
Indexed Log File: Towards Main Memory Database Instant
Recovery

Arlino Magalhaes
Federal University of Ceara
Federal University of Piaui

Fortaleza, Brazil
arlino@ufpi.edu.br

Jose Maria Monteiro
Federal University of Ceara

Fortaleza, Brazil
monteiro@dc.ufc.br

Angelo Brayner
Federal University of Ceara

Fortaleza, Brazil
brayner@dc.ufc.br

Gustavo Moraes
Federal University of Ceara

Fortaleza, Brazil
gustavomoraes94@gmail.com

ABSTRACT
Main Memory Database Systems (MMDBSs) may significantly
increment IOPS (Input/Output Operations per Second) rates by
avoiding access to secondary memory. This occurs because they
maintain the database in Random Access Memory (RAM). Similar
to traditional Disk-Based Database Systems (DBSs), MMDBSs are
expected to trigger recovery activities after system failures to
restore the database to its last consistent state before the failure.
Nonetheless, MMDBSs executes the recovery process in an offline
way, thus the database becomes available for new transactions
only after the full recovery process has been performed. Systems
can keep database replicas for high availability. However, replica-
tion is not immune to some failure sources that can causemultiple
and shared malfunctions. Therefore, software techniques are re-
quired to prevent failures and repair crashed systems as soon as
possible. This work proposes a novel MMDBS instant recovery
process which makes MMDBS able to schedule new transactions
simultaneously with the recovery activities. In order to validate
this new approach, simulations with a prototype implemented
on Redis have been conducted over Memtier benchmark. The
achieved results evidence the suitability of the proposed recovery
mechanism.

1 INTRODUCTION
Main Memory Databases (MMDBs), or In-Memory Databases
(IMDBs), can provide very high throughput rates given that the
primary data are located in memory. In that manner, MMDB re-
duces secondary memory I/O bottleneck, and can consequently
speed up data access. Moreover, the development of new mem-
ory technologies has provided a larger storage capacity with
lower costs. The fact that the database resides in volatile storage
influences the design approaches adopted by MMDBs, such as
query processing, concurrency control, recovery after crashes,
data storage, and indexing. For this reason, these systems are de-
signed to optimize access to main memory instead of secondary
memory, as with traditional disk-resident systems [7, 21, 24].

MMDBs provide very high IOPS given that the primary data-
base is handled in volatile storage. However, the database residing
in a volatile memory makes these systems much more sensitive
to system failures than conventional disk-resident database sys-
tems. The recovery mechanism is responsible for restoring the

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

database to the most recent consistent state before a system fail-
ure has occurred. In this way, after a system crash, the recovery
manager loads the last valid checkpoint (a prior database backup
copy) and then starts to execute all actions recorded in the log
file forward from the checkpoint record [10, 12, 13].

Accordingly, the recovery process for most MMDBs is per-
formed offline, meaning that the database and its applications
only become available for new transactions after the full recov-
ery process is completed. One may claim that systems can keep
database replicas for high availability. In fact, with the advent of
high-availability infrastructure, recovery speed has become sec-
ondary in importance to runtime performance for most MMDBs
[7, 12, 22]. Nevertheless, replication is not immune to human er-
rors and unpredictable defects in software and firmware that are
a source of failures and can cause multiple and shared problems
[18, 21].

In this sense, this paper proposes an instant recovery approach
for OLTPMMDBs. Said approach allowsMMDBs to schedule new
transactions immediately after the failure during the recovery
process, giving the impression that the system was instantly
restored. The main idea of instant recovery is to organize the log
file in a way that enables efficient on-demand and incremental
recovery of individual database tuples.

It is important to note that the existing MMDBs recovery strat-
egy has two deficiencies that make instant recovery impossible.
First, the recovery process uses a sequential log file. The recovery
in the sequential log is not incremental and requires full recovery
before any tuple can be accessed. This scenario does not allow
the system to execute an on-demand transaction during recovery,
which means that new transactions can only start executing after
the recovery process has finished. The second problem is the
random access pattern in the sequential log for restoring tuples
individually. The sequential log has efficient record writes, but
it has inefficient reads for individual log records. A full log scan
must be done to restore a given tuple individually [12, 18].

