimes can be provided based on existing
models [50]. The algorithm calls the scheduler described in Algo-
rithm 4 to compute the skyline of the execution schedules (line
6). For each schedule in the skyline, the algorithm finds the set of
idle slots and sorts them in decreasing order based on their size
(lines 8-10). For each slot, a linear program (line 12) is solved to
determine the subset of potential indexes that maximize the total
gain. The build index operators in each idle slot are sorted by gain
so that the building of less useful indexes is stopped when the
time quantum ends or the next assigned operator is scheduled (as
shown in Figure 2c) before the build index operator finishes due
to runtime estimation errors. The build index operators whose
execution has been stopped are queued and scheduled with the
next dataflow issued. Overall, the algorithm does not violate the
constraints (i.e. index interleaving does not affect dataflow exe-
cution in terms of time and money) as indexes are built on slots
that are not used for the execution of dataflow operators, but
they are charged.
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Algorithm 2 Linear program based interleaving algorithm
Input:

df : The current dataflow from the input.
Ai : The available indexes.
I : The ranked list of indexes.

Return:
skyl ine : The skyline of solutions.

1: for op ∈ df do
2: if op uses indexes in Ai then
3: update(op , Ai ) ▷ op. runtimes based on available indexes
4: end if
5: end for
6: skyline← Skyline(df ) ▷ generate skyline of execution schedules
7: for s in skyline do
8: idle_time← FindIdleTime(s)
9: ordered_idle_time← OrderBySize(idle_time)
10: indexes←∪(I .P )
11: for i in ordered_idle_time do
12: maxset← SolveLinearProgram(i, indexes)

▷index set to be built based on linear program
13: for m in maxset do
14: schedule(m, i) ▷ assign indexes to idle slots
15: end for
16: indexes← indexes - maxset
17: end for
18: add indexes to s
19: end for
20: return skyline ▷ schedules of dataflow ops and index build ops

Algorithm 3 Linear Program Algorithm
Input:

f : The size of the idle time segment.
pi : The sizes of all the build index partition operators.
дi : The gain of all the build index partition operators.

Return:
The subset of the build index operators that maximize Equation 2

1: max
[ ∑

i (wi ∗ дi )
]

w.r.t
2:

∑
i (wi ∗ pi ) ≤ f

3: 0 ≤ wi ≤ 1, ∀i
4: inteдer (wi ), ∀i
5: return (w1,w2, ...wn )

Linear program approximation algorithm. The problem of as-
signing build index operators into idle time slots on compute
resources is a variation of the Knapsack [31] problem, which is
NP-hard. The Linear program approximation algorithm shown
in Algorithm 3 is an approximation algorithm to solve a 0/1 knap-
sack problem for each idle time slot. The algorithm solves the
relaxed problem setting the weights of the build index opera-
tors between the values 0 and 1 and calls a branch and bound
algorithm to find integer values.

Skyline dataflow scheduler. Different execution schedules that
vary in the achieved execution time and monetary cost can be
created by assigning the dataflow operators to potential slots
of the available VMs. Between them, non-dominated solutions
(solutions that outperform others in terms of execution time
and monetary cost) may be preferred. The set of non-dominated
solutions achieved comprises the obtained skyline of execution
schedules. The algorithm in [12] is used to develop the skyline of
execution schedules for each dataflow. An operator is candidate
for assignment when all of its predecessors are assigned, starting
from operators without data dependencies (entry nodes in the
dataflow graph). At each iteration, the algorithm (Algorithm 4)
assigns the next available operator to the partial solutions of the
current skyline taking into account the communication costs and
data dependency constraints between the operators. After the
assignment of the new operator to all the possible slots, the new
skyline is computed. Between schedules with the same execution

Algorithm 4 Skyline Dataflow Scheduler
Input: df : The dataflow DAG.

C : The maximum number of containers to use.
Output: skyl ine : The solutions in the skyline.

