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ABSTRACT
NoSQL database systems are very popular in agile software de-
velopment. Naturally, agile deployment goes hand-in-hand with
database schema evolution. The main aim of this tutorial is to
present to the audience the current state-of-the-art in continuous
NoSQL schema evolution and data migration: (1) We present case
studies on schema evolution in NoSQL databases; (2) we survey
existing approaches to schema management and schema infer-
ence, as implemented in popular NoSQL database products, and
also as proposed in academic research; (3) we present approaches
for extracting schema versions; (4) we analyze different methods
for efficient NoSQL data migration; and (5) we give an outlook
on further research opportunities.

Duration: 1.5 hours

1 INTRODUCTION
Recent position papers demand more schema flexibility, such as
the ability to handle variational data [3, 42]. Many agile software
developers have long since turned towards NoSQL database sys-
tems such as MongoDB1, Couchbase2, or ArangoDB3 which are
schema-flexible, or even altogether schema-free. They allow to
store datasets in different structural versions to co-exist.

Yet even when the database management system does not
maintain an explicit schema, there is commonly an implicit schema,
as the application code makes assumptions about the structure of
the stored data. For instance, in Figure 1, the Java code in lines 1
through 9 implies a schema: An entity for person Jo Bloggs is
created, and then persisted in the people collection.

1 List<Integer> books = Arrays.asList(27464, 747854);
2 DBObject person = new BasicDBObject("_id", "jo")
3 .append("name", "Jo Bloggs")
4 .append("address",
5 new BasicDBObject("street", "123 Fake St")
6 .append("city", "Faketon")
7 .append("state", "MA")
8 .append("zip", 12345))
9 .append("books", books);
10 DBCollection collection = database.getCollection("people");
11 collection.insert(person);

Figure 1: Storing a person entity inMongoDB, using Java.4

1https://docs.mongodb.com/
2https://www.couchbase.com/products/server
3https://www.arangodb.com/
4From “Getting Started with MongoDB and Java”, https://www.mongodb.com/blog/
post/getting-started-with-mongodb-and-java-part-i, published August 2014.
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With each new release of the software, the application code
evolves. Eventually, so will the implicit schema declarations.
Then, data stored in the production system will have to be mi-
grated accordingly. Yet writing custommigration scripts — which
seems to be the common practice today — is error-prone and
expensive. Thus, there is a dire need for well-principled tool
support for long-term maintenance of NoSQL database schemas.

With the schema declared within the application layer, the
burden of schema maintenance is shifted into the domain of the
application developers. Accordingly, we observe various grass-
roots efforts from the developer community to tackle schema
evolution. Unfortunately, these solutions do not build upon the
existing state-of-the-art in research. Overall, we see it as an op-
portunity for the database research community to contribute
well-founded and practical solutions to real-world problems.

In this tutorial, we give an overview of schema management
in agile development with NoSQL database systems. The authors
proposing this tutorial have been publishing in this domain for
over 6 years. We present the current state-of-the-art in research,
as well as in practice. We cover inferring schema-on-read with
outlier detection, deriving schema versions, the corresponding
schema evolution operations matching between them, as well
as the resulting data migration operations. Different migration
strategies and their impact, such as the overall migration costs
and the latency upon accessing an entity, are also discussed.

A strong point of this tutorial is that we motivate the problem
domain by presenting an empirical study on NoSQL schema
evolution in real-world applications. Moreover, we demo existing
tools for NoSQL schema management, e.g., for schema design
and schema extraction. Incorporating small, live demos, we put
together a diverse and diverting tutorial.

2 OUTLINE
This 1.5-hour tutorial is split into five parts:

(1) Case Studies (~15 min.). We present an empirical study
on the schema imposed on NoSQL databases by applica-
tions, as well as the dynamics of NoSQL schema evolution.

(2) NoSQL Schema Management (~20 min.). In this part
we discuss different architectures and existing solutions
for NoSQL schema management. Here, we present re-
search approaches as well as first products.