The instant recovery technique presented in this work builds
the log file as an index structure. This log organization enables an
efficient restoration of a tuple. A single fetch on the indexed log
can restore one tuple. Thus, the system can use the indexed log
to recover a database by restoring tuple by tuple incrementally.
This technique naturally supports database availability because a
new transaction can access a tuple immediately after the tuple is
restored, i.e., transactions do not have to wait for a full recovery
to access restored tuples. We have empirically evaluated the
proposed instant recovery approach in order to show its efficiency

Short Paper

 

 

Series ISSN: 2367-2005 355 10.5441/002/edbt.2021.34

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.34


and suitability to be implemented in MMDBs. The workload used
for the experiments belongs to Memetier benchmark.

The remainder of this paper is organized as follows. Session
2 provides an overview of MMDB recovery. Section 3 discusses
related work. Section 4 presents the proposed approach for data-
base instant recovery. Section 5 discusses the results of empirical
experiments. Finally, Section 6 concludes this paper.

2 BACKGROUND
Most main memory database systems implement logical logging
technique which records higher-level database operations, such
as inserting a record in a table. MMDBSs do not record Before im-
ages of modified tuples, i.e., they produce only Redo log records
to reduce the amount of data written to secondary storage. The
commit processing uses group commit, i.e., it tries to group multi-
ple log records into one large I/O. SSD is the log device of choice
for almost all systems in order to increase the I/O performance
[12, 22, 26].

The recovery component of most MMDBs asynchronously
produces a consistent checkpoint, commonly called snapshot.
Snapshot is equivalent to a materialized database state in an
instant of time by means of a Copy-on-Update method (COU,
for short) [4, 6]. At the checkpoint beginning, MMDBS enters
into a COU mode. Thereafter, the recovery component starts to
scan all tuples in database tables at system run-time. Three bits
are used to identify if a row was inserted, deleted, or updated
after the checkpoint generation has begun. Inserted tuples are
disregarded. Before an update or delete, the original content of a
tuple is copied to a shadow table. The shadow version is removed
after it is scanned. A background process serializes the snapshot
to secondary memory until the checkpoint ends [2, 12].

Whenever a system crash occurs in an MMDB, the primary
copy of the database is lost. In this case, MMDBs recover the
database by loading the last valid checkpoint. Thereafter, the
recovery component starts to execute the actions recorded in
the log file forward from the checkpoint record. The recovery
component activities are briefly illustrated in Figure 1. All actions
of committed transactions are flushed to the log file on secondary
memory by the Logger component. Periodically, the Checkpoint
component produces a snapshot on secondary storage. After a
failure, the Restorer component loads the snapshot into mem-
ory and then replay the log file. After the recovery process has
finished, the database is available for new transactions [7, 22].

Figure 1: MMDBS recovery component architecture.

3 RELATEDWORK
Hekaton [5], VoltDB [20], HyPer [9], SAP HANA [8] and SiloR
[26] are examples of modern MMDBSs that perform the recovery
activities discussed in Section 2. Nevertheless, those systems do
not execute new transactions until the full recovery is completed.

PACMAN [22] and Adaptive Logging [23] utilize a dependency
graph between transactions performed to identify opportunities

for database recovery in parallel. After a failure, they use a depen-
dency graph to generate a scheduled execution to replay the log
records. The schedule allows transactions to be executed in par-
allel, following the constraints of the dependency graph. Those
systems must wait for the full database recovery to service new
transactions.

The Log-Structured Merge tree (LSM-tree) [15] provides low-
cost indexing for a file that has a high rate of record insertions
and deletions. However, the LSM-tree access method uses a buffer
to avoid multiple I/Os in secondary memory for frequently refer-
enced pages. This approach is not suitable for writing log records
since they require immediate and atomic persistence during com-
mit processing.