1: skyl ine ← ⊘
2: r eady ←{operators in df that have no dependencies}
3: f ir stOperator ← r eady .peek ()
4: f ir stSchedule ← {assiдn(f ir stOperator , 1, −, −)}
5: skyl ine ←{f ir stSchedule }
6: while r eady , ⊘ do
7: next ← r eady .peek ()
8: S ← ⊘
9: for all schedules s in skyl ine do
10: for all containers c (c ≤ C) do
11: S ← S ∪ {s + assiдn(next , c , −, −)}
12: end for
13: end for
14: skyl ine ← skyline of S ▷ new skyline of schedules
15: r eady ← r eady − {next } ∪ {operators in df that dependency con-

straints no longer exist}
16: end while
17: return skyl ine

time and monetary cost, the schedule with the most sequential
idle compute time is selected, since the aim of our work is to
use idle slots where index build operators may fit. The proce-
dure described is repeated for the next available operator. The
algorithm terminates when all operators are assigned and the
final skyline is generated. Note that the impact of data transfers
on the execution of data-intensive dataflows may be significant
and overhead may be introduced [18]. Thus, each dataflow is
scheduled offline to generate more efficient schedules where the
overhead from data transfers is considered.

5.3.2 Online interleaving algorithm. The online interleaving
algorithm is a modification of the scheduler in [12] to use optional
operators and schedule index build operators along dataflows.
To do so, operators are separated to optional and non optional
using a boolean variable; the variable is set to true (optional
operators for execution) for each index build operator while
the variable is f alse for all dataflow operators. Algorithm 4 is
modified so that the schedules in each iteration may vary in the
number of assigned operators. The ready operators list (line 2 of
Algorithm 4) includes optional index build operators which are
candidate for scheduling. If the operator next in line 7 is optional,
the previous skyline (skyline) is kept and unioned with the set of
schedules S (line 11) before computing the new skyline in line 14.
As a result, the newly generated skyline may consist of schedules
with different numbers of operators. Between schedules with
the same execution time and money, schedules with a larger
number of operators are preferred. Also, the schedules kept in
the new skyline do not violate the constraints of the optimization
problem, as solutions that belong to the initial skyline and have
lower execution time or monetary cost will dominate solutions
in the unioned set where the assignment of optional operators
have affected dataflow execution. Hence, only schedules where
the assignment of optional operators does not affect the dataflow
execution time and monetary cost will be kept in the newly
computed skyline.

6 EXPERIMENTAL EVALUATION
In this section, the proposed approach is evaluated based on
simulation. The skyline dataflow scheduler described in Section
5.3.1 (offline) is evaluated using an online load balance scheduler
(online) typically deployed in elastic clouds as baseline. The on-
line algorithm examines the dataflow graph in an online greedy
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Table 3: Experiment Parameters

Parameter Values
Quantum size 60 seconds
Quantum cost $0.1
Storage Cost $10−4 per MB per Quantum
Max Containers 100
Dataflow Montage, Ligo, Cybershake
Operators / Dataflow 100
α 0.5
Index gain fading D 1 quantum
Poisson Generator λ 1 quantum
Total Time 720 quanta

fashion scheduling the operators to the available containers so
that load balance is achieved. Finally, the two index interleaving
algorithms, the LP interleaving algorithm and the online interleav-
ing algorithm, are evaluated and compared using two baseline
index management approaches: a naive approach that does not
create indexes at all (no indexes) and an approach that randomly
selects indexes from the potential set and randomly assigns them
to containers to be built (random).

6.1 Experimental Setup
Table 3 summarizes the parameters used in the experiments. Ho-
mogeneous containers with similar capacity in resources (CPU,
memory, disk, and network) are assumed. Each container has
one CPU and one disk. The CPU and memory needs of each oper-
ator is specified as a percentage of container’s CPU and memory
respectively. A disk size of 100 GB and a speed of 250 MB/sec
(typical SSD) are assumed. Allocated containers cache table parti-
tions and indexes read from the storage service. A time quantum
Q of 60 seconds is assumed. Pricing is based on Amazon’s billing
policy [6]. The price Mc charged for the provisioning of each
container per time quantum is set equal to $0.1 and the storage
cost Mst is set equal to $10−4 per MB per quantum. The stor-
age of the cloud is computed by counting the number of bytes
transferred and charging appropriately over time.

