
EasyBDI: Near Real-Time Data Analytics over Heterogeneous
Data Sources

Bruno Silva
IEETA

University of Aveiro
Aveiro, Portugal
bsilva@ua.pt

José Moreira
DETI-IEETA

University of Aveiro
Aveiro, Portugal

jose.moreira@ua.pt

Rogério Luís de C. Costa
CIIC

Polytechnic of Leiria
Leiria, Portugal

rogerio.l.costa@ipleiria.pt

ABSTRACT
The large volume of currently available data creates several oppor-
tunities for sciences and industry, especially with the application
of data analytics. But also raises challenges that make unfeasible
the use of batch-based ETL processes. Indeed, near real-time data
analytics is a requirement in several domains as an alternative to
traditional data warehouses. In the last years, big data platforms
have been developed to enable query execution over distributed
data sources. However, they do not deal with subject-oriented
analysis, do not provide data distribution transparency, or do not
assist with schema mapping and integration.

In this demonstration, we present EasyBDI. It’s a near real-
time big data analytics prototype that enables users to run queries
over heterogeneous data sources based on global logical abstrac-
tions created by the system and provides some usual concepts of
data warehouse systems, like facts and dimensions. We use two
motivating scenarios, one based on three years of real data on
photovoltaic energy production and consumption, and the other
based on the SSB+ benchmark. We will also present implementa-
tion challenges, issues, solutions, and insights.

KEYWORDS
Distribution transparency, data analytics, near real-time data
warehousing

1 INTRODUCTION
For several years, data analytics has been based on large data
warehouses. Such warehouses are mostly centralized databases
whose data is periodically extracted from OLTP databases and
load into the warehouse as part of an ETL (extract, transform, and
load) process [10]. This traditional warehouse structure is not
suitable for most of the current big data analytics environments.
On the other hand, near real-time operations have become a
requirement in several current IT contexts, like in IoT, where
several sensors generate data streams and users need to process
and analyze the most recent data [10].

This demonstration presents EasyBDI (Easy Big Data Inte-
gration), a prototype for logical integration of distributed and
heterogeneous data sources (including NoSQL ones, like Mon-
goDB, Kafka, and Redis) into a global database and global star
schemas. The integration is logical, i.e., there is no materialized
global database, and data source autonomy is maintained. Ana-
lytical queries specified over global star schemas are transformed
and executed by the distributed and heterogeneous sources.

Building a global schema requires finding and matching syn-
tactic and semantic similarities between the data structures of

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

distinct local sources. This can be achieved either by looking at
the structural organization of data (i.e., schema-based matching)
or to the contents andmeaning of data (i.e., instance-based match-
ing) [7]. Also, each local element should be mapped into a global
element. For instance, local structures identified as semantically
identical in the schema matching process should be mapped into
a single global entity. Partitioning of (logical) global structures
across distinct databases should also be handled [6]. Creating
a global schema over distributed databases is challenging, par-
ticularly in the context of NoSQL and heterogeneous databases.
EasyBDI gets the data organization on participating sources and
uses a combination of techniques to automatically propose a
global schema, which can be fine-tuned by the users.

EasyBDI runs over a distributed query execution engine (Trino,
formerly PrestoSQL [4, 8]) and adds some levels of abstraction,
namely data location and fragmentation transparency, and spe-
cialized subject-oriented analysis. The system uses schemamatch-
ing and integration techniques to automatically design a global
model and allows users to build subject-oriented cubes over such
model. Non-expert users may use drag-and-drop to submit an-
alytical queries over global cubes, but advanced features (e.g.
based on SQL language) are also available for experts.

Big data frameworks and polystore systems (e.g. Apache Drill
[5], Presto [8], BigDAWG [3]) provide a unified query language
that can be used to access distributed data. But big data frame-
works commonly lack providing distribution transparency, while
polystores are tightly integrated, managing all sources together,
including in terms of data location and data replication [9]. Our
system maintains source autonomy, uses a global schema to pro-
vide distribution transparency (location, replication, and fragmen-
tation), is extensible, and supports a wide range of data sources.

In the demonstration, two scenarios will be made available
for participants. The first one is based on more than 3 years
of real data on photovoltaic panel production/consumption in
Sydney, Australia, and nearby areas. The second uses the SSB+
benchmark [2], which contains persistent and streaming data on
retail store’s sales, deliveries and popularity in social media.

Participants will understand how EasyBDI deals with some key
challenges, like how to (i) explore the local data models to identify
entities of the global model that are partitioned across multiple
data sources, (ii) implement the automatic schema matching,
mapping, and integration procedures to support the users in de-
signing global models for a large number objects and data sources,
and (iii) execute queries on a high-level star schema model ab-
stracting several distributed, heterogeneous and autonomous
data sources. They will also see the global SQL queries generated
by EasyBDI and their translation into queries to the local sources.
Implementation challenges and issues, adopted solutions and
insights will be discussed, making this demonstration helpful to
researchers and practitioners.