FineLine [17–19] presents an instant database restoration tech-
nique. This technique uses a partitioned index in the log to write
records efficiently. The partition index may search for multiple
partitions to retrieve a page. After a crash, the recovery process
loads pages incrementally from a backup device. While a set of
pages is loaded, the records in the log file that are related to
that set are probed. This approach also can recover pages on-
demand for transactions. New transactions can perform as soon
as necessary pages are restored.

4 A NOVEL INSTANT RECOVERY
MECHANISM

In this section, firstly the architecture of the proposed instant
recovery mechanism is described. Thereafter, the proposed log
data structure is discussed. Finally, the recovery algorithm based
on the proposed indexed log structure is detailed.

4.1 The Architecture
Figure 2 proposes an architecture to implement our MMDB in-
stant recovery approach, which uses an indexed log structure.
This section provides an overview of the main components that
comprise the architecture and their interactions.

Figure 2: Architecture for in-memory database instant re-
covery using an indexed log.

Below, we present a brief description of the main components
of the architecture discussed in the following subsections.

• Logger: writes transaction update actions in a log file on
secondary memory. The records are flushed sequentially
in an append-only file whose writes must be synchronized
to transaction commit.

• Indexer: indexes records from sequential log to indexed
log. The records are indexed in a B-tree asynchronously
to transaction commit.

• Restorer: restores tuples from a failed database by re-
playing records from indexed log. Tuples can be restored
incrementally and on-demand.

• Scheduler: during the recovery process, requests the Re-
storer component for tuples (that have not yet been re-
stored into memory) requested by new transactions.

356



4.2 The Logging Strategy
The proposed approach for MMDB instant recovery uses two
logs: a sequential log (Figure 3 (a)), and an indexed log (Figure 3
(b)). Each record in the sequential log represents an update per-
formed on a tuple by a transaction. During transaction processing,
transaction update records are appended to the sequential log
file by the Logger component. Each transaction generates Redo
records that are kept in a thread-local. During the commitment,
all log records generated by a transaction are appended atomi-
cally on the sequential log. This scheme ensures log consistency
to recover the database.

Figure 3: Sequential log (a), and indexed log (b).

The proposed recovery scheme requires efficient log reading
to fetch the records to redo a given tuple during recovery. For
this reason, the logging strategy implements an indexed log. The
index structure is a B-tree in which each node contains a tuple
ID and the update records generated by transaction updates in
the tuple. Only one probe on B-tree can retrieve all the neces-
sary records to restore a single tuple. The Indexer component is
responsible for indexing records from the sequential log to the
indexed log. The indexing is asynchronous to transaction commit,
i.e., a transaction does not need to wait for the log indexing to
confirm its writing in the data. Records can be removed from
the sequential log after they are indexed in the B-tree. However,
the sequential log is maintained to ensure consistent database
recovery in the event of index corruption. In this case, the sys-
tem must build a new indexed log from the sequential log. This
process will delay the start of recovery.

The primary purpose of instant recovery is to restore the data-
base efficiently, without degrading the transaction throughout
provided by the system. The indexed log requires random writes,
while a sequential log has a sequential write pattern. Writing
records to a sequential log file is potentially faster than doing so
to an indexed log file. For this reason, in our approach, log records
are written to the sequential file and, periodically, flushed to the
indexed log file. The indexing process occurs asynchronously
to the transaction commit operation so as not to degrade the
transaction processing. It is important to highlight that restoring
an individual tuple by indexed log requires only one fetch on
B-Tree, while restoring a single tuple by sequential log requires
a full scan of the log file. Therefore, our recovery technique only
uses the indexed log to recover the database after a failure.