In the simulator used, user queries are sent to the scheduler,
which adds them to a queue. Each query is transformed into
an execution graph of operators with data dependencies. Given
the execution graph, the scheduler selects a subset of contain-
ers and schedules the execution of the graph operators on these
containers, respecting the graph dependencies. The set of active
containers can be dynamically varied based on the demand. Each
operator has a priority specified and each container has a queue
with operators that are executed as soon as the memory needed
is sufficient. Dataflow operators have priority 1 and build index
operators have priority −1. Operators with negative priority are
stopped when operators with positive priority arrive to the con-
tainer or its current time quantum expires. A network bandwidth
of 1 Gbps is assumed. The execution of an operator is delayed
until its input data are transferred. Also, if an index is available
and beneficial, the container reads the index in addition to the
input of the operator, depending on the speedup it offers.

In the simulator used, each container has a local disk to cache
input files from the storage service. If the data required as in-
put from the operator are already in the cache, data transfer is
considered to be 0. If the container cache gets full, LRU policy
is used to create empty space. Containers that do not have any

Figure 5: The dataflow graphs Montage(A), Ligo(B), and
Cybershake(C).

Table 4: Basic statistics of the scientific dataflows.

Time (sec) # Min Max Mean Stdev
Montage 100 3.82 49.32 11.32 2.95
Ligo 100 4.03 689.39 222.33 241.42
Cybershake 100 0.55 199.43 22.97 25.08
Input (MB) # Min Max Mean Stdev
Montage 20 0.01 4.02 3.22 1.65
Ligo 53 0.86 14.91 14.24 2.70
Cybershake 52 1.81 19169.75 1459.08 5091.69

Table 5: Indexes on table lineitem.

Column Type Index Size % Table Size
comment text 422.30 MB 30.16 %
shipinstruct 20 chars 248.95 MB 17.78 %
commitdate date 225.91 MB 16.13 %
orderkey integer 146.99 MB 10.49 %

dataflow operators scheduled on them are deleted at the end of
the leased quantum.

Synthetic data of three real scientific applications, namely
Montage [28], Ligo [19] and Cybershake [17], are used to evaluate
the proposed approach. Montage shown in Figure 5A is used to
generate image mosaics of the sky, LIGO shown in Figure 5B is
used to analyze galactic binary systems and Cybershake shown
in Figure 5C is used for the characterization of earthquakes. The
dataflows are produced using the generator in [8] which specifies
the execution time of each operator, the dependencies between
them and the sizes of the input/output files of each operator. The
basic statistics of the operators are shown in Table 4.

The input files of the dataflows shown in Table 4 are used as a
database of files. The total number of files is 125 and their total
size is 76.69 GB. The maximum size of a file partition is set equal
to 128 MB, resulting in a total number of 713 file partitions. The
TPC-H benchmark [1] is used to compute the sizes of typical
indexes and model the speed-ups they provide. Table lineitem
with scale 2 which has approximately 12 million rows and a
size of 1.4 GB is used. Table 5 shows the sizes of indexes on
four different columns of the table. To model the speed-up that
indexes offer, the following SQL queries were created based on
the categories presented in Section 1:
Order by:
SELECT orderkey FROM lineitem
ORDER BY orderkey;

Select range (large):
SELECT orderkey FROM lineitem
WHERE orderkey > 1000000

AND orderkey < 2000000;

Select range (small):
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Table 6: Index speedup.

Query No-Index Index Speedup
Order by 44.730 sec 6.010 sec 7.44x
Select range (large) 5.103 sec 0.054 sec 94.44x
Select range (small) 4.921 sec 0.016 sec 307.50x
Lookup 4.393 sec 0.007 sec 627.14x

SELECT orderkey FROM lineitem
WHERE orderkey > 10000

AND orderkey < 20000;

Lookup:
SELECT orderkey FROM lineitem
where orderkey = 1000000;

Table 6 shows the speed-up the index on column orderkey
offers. Four potential indexes for each file are used. Each index
size is computed using the percentages shown in Table 5 and its
speed-up is randomly chosen from the values of Table 6.