Demo

Series ISSN: 2367-2005 702 10.5441/002/edbt.2021.88

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.88

2 EASYBDI PROTOTYPE
EasyBDI is a framework for near real-time analytics that provides
logical integration of multiple data sources while also enabling
the creation of star schemas over global (logical) entities. Local
databases are assumed to be autonomous (operate independently)
and heterogeneous (in terms of data models and query languages,
e.g., relational, graph and document databases, or semi-structured
and unstructured data sources).

Data sources are accessible through a distributed query engine
(Trino). The role of EasyBDI is to add additional levels of trans-
parency, namely, location and fragmentation transparency, to
allow building global schemas providing unified and high-level
representations of the data sources, and to enable the execution
of analytical queries by subject-experts. The architecture and the
main components of EasyBDI are depicted in Figure 1.
API communication handler This component handles the in-
teraction with the external systems: Trino and SQLite.

The Distributed Query Execution Engine Interface uses Java
and JDBC, and implements all the logic regarding the integration
of EasyBDI with Trino. Even though Trino provides a single
representation of the underlying data, queries to Trino must
contain the data source identifier for each data fragment. Thus,
this component must also convert the queries specified using
a global schema (see Database Integration below) into queries
supported by Trino. This requires adding data source identifiers,
as well as union and join operators, according to the mapping
used between the global and local schemas.

The Schema Metadata Storage is responsible for the storage
and management of the metadata of all schemas: local schema
view, global schema, and star schema. Currently, these (meta)data
are stored in an SQLite database.
Configuration Manager This component is responsible for
generating the configuration files that allow Trino to commu-
nicate with the data sources (e.g., data source type, data source
URL, username, password, and other parameters that depend on
the data source type). It also creates local schema views. The
procedure consists of iterating each data source and retrieving
(meta)data about their schemas, namely, tables and columns in-
formation (or the equivalent concepts depending on the data
source), using Trino commands. These (meta)data are stored in
an SQLite database through the Metadata Storage Interface.
Database integration This layer deals with the creation of the
global schema. A global schema contains a set of global tables,
each containing a mapping to logically related data fragments.
The integration is logical, i.e., the global schema is entirely virtual
and not materialized. The main tasks to build a global schema
are schema matching, schema integration and schema mapping.

The schema matching defines a mapping of concepts in a
schemawith concepts in another schema. EasyBDI uses a schema-
based method with linguistic and constraint-based criteria [6].
The algorithm starts by finding tables with similar names us-
ing the Levenshtein distance. For each pair of matching tables,
EasyBDI does columns matching using the Levenshtein distance
to compare names and a similarity measure to compare data
types.

The schema integration defines the global tables and their
columns, using the correspondences found in the schema match-
ing. EasyBDI uses the stepwise binary integration method [6].

The schema mapping defines how to combine data from one or
more local data sources (data fragments) into a single global ta-
ble while keeping consistency and semantic coherence. EasyBDI

Figure 1: Main Components of EasyBDI architecture

analyzes the matching between global and local entities, and iden-
tifies the type of partitioning (horizontal, vertical, or none) used.
If a global table corresponds to only one local entity, then there
is no partitioning. If a global table has a correspondence with
several local tables, and the number of matching columns and
their data types in all tables are the same, then the local tables are
considered horizontally partitioned. The current implementation
of EasyBDI uses foreign key-primary key relationships to find
whether two or more tables are vertically partitioned, but this
is only feasible when it is possible to get constraint information
from the catalog of the data sources.

The methods presented above are automatic and may lead
to incomplete or semantically incorrect results. Thus, EasyBDI
allows users to review and edit the global schema generated
automatically (e.g., removing replicated data sources) using an
intuitive GUI interface.
Multidimensional Schema Manager This component allows
the design of data cubes (star schemas) and the use of abstrac-
tions like facts and dimensions to perform analytical queries so
that users focus on data analysis rather than technical details
regarding data organization. Data cubes are built over the global
schema,i.e., fact and dimensions tables are based on global en-
tities. A start query is basically a join between a fact table and
some dimensions, possibly with filters and aggregations.
Query ExecutionManager This component rewrites the queries
on the global schema into the queries submitted to Trino to get
data from the local data sources. It handles vertical and horizon-
tal data partitioning. Queries on global tables are automatically
translated into queries on local tables using union and join op-
erations of data fragments. The framework can handle multiple
aggregations and joins at the same time. The queries that merge
partitioned data are written as nested queries. An outer query
contains the operators specified by the user (e.g., filters and ag-
gregations) and other implicit joins needed between the facts
table and dimensions. It is also possible to deal with complex
operations such as pivoting and unpivoting data.