FineLine [17–19] uses an instant recovery technique that al-
lows efficient write of log records by a partitioned index. However,

probes on log require inspecting multiple partitions to restore a
page. This approach can delay recovery. The number of partitions
can be reduced by intermediate merges. However, this process
can interfere with the transaction processing performance. Our
log organization is simpler and writes/reads records efficiently.
Transactions must wait only for writes on the sequential log to
commit. The log indexing does not interfere with transaction
processing since records are indexed asynchronously to trans-
action commit. During recovery, only one fetch on B-tree can
restore a tuple individually.

As it was exemplified in Figure 3, transactions Tx1, Tx2, and
Tx3 generated log records for updates performed in tuples Tp1,
Tp2, and Tp3. Sequential log (Figure 3 (a)) stores the records
flushed by the three transactions. The log records with LSN 11,
13, 16, and 19 represent the last update performed in tuple Tp1,
for example. A fetch on the indexed log can retrieve the records
of LSN 11, 13, 16, and 19 to redo the tuple Tp1. The absence of
an index implies the necessity of a full scan on the sequential log
to restore Tp1.

4.3 The Recovery Algorithm
After a system failure, the system should initiate the database
recovery by restoring tuples through the indexed log. However,
the record indexing process is asynchronous to the transaction
commit. As a result, some records on the sequential log may not
have been indexed before a failure. Therefore, immediately before
starting recovery, the system must verify if any records have not
yet been indexed. Indexer component must index those records
to ensure the recovery consistency. When this process ends, re-
covery can begin and new transactions can be performed. Thus,
the Restorer component begins redoing tuples by traversing the
indexed log B-Tree. Each visit to a B-Tree node can retrieve the
update records to redo a tuple. After visiting all B-Tree nodes,
all database tuples are restored, and the recovery process is com-
pleted.

The indexed log recovery scheme can naturally support avail-
ability since new transactions can be executed immediately af-
ter restoring their required tuples. Furthermore, this recovery
scheme can service new transactions whose necessary tuples
have not yet been loaded into memory during recovery. When a
transaction requires tuples, the system checks if the tuples are
stored in memory. If they are not in memory, the Scheduler com-
ponent must request the Restorer for these tuples on-demand.
Then, the recovery manager should pause the incremental recov-
ery (the traversing in B-tree) and begin fetching the necessary
tuples for the transaction from the indexed log. After the trans-
action’s tuples are restored, they are marked as restored, the
transaction can run, and the system can continue the incremen-
tal recovery.

4.4 The Evaluation Prototype
The instant recovery approach proposed in this paper was imple-
mented in Redis 5.0.7 [16] to evaluate the feasibility of indexing
for log replay. The evaluation prototype can be downloaded1.
Redis is an open-source in-memory data structure store used as
an in-memory key-value database. Redis is written in ANSI C.

Persistence in Redis can be achieved through snapshotting
and logging. In snapshotting, the database is asynchronously
transferred from memory to secondary storage at regular inter-
vals as a binary dump using the Redis RDB Dump File Format.
1https://drive.google.com/drive/folders/1LTbtY36O0kWIpxZBM-hc1BPvIjICuy2F

357



In logging, a record of each operation that modifies the database
is added to an append-only file (AOF). Redis can automatically
rewrite the AOF in the background when it gets too big [16].
Our prototype uses only the AOF, i.e., the RDB was disabled.
Moreover, the system does not rewrite the log.

During transaction performing, each update operation gener-
ates a log record that contains basically its command, key, and
value. For example, the operation SET(K1, V1) stores the value
V1 with the key K1 and generates the log record fields SET, K1,
and V1. Each record is written in the AOF atomically only at a
committed time and at the same order each in which the com-
mand was performed. Our prototype uses the AOF from Redis,
i.e., we did not need to implement a sequential log.

The records must be copied from the sequential log to the
indexed log periodically. The indexed log is a B-tree implemented
in Berkeley DB 4.8 [14]. Berkeley Database (Berkeley DB or BDB)
is a software library intended to provide a high-performance
embedded database for key/value data.