(3) NoSQLEvolutionManagement (~25min.). We present
solutions for NoSQL evolution management. Beside a lan-
guage for declaring NoSQL schema evolution operations,
we focus on approaches for extracting schema versions.

(4) Data Migration (~20 min.). Based on the previous parts,
we present different data migration strategies and discuss
their quantitative assessment.

(5) Future Opportunities (~10 min.). Finally, we outline
open research problems as potential directions for further
research, as well as current development in this area.
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3 GOALS AND OBJECTIVES
3.1 Case Studies
For our introduction, we present an empirical study on real-world
database applications, each backed by a schema-flexible NoSQL
data store. We investigate whether developers denormalize their
schema, as is the recommended practice in data modeling for
NoSQL data stores, and also a research subject [4, 25]. Further,
we analyze the entire project history, and with it, the evolution
of the NoSQL schema. By looking at real-world evidence, we pin-
point characteristic problems (such as the increased frequency
of schema changes). We discuss how existing solutions do not
fully transfer (e.g., since they rely on the schema being declared
explicitly, rather than being implicit in the code). Thus, existing
solutions cannot address the needs of application developers.
Finally, we state the desiderata for tackling NoSQL schema evo-
lution, in preparation to the subsequent tutorial.

3.2 NoSQL Schema Management
NoSQL database systems differ with regard to schema support:
There are schema-free systems without any native schema sup-
port (e.g. Couchbase, CouchDB5, Neo4j6). Other systems offer op-
tional schema support (e.g. MongoDB, OrientDB7; some of these
systems support different schema modes: schema-full or schema-
flexible). There are also schema-full systems, with a mandatory
schema (e.g. Cassandra8). In addition, there are proposals for
vendor-independentmiddleware thatmanages theNoSQL schema
(e.g. the Darwin schema management component [45]).

3.2.1 Capturing the NoSQL Schema. In our tutorial, we present
three strategies how the NoSQL schema can be captured from
a schema-free or schema-flexible data store: (a) In the tradition
of textbook schema design, the NoSQL schema can be derived
top-down from some conceptual model. (b) The schema may be
extracted posthumously, given a data instance. (c) The schema
may be also derived by static analysis of the application code. We
now briefly discuss these options.

a) Forward Engineering/Schema-First. In forward engineering,
or schema-first approaches, the schema is explicitly defined –
for example with modeling tools such as Hackolade9 or erwin10:
Users of these tools draw extended entity relationship models or
graphical visualizations of JSON Schema, which they can compile
for a given NoSQL database system. The principles behind NoSQL
schema design are being explored in academic research: In [1], a
model-driven approach for designing NoSQL databases has been
developed. The authors of [4] propose an abstract data model for
NoSQL databases, which exploits the commonalities of various
NoSQL systems. Another project [8] extends the schema-first
approach and generates object-oriented class hierarchies. The
class declarations actually represent entity collections, using
Object-NoSQL mapper libraries such as Mongoose and Morphia.

Yet in agile development, the schema is often not fixed up
front. Therefore, we next discuss schema reverse engineering.

b) Reverse Engineering fromData/Schema-on-Read. For process-
ing data without explicit schema information, reverse engineering
can be necessary. In the followingwewill refer to this approach as

5https://couchdb.apache.org/
6https://neo4j.com/
7https://orientdb.org/
8http://cassandra.apache.org/
9https://hackolade.com/
10https://erwin.com/products/erwin-dm-nosql/

Figure 2: The Big Picture: Moving from schema version n
(blue, shown to the left) to version n + 1 (orange, shown to
the right), the persisted entities (blue) may not be imme-
diately migrated. Rather, the data store now holds entities
in both schema versions (blue and orange).

schema-on-read (this term is currently used differently in various
Big Data/NoSQL application areas).

The general idea has been introduced in [22], based on an
earlier approach for XML schema extraction in [26]: The implicit
structural information from all entities is combined into a graph,
from which the schema and statistics can be derived. The schema
inference approach delivers a schema overview. The algorithm
and its optimizations will be introduced.