A Dataflow Generator Client issues dataflows at time points
that follow a Poisson distribution. More specifically, the generator
implemented computes the arrival time k (in seconds) of the next
dataflow as f (k ; λ) = Pr(X = k) = λke−λ/k!, with λ equal to 60
seconds. Dataflows are generated using two settings: randomly
(random generator) and with phases (phase generator). The phase
generator produces dataflows to measure the adaptability of the
proposed approach to workload changes as follows: Cybershake
dataflows for 33.3 quanta (10000 sec), Ligo dataflows for 16.6
quanta (5000 sec), Montage dataflows for 66.6 quanta (20000 sec)
and Cybershake dataflows for 27.3 quanta (8200 sec) with each
generated dataflow having different speed-ups for the indexes it
uses.

6.2 Scheduler robustness for estimation
errors

In reality, operator runtimes and data sizes may be overestimated
or underestimated. In the first set of experiments, the sensitivity
of the scheduler to estimation errors is investigated. To do so,
the runtime of operators and the data sizes they generate are
randomly varied within a certain percentage and the difference
between the actual and estimated values for time, money and
fragmentation are computed. For example, for an estimation er-
ror of 10% a random value in the range of [90 - 110] seconds is
selected to modify the runtime of an operator initially estimated
at 100 seconds. Figure 6 shows the results for different values
of estimation errors added on the CPU time (operator runtime)
and data used. As can be seen, the estimations are robust con-
sidering that an error of more than 20% in operator runtime and
datasize estimations is relatively high. When the estimations are
extremely poor (large errors), the performance of the algorithm
can be significantly affected. This is because the algorithm makes
scheduling decisions offline (before dataflow execution) based
on estimations of operator runtimes and datasizes and does not
adapt to unpredicted changes. Future work could investigate how
to incorporate estimation errors on decision making to account
for inaccurate estimates and yield better performance.

6.3 Comparison of dataflow schedulers
In this set of experiments, the skyline dataflow scheduler pro-
posed (offline) is compared with the online load balance scheduler
typically used in IaaS clouds (online). Operator runtimes and data

Figure 6: Sensitivity of the offline scheduler to inaccurate
estimations.

sizes are scaled to evaluate the efficiency of the proposed sched-
uler for different scenarios. Since the online scheduler generates
a single execution schedule, the fastest schedule from the skyline
obtained using the proposed skyline dataflow scheduler (offline)
is used for the comparison. The results for Cybershake (the re-
sults are similar for the other dataflows) are presented in Figure 7;
the y-axis shows the difference (%) between the offline and the
online scheduler. The left part of Figure 7 shows the results when
scaling the operator runtimes up to 10x (shown in the x-axis) and
keeping the data sizes small (scaled to 0.01 of the original size).
The online scheduler performs well for these type of dataflows
(CPU-intensive) generating faster but slightly more expensive
schedules by balancing the load. However, load balancing does
not work well for data-intensive dataflows where data place-
ment greatly affects the execution of dataflows. The right part
of Figure 7 shows the results when scaling the size of data up to
100x. It can be seen that the schedules generated by the online
load balance scheduler are up to 2x slower and up to 4x more
expensive compared to the proposed offline scheduler.

6.4 Comparison of index interleaving
algorithms

In this experiment, we compare the two index interleaving al-
gorithms proposed; the LP interleaving algorithm and the online
interleaving algorithm. Figure 8 shows the number of indexes
built at each schedule in the skylines obtained for Montage using
the two index interleaving algorithms (the results are similar
for the other two dataflows). The first observation is that the
LP interleaving algorithm is able to schedule significantly more
build index operators. This is because the information about the
fragmented resources is available before the algorithm runs. In
contrast, the online algorithm schedules the index build opera-
tors and the dataflow operators at the same time. Also, the two
skylines obtained are not the same (as can be seen from the mon-
etary cost that corresponds to each point). This is because the
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Figure 7: Comparison of the online and offline scheduler performance.
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Figure 9: Montage with build index ops (green).

online algorithm interferes with the scheduling of the dataflow
operators resulting in cheaper schedules.

Figure 9 shows an example with the timeline of Montage
interleaved with build index operators scheduled by the LP in-
terleaving algorithm. Dataflow operators are shown in blue and
build index operators are shown in green. The red line indicates
idle compute resources. We observe that the LP interleaving algo-
rithm uses a significant amount of idle compute time. The initial
idle time is 7.14 quanta and after the assignment of the build
index operators, the fragmentation is reduced to 1.6 quanta.