5 EVALUATION
We have empirically evaluated the instant recovery approach
proposed in this research. We used the Memtier Benchmark to
perform the tests in Redis. All experiments shown in this paper
were executed with 4 worker threads on Intel Core i7-9700k CPU
3.60GHz x 8. The system has 64GB of RAM and 400GB of SSD
Kingston SA400S37 as a persistent storage device. The operating
system was Ubuntu Linux 18.04.2 LTS.

5.1 Mentier Benchmark
Memtier is a high-throughput benchmarking tool for Redis devel-
oped by Redis Labs. This tool has a command-line interface that
provides a set of customization and reporting features to generate
various workload patterns. It can launch multiple worker threads,
with each thread driving a configurable number of clients. The
tool can control the ratio between read and write operations.
Moreover, it offers control over the pattern of keys used by the
operations (e.g., random and sequential patterns). Memtier pro-
vides options to set the number of total requests per client or the
number of seconds to run a test. The tool offers other options for
configuring custom workloads [1, 11]. Memtier has already been
used in several scientific works, such as in [25] and [3].

5.2 Recovery Experiments
The first group of experiments was focused on measuring the
time to fully recover a database, availability to process trans-
actions after a system failure, time to run a workload entirely,
and logging overhead. These experiments were performed on
a database containing 99, 507 kyes that generated an 11.8GB se-
quential log file containing 160 million records. Additionally, an
indexed log was generated along with this sequential log using
the recovery technique proposed in this work. For each exper-
iment, the system was shut down to simulate a failure. At the
database restart, as soon as the recovery process was been trig-
gered, a workload would be submitted. Thus, one could measure
transaction throughput and recovery time from system restart.

The key goal was to compare the proposed instant recovery
approach to the traditional main memory database recovery.
However, we also tested our instant recovery scheme in differ-
ent scenarios to confirm the following expectations about our
technique: (1) an indexed log must be employed to incremen-
tally and on-demand recover the database, and (2) asynchronous

indexing of log records must be used to avoid transaction pro-
cessing overhead. Thus, the experiments have been conducted
in the three following scenarios: (i) Sequential Log Recovery -
SLR; (ii) Asynchronous Indexed Log Instant Recovery - AILIR;
(iii) Synchronous Indexed Log Instant Recovery - SILIR.

The SLR scenario (traditional recovery) uses only a sequential
log. In this scenario, transaction update records are written to
a sequential log file during transaction processing. The recov-
ery process recovers the database by scanning the entire log file.
Transactions can be performed only after the recovery is com-
plete. The AILIR scenario (our approach) uses a sequential log +
indexed log. In AILIR, transaction update records are written in
a sequential log during transaction processing and stored asyn-
chronously to transaction commit in an indexed log. The SILIR
scenario (scenario derived from AILIR) uses only an indexed log.
In SILIR, transaction update records are written directly to an
indexed log synchronously to the transaction commit. After a
failure, for both scenarios ii (AILIR) and iii (SILIR), the recov-
ery manager must traverse the B-tree to recover the database,
and transactions can perform during recovery. The SILIR sce-
nario was created to measure the log indexing overhead during
transaction processing and instant recovery processing.

For each scenario mentioned above, three experiments were
performed by different types of workload: (i) read-only workload
that contains only read operations, (ii) read-write workload that
has read and write operations in the 5:5 ratio, and (iii) write-only
workload that has only write operations. These three workloads
were simulated using Memtier benchmark that used 4 worker
threads, with each thread driving 50 clients. Each client made
170,000 requests in a random pattern.