Similar approaches [2, 13, 20, 33, 36] also infer a schema or
generate conceptual models. The authors of [43] consider the
challenge of designing schemas for existing JSON datasets as an
interactive problem and present a roll-up/drill-down style inter-
face for exploring collections of JSON records. In [5], schemas
are inferred from datasets by typing the input according to a type
system. This approach is designed for MapReduce-based, and
thus highly scalable, execution. In [48], a descriptive schema is in-
ferred, and documents are indexed by their structural properties,
so that they may even be queried accordingly.

Certain (NoSQL) database design tools, such as Hackolade and
erwin, also implement schema reverse engineering, and certain
NoSQL database systems (for example MongoDB) come with
similar features built-in.

Schema inference from existing data is also one of the sub-
tasks in data lake analytics [29]. In data lakes, the “load-first,
schema-later” paradigm requires a combination of schema infer-
ence with the inference of integrity constraints [12, 14, 30, 31],
and further descriptions of the data content, such as the semantic
data type [19]. Data cleaning methods are also based on reverse
engineering of structure and frequencies of occurrence [32, 38].

c) Reverse Engineering from Code. Since the application code
implicitly declares a schema, this schema may be extracted. This
task is straightforward when applications use Object-NoSQL
mapper libraries, since class declarations then map to collections
of persisted entities. This approach is followed in [34, 39]. For
application code without mapper libraries, we need to resort to
more involved code analysis. For instance, in programmatically
extracting a schema for collection people from the code in Fig-
ure 1, we might employ data flow analysis, as done in [49], to
detect which statements characterize a collection.

3.2.2 The Big Picture. Figure 2 gives an overview of NoSQL
schema (evolution) management and data migration, which will
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accompany us through the entire tutorial. The left part of the fig-
ure visualizes the approaches of forward engineering and reverse
engineering discussed so far (top-down vs. bottom-up).

If we want to consider not only a static view of the schema,
but also its evolution along with the application code (illustrated
by application versions n and n + 1 in the upper part, and two
different versions of the database instance at two different times,
in the lower part of Figure 2), new challenges arise. In our tutorial,
we next discuss challenges and solutions for handling data in co-
existing schema versions, especially schema evolution operations
(represented by the right arrow in the center of the figure), as
well as approaches for extracting not only a schema, but to also
identifying different schema versions.

In the fourth part of the tutorial we then discuss various data
migration strategies (symbolized by the self-referencing arrow
on the bottom right of Figure 2).

3.3 NoSQL Schema Evolution Management
Handling different versions of data in a single database is becom-
ing more and more important – in relational databases [3, 16, 42]
as well as for different types of NoSQL databases [6, 40]. In this
tutorial, we survey different approaches.

NoSQL Evolution Language. Most NoSQL database manage-
ment systems do not provide a language capturing schema evolu-
tion operations. There are several proposals for such a language.
For instance, the authors of [41] define a language originally
for transformation between different NoSQL databases that can
also be used for data migration within the same store [15]. In
this tutorial, we present the NoSQL schema evolution language
introduced in [40] for different types of NoSQL database systems,
implemented in [45] and extended in [18] for multi-model data.
The language contains operations that affect only one entity-
type, or synonymously in MongoDB terminology, one collection
(single-type operations are add, delete, and rename). For complex
refactoring, operations that affect the entities of more than one
entity type (multi-type operations copy, move, split, and merge)
are available. Via these schema evolution operations (or schema
modification operations by the terminology of [9]), the schema
changes between consecutive versions of the application code
can be declared. This mapping is sketched by the red arrow in
the center of Figure 2.

Heterogeneity Classes. We capture the degree of structural
heterogeneity in a data instance via the notion of heterogeneity
classes, introduced in [27]. For example, persisted entities may
be very homogeneous in their structure, or very heterogeneous.
We outline the implications, present illustrative examples, and
define the class-specific semantics of evolution operations.