We also compute an upper bound of the quality of the solution
found by the LP algorithm by merging all the individual idle
time periods and solving the knapsack problem using only one
large continuous time segment. We do this using the example of
Figure 10, which shows the times of the build index operators and
the fragmented resources we used. For simplicity, we set the gain
of each operator to be equal to its execution time. As a baseline,
we compare with the following greedy algorithm (inspired by
Graham [25]): first, we order the operators by descending execu-
tion times (and gain in this case) and proceed by assigning each
operator to the idle time segment with the most remaining time.
A build index operator that does not fit anywhere is not sched-
uled. Figure 11 shows the results of the LP interleaving algorithm
compared to the baseline and the upper bound. We observe that

the LP interleaving algorithm is able to find a solution close to
the theoretical upper bound (within 5% in this experiment).

6.5 Dynamic DataflowWorkload
In this experiment, the efficiency of the proposed auto-tuning ap-
proach (shown in Algorithm 2) is evaluated and compared using
the no-indexes and random approaches as baseline algorithms.

6.5.1 Dataflow Generator with Phases. Initially, the results
obtained using the dataflow generator client with phases are pre-
sented. Figure 12 shows the number of dataflows finished after
720 time quanta using the different approaches. It can be seen
that the number of dataflows executed is doubled when using
the proposed approach compared to the baseline where no index
is used. Furthermore, the monetary cost spent per dataflow is sig-
nificantly reduced. It can also be seen that the random approach
does not greatly affect the number of finished dataflows com-
pared to the scenario of not using indexes (no index). However
the average monetary cost per dataflow is significantly increased
due to the storage cost required, which is not taken into account.
Finally, the cost per dataflow is increased when non beneficial
indexes are maintained, as can be seen by comparing the columns
labelled as Gain (no delete) and Gain.

Table 7 shows the total number of operators executed and
stopped due to quantum expiration or preemption for the exe-
cution of a dataflow operator. It can be seen that the packing
achieved by the LP interleaving algorithm is better compared
to the random algorithm and fewer build index operators are
stopped prematurely.

Table 7: Operators executed.

Algorithm Total Ops Killed Ops Percentage
No Index 22402 0 0
Random 25649 1143 4.4
Gain 49549 1418 2.8

Figure 13 shows the number of indexes built and the total
storage cost over time. It can be seen that the proposed approach
adapts to the workload by creating and deleting indexes when
they become non-beneficial. When Cybershake is re-issued in the
final phase, some previously deleted indexes become beneficial
again and are recreated.

6.5.2 Random Dataflow Generator. In this experiment, a ran-
dom dataflow generator client is used. Figure 14 shows the num-
ber of dataflows finished after 720 time quanta. The number of
dataflows executed is larger using the proposed approach. This
is because the average execution time per dataflow is reduced.
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Figure 13: Adaptation of the algorithm to the dataflow
workload.

Also, the cost per dataflow is reduced, but not as much as in the
previous experiment where the phase dataflow generator client
was used. This is because the input is totally at random and, as
a result, indexes are stored for a longer period (essentially, they
never become non-beneficial). Even in this case, the proposed
approach outperforms the baseline approaches.
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Figure 14: Executed dataflows and average cost per
dataflow (random dataflow generator).

7 CONCLUSIONS
In this paper the problem of index management to improve the
performance of data-intensive flows on the Cloud is considered.
An online auto-tuning approach to assess the usefulness of in-
dexes for the execution of dataflows and utilize idle slots in the
execution schedule to build a proper set of indexes is described.
The results show that the proposed approach can significantly
reduce the average execution time and monetary cost required
per dataflow. Future work could evaluate the benefits of index
management for scenarios with heterogeneous cloud resources.
Also, in this work, we consider a conservative approach to build
indexes using idle slots so that they do not interfere with the
user workload. Building indexes in a delayed manner for sce-
narios were idle slots are short is an interesting direction of our
future work. Finally, automatic learning of the index gain fading
controller to select proper respective values for each index and
improve the performance of the proposed approach is another
research direction.
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