Figure 4 shows the results of recovery experiments for the
three scenarios (SLR, AILIR, and SILIR) performing the read-only
workload, denoted Scenarios Read-Only. The vertical dashed lines
in the figure indicate the final recovery time of the respective
color approach. AILIR and SILIR recovered the database at the
same time interval (85 seconds) since both techniques use the
same algorithm to recover the database. They recovered before
SLR which took 91 seconds to recover. In addition, they were
available for new transactions since the database restart and be-
fore SLR which can execute transactions only after full recovery.
Those two approaches had a quite similar throughput during the
workload performing. Moreover, after the recovery, the three
scenarios had a similar throughput. This was because there were
no records to flush to the log file. AILIR and SILIR had a slightly
lower throughput during recovery due to access to the indexed
log. AILIR and SILIR performed the entire workload before SLR,
as they can process new transactions during recovery.

Figure 4: Recovery experiments - Scenarios Read-Only.

358



The results of recovery experiments for the three scenarios
mentioned in this paper performing the read-write workload (de-
noted Scenarios Read-Write) are in Figure 5. The vertical dashed
lines in the figure indicate the final recovery time of the respective
color approach. The AILIR approach did not overload the through-
put of transactions since its throughput was similar to that of
the default approach (SLR). This result was already expected
because AILIR and SLR flush log records to secondary memory
in a similar manner, except that AILIR additionally indexes the
log records. However, the indexing did not interfere with the
transaction throughput because it is performed asynchronously
to transaction commit. SILIR had the worst performance due
to its synchronous log indexing, i.e., a transaction must wait
for indexing to confirm its writes. Although SLR recovered the
database before AILIR, AILIR was the fastest approach to finish
the workload execution. This result was achieved because AILIR
has asynchronous indexing and can process transactions while
the system is recovering. In addition, the client application did
not notice the AILIR recovery, giving the impression that the
recovery was instantaneous.

Figure 5: Recovery experiments - Scenarios Read-Write.

Figure 6 presents the results of recovery experiments for the
three scenarios performing the write-only workload (denoted
Scenarios Write-Only). These results are similar to those in Fig-
ure 5. Except for the fact that SILIR recovered the database faster
than AILIR. However, this fact did not influence AILIR’s perfor-
mance. The AILIR approach had better performance since it was
the fastest approach to finish the workload execution without
overloading the transaction throughput. It had a very similar
throughput to default recovery.

Figure 6: Recovery experiments - Scenarios Write-Only.

5.3 Scalability Experiments
We ran further experiments in which the proposed recovery
strategy deals with different log file sizes. The goal is to observe

the behavior and performance of the recovery strategy when the
log file increases in size. These experiments were performed on
the following four databases:

(1) DB1: containing 49, 866 kyes that generated a 5.9GB se-
quential log file containing 80 million records.

(2) DB2: containing 99, 507 kyes that generated an 11.8GB
sequential log file containing 160 million records.

(3) DB3: containing 198, 067 kyes that generated a 23.6GB
sequential log file containing 320 million records.

(4) DB4: containing 392, 041 kyes that generated a 47.3GB
sequential log file containing 640 million records.

These four databases mentioned above have a ratio of approx-
imately 1:1600 between keys and log records. Each sequential
log was generated along with an indexed log using the recov-
ery technique proposed in this work. The experiments used the
same scenarios handled in the previous section (Section 5.2): (i)
Sequential Log Recovery - SLR; (ii) Asynchronous Indexed Log
Instant Recovery - AILIR; (iii) Synchronous Indexed Log Instant
Recovery - SILIR. An experiment was performed for each of the
four databases (DB1, DB2, DB3, and DB4) in each scenario (SLR,
AILIR, and SILIR). For each experiment, the system was shut
down to simulate a failure. At the database restart, as soon as
the recovery process was been triggered, a workload would be
submitted. The workload was simulated using Memtier bench-
mark that used 4 worker threads, with each thread driving 50
clients. Each client made 300,000 requests. The workload had 5:5
read and write operations in a random pattern. From the system
restart, we measured the average transaction throughput during
the execution of the workload, the recovery time, and the total
workload execution time.