Schema-Versions-on-Read. Whereas the schema overview pre-
sented in the second part of the tutorial delivers information on
structures, data types, nesting of information, as well as infor-
mation on required and optional parts, it does not capture the
structural changes over time. For this reason, we present a further
method, developed for inferring schema versions, as well as the
changes between consecutive versions [21, 44]. Approaches for
extracting schema-versions-on-read are based on a partial order
of the data, e.g. based on timestamps. Besides schema inference,
we can use the partial order to find out when and how structural
information has changed and derive schema versions accord-
ingly. Applying additional information on integrity constraints,
we also can suggest evolution operations that have caused the

schema changes [21]. To our knowledge, this functionality is not
yet offered by any commercial products, but primarily imple-
mented in research prototypes, e.g., [7, 35] for representing UML
class model versions, and [21, 45] for generating JSON Schema
versions as well as the matching evolution operations.

3.4 Data Migration
After identifying the schema evolution operations, the data can
be migrated. There are various strategies, with different impacts
on latency and migration effort. Traditionally, data migration is
carried out eagerly, i.e., all data is migrated immediately when the
schema changes. Since this can be expensive, especially in a cloud
environment [11, 17], data can be migrated lazily [23, 37], so data
is not migrated until it is actually accessed. This approach is
preferable in databases where the share of “hot” data is relatively
small compared to the total amount of data. The downside is that
lazy migration adds latency to database reads and writes, since
the data might still have to be migrated. Figure 3 visualizes the
conflicting goals of monetary data migration costs (e.g., charged
by a cloud provider) and latency overhead upon read or write
access, for different migration strategies.

Figure 3: Tradeoffs in data migration (from [17]).

A compromise between the two competing goals is to migrate
hot data proactively (one of the options in Figure 3). In [23] and
[17], different proactive strategies are presented. Depending on
the characteristics of the data, the workload, and the schema
evolution operations, predictively migrating data promises good
latency at moderate costs. In the tutorial, we give a detailed
overview over such strategies and their tradeoffs. Further we
discuss optimizations, such as the version jumps suggested in [23,
46]. In [17], we propose a first tool providing decision support
for the challenge of choosing between migration strategies.

In addition to the impact on costs and latency, it should be
noted that for all strategies except eager, the database system
or the external schema management component must support
query rewriting, since data may exist in previous (older) versions
and therefore with a different structure than expected by the
query [16, 28]. Depending on the heterogeneity class (c.f. Sec-
tion 3.3), there are additional challenges to query rewriting [27].

In some cases, a no migration approach may be necessary,
when auditing requires that datasets are preserved in their origi-
nal version. Then, when an entity in a legacy version is accessed,
we may migrate it lazily, but we preserve the original entity.

3.5 Future Opportunities
We finally discuss selected research opportunities related to
NoSQL schema evolution and data migration.

Cost Models. For choosing an appropriate data migration strat-
egy, appropriate cost models are needed. These cost models must
take into account the characteristics of NoSQL database systems
such as distribution, replication, the consistency concepts. A
related challenge is the design of a suitable benchmark.

657



Multi-Model Data. Multi-model database systems like Orient-
DB, ArangoDB, and Cosmos DB11 support more than one data
model [24]. Similarly, polystores [10, 47] pose new challenges
in our context. As we outline in [18], evolution in multi-model
databases triggers further research questions, such as inter-model
operations, the handling of global vs. local evolution operations,
inference of multi-model schemas, and synchronizing migration
over different models/systems.

4 INTENDED AUDIENCE AND MATERIAL
Our goal is to give EDBT attendees an overview of the challenges
and the current state-of-the-art in both research and practice on
NoSQL schema evolution and data migration. We will not assume
any background in NoSQL database systems, making our tutorial
appropriate for researchers, practitioners, and graduate students.

The material is available at https://tinyurl.com/evolving-nosql.
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