Figure 7 presents the recovery time obtained in each test. As
expected, these results show that the number of database keys
and log records can delay the recovery process in all approaches,
as the recovery time increases with the size of the database. The
instant recovery approaches (AILIR and SILIR) had a similar
recovery time because they use the same recovery technique.
However, AILIR was slightly faster than SILIR in all tests. This
is because the weight of synchronous indexing by SILIR influ-
ences the overall performance of the system. SLR recovered the
database faster than AILIR and SILIR.

Figure 7: Scalability experiments - Recovery time.

Figure 8 shows that AILIR interferes very little in the through-
put of transactions. This is evidenced by the fact that the AILIR
average throughput, for the execution of a given workload, re-
mained similar to that of the standard approach (SLR) in all
experiments. On the other hand, SILIR’s average transaction
throughput was much lower than that of AILIR, proving that
asynchronous indexing is essential for a better performance of

359



the instant recovery technique. The throughput difference be-
tween AILIR and SLR may occur because the Indexer component
blocks the sequential log to read it. In the meantime, transactions
must wait for the lock to be released before writing records to the
log. Nevertheless, the approach proposed in this paper has the
advantage of high availability. It can perform new transactions
since the system restart, while the standard approach must wait
for full database recovery to perform new transactions.

Figure 8: Scalability experiments - Average throughput.

The results of the experiments in Figure 9 show that the ex-
ecution time of AILIR’s workload is slightly longer than that
of SLR. Although the experiments in Figures 4, 5, and 6 have
shown that AILIR performed the workload faster than SLR, the
experiments in Figure 9 show that this behavior changes with
higher workloads. The workload of the experiments in Figure
9 (300,000 operations) is 1.7x greater than the workload of the
experiments in Figures 4, 5, and 6 (170,000 operations). This is
because SLR’s transaction throughput is slightly higher than that
of AILIR, as shown in Figure 8.

Figure 9: Scalability experiments - Total workload execu-
tion time.

6 CONCLUSION
This paper proposed an instant recovery approach for main mem-
ory database systems. The proposed approach allows new trans-
actions to run concurrently to the recovery process. Our approach
implements an indexed log to fetch tuples directly on the log to
restore data incrementally. Consequently, new transactions are
scheduled as soon as required tuples are restored into the main
memory database. Furthermore, the proposed recovery mecha-
nism restores data on-demand since it restores tuples for new
transactions whose data has not yet been restored.

The results show that instant recovery reduces the perceived
time to repair the database since transactions can be performed
since the system is restarted. In other words, it can effectively
deliver tuples that new transactions need during the recovery

process. The experiments also analyzed the impact of using a log
indexed structure on transaction throughput rates in an OLTP
workload benchmark.

REFERENCES
[1] Memtier Benchmark. 2020. GitHub - RedisLabs/memtier_benchmark: NoSQL

Redis and Memcache traffic generation and benchmarking tool. Retrieved
August 26, 2020 from https://github.com/RedisLabs/memtier_benchmark

[2] Tuan Cao, Marcos Vaz Salles, Benjamin Sowell, Yao Yue, Alan Demers, Jo-
hannes Gehrke, and Walker White. 2011. Fast checkpoint recovery algorithms
for frequently consistent applications. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data. Association for Computing
Machinery (ACM), 265–276.

[3] Wenqi Cao, Semih Sahin, Ling Liu, and Xianqiang Bao. 2016. Evaluation and
analysis of in-memory key-value systems. In 2016 IEEE International Congress
on Big Data (BigData Congress). IEEE, 26–33.

[4] David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro, Michael R
Stonebraker, and David A Wood. 1984. Implementation techniques for main
memory database systems. Vol. 14. Association for Computing Machinery.

[5] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL
server’s memory-optimized OLTP engine. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data. ACM, 1243–1254.

[6] Margaret H Eich. 1986. Main memory database recovery. In Proceedings of 1986
ACM Fall joint computer conference. IEEE Computer Society Press, 1226–1232.

[7] Franz Faerber, Alfons Kemper, Per-Åke Larson, Justin Levandoski, Thomas
Neumann, Andrew Pavlo, et al. 2017. Main Memory Database Systems. Foun-
dations and Trends® in Databases 8, 1-2 (2017), 1–130.

[8] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan
Sigg, and Wolfgang Lehner. 2012. SAP HANA database: data management for
modern business applications. ACM Sigmod Record 40, 4 (2012), 45–51.

[9] Florian Funke, Alfons Kemper, Tobias Mühlbauer, Thomas Neumann, and
Viktor Leis. 2014. HyPer Beyond Software: Exploiting Modern Hardware for
Main-Memory Database Systems. Datenbank-Spektrum 14, 3 (2014), 173–181.

[10] Le Gruenwald, JingHuang,Margaret HDunham, Jun-Lin Lin, and Ashley Chaf-
fin Peltier. 1996. Recovery in main memory databases. (1996).

[11] Redis Labs. 2020. Redis Labs | The Best Redis Experience. Retrieved October
06, 2020 from https://redislabs.com

[12] Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stonebraker.
2014. Rethinking main memory oltp recovery. In Data Engineering (ICDE),
2014 IEEE 30th International Conference on. IEEE, 604–615.

[13] C Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.
1992. ARIES: a transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging. ACM Transactions on
Database Systems (TODS) 17, 1 (1992), 94–162.

[14] Michael A Olson, Keith Bostic, and Margo I Seltzer. 1999. Berkeley DB.. In
USENIX Annual Technical Conference, FREENIX Track. 183–191.

[15] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351–385.

[16] Redis. 2020. Redis. Retrieved August 26, 2020 from https://redis.io
[17] Caetano Sauer. 2017. Modern Techniques for Transaction-oriented Database

Recovery. Ph.D. Dissertation. University of Kaiserslautern, Kaiserslautern,
Germany.

[18] Caetano Sauer, Goetz Graefe, and Theo Härder. 2017. Instant restore after a
media failure. In Advances in Databases and Information Systems. Springer,
311–325.

[19] Caetano Sauer, Goetz Graefe, and Theo Härder. 2018. FineLine: log-structured
transactional storage and recovery. Proceedings of the VLDB Endowment 11,
13 (2018), 2249–2262.

[20] Michael Stonebraker and Ariel Weisberg. 2013. The VoltDB Main Memory
DBMS. IEEE Data Eng. Bull. 36, 2 (2013), 21–27.

[21] Kian-Lee Tan, Qingchao Cai, Beng Chin Ooi, Weng-Fai Wong, Chang Yao,
and Hao Zhang. 2015. In-memory databases: Challenges and opportunities
from software and hardware perspectives. ACM SIGMOD Record 44, 2 (2015),
35–40.

[22] Yingjun Wu, Wentian Guo, Chee-Yong Chan, and Kian-Lee Tan. 2017. Fast
Failure Recovery for Main-Memory DBMSs on Multicores. In Proceedings of
the 2017 ACM International Conference onManagement of Data. ACM, 267–281.

[23] Chang Yao, Divyakant Agrawal, Gang Chen, Beng Chin Ooi, and Sai Wu.
2016. Adaptive logging: Optimizing logging and recovery costs in distributed
in-memory databases. In Proceedings of the 2016 International Conference on
Management of Data. ACM, 1119–1134.

[24] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui Zhang.
2015. In-memory big data management and processing: A survey. IEEE
Transactions on Knowledge and Data Engineering 27, 7 (2015), 1920–1948.

[25] Yiying Zhang and Steven Swanson. 2015. A study of application performance
with non-volatile main memory. In 2015 31st Symposium on Mass Storage
Systems and Technologies (MSST). IEEE, 1–10.

[26] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. 2014. Fast
Databases with Fast Durability and Recovery Through Multicore Parallelism.
In OSDI, Vol. 14. 465–477.

360


	Indexed Log File: Towards Main Memory Database Instant RecoveryArlino Magalhães, Angelo Brayner, José Maria Monteiro, Gustavo Moraes