Figure 2 exemplifies the query submission process, which
starts with a user interacting with the interface and issuing a

703

Figure 2: Query transformation - from an initial query over global schema to a query over local schemas

query over the star schema. Then the system generates an SQL
query based on the global schema, which is translated into a
query on the local schema and submitted to Trino. Notice that
users do not need to know any query language: EasyBDI provides
an intuitive interface and analytical queries are specified using
drag-and-drop. Finally, Trino prepares and sends the queries that
must be executed by the local data sources. Thus, users can create
queries using global names and cubes and do not need to know
about the format, organization and distribution of the data, nor a
query language.

The Query Execution Manager also transforms the results pro-
vided by Trino according to the global schema and sends them
to the visualization layer.

Visualization andConfiguration This layer comprises several
tools related to querying and configuration, including wizards to
provide guided operations to users, like the cube builder, query
builder, global schema editor, and data source configuration.

3 DEMONSTRATION
This demonstration has two case studies to highlight different fea-
tures of EasyBDI. It will cover the selection of data sources, auto-
matic generation of a global schema, creation of a star schema and
execution of drag-and-drop (and user-edited) analytic queries.

Case study 1 uses data on energy production and consump-
tion of 300 homes equipped with photovoltaic panels in Sydney
over the span of 3 years. The data are available in three CSV files.
The lines represent the customers, generator capacity, dates and
type of consumption or production (GC, CL, and GG), and the
columns represent the values recorded every 30 minutes (Fig-
ure 3). This case is interesting because the organization of the
data is far from a typical data organization in relational databases.

We consider that the data on the customers’ location (postal
codes related data) are in a PostgreSQL database and the temporal
data are in a MySQL database, just for experimentation purposes.

Figure 3: Sample of a CSV file with photovoltaic data

After the automatic generation of the global schema, we will
manually edit it to show some advanced features. In particular, we
will show how to use virtual tables and user-defined commands
to unpivot the data in the CSV files, how to specify constraints
and change the data types of global schema columns, and how
to create a mapping between the global schema and the data
sources using virtual tables (Figure 4).

Figure 4: Global schema (left panel) and local schema
views (right panel) for the photovoltaic datasets

Then, a star schema will be created with a fact table (pv_facts),
three measures (GC, CL and GG) and three dimensions (cus-
tomer_dim, time_dim and postalcodes_dim). We will show how
to run queries on the global schema using only drag-and-drop
how to edit the commands manually (Figure 5). We will also illus-
trate the transformation of queries on a global schema (Listing 1)
into queries on the local schema views that must be executed by
Trino (Listing 2). The “<user query>” in Listing 2 denotes the
query used to transform the data structure depicted in Figure 3
into a virtual table and is omitted because of its size.
Listing 1: Code generated for the global query depicted in
Figure 5 (top) (datatype casting operators were removed).

SELECT c . cus tomer_ id , t . year ,
SUM(pv .GG) AS " SUM_of_GG "

FROM cus tomers c , t ime_d imens ion t , pv
WHERE (t . h a l f _hou r = pv . h a l f _hou r
AND c . cu s tomer_ id = pv . cus tomer
AND t . date = pv . date)
GROUP BY (t . year , c . cu s tomer_ id)

704

Figure 5: A global query made with drag-and-drop (top)
and a global query edited manually (bottom)

Listing 2: Translation of the code in Listing 1 into a
query over the local schema views (the name of the data source
“mysql_localhost_3306_time” is abbreviated to “mysql”).

SELECT cus tomers . cus tomer_ id , t ime_d imens ion . year ,
SUM(GG) AS " SUM_of_GG "

FROM
(SELECT mysql . pv_schema . cus tomers . cu s tomer_ id
FROM mysql . pv_schema . cus tomers) AS customers ,

(SELECT mysql . pv_schema . t ime_d imens ion . ha l f _hour ,
mysql . pv_schema . t ime_d imens ion . year ,
mysql . pv_schema . t ime_d imens ion . date
FROM mysql . pv_schema . t ime_d imens ion) AS
t ime_dimens ion ,

SELECT customer , date , h a l f _hour , GG FROM
(< u se r query > UNION <use r query >
UNION <use r query >) AS pv

WHERE (t ime_d imens ion . h a l f _hou r = pv . h a l f _hou r
AND cus tomers . cu s tomer_ id = pv . cus tomer
AND t ime_d imens ion . da t ed = pv . date)

GROUP BY (t ime_d imens ion . year , cu s tomers . cu s tomer_ id)

Case study 2 uses the SBB+ benchmark [2] and represents a
more conventional scenario in a big data environment. The SSB+
data model has two star schemas, one for batch Online Analytical
Processing (OLAP) and the other for streaming OLAP. The batch
OLAP is an adaptation of the schema proposed in TPC-H. The
streaming OLAP is based on social media data and represents the
popularity of retail stores (and their sales and deliveries).The data
for OLAP batch storage are stored in Hive, while the facts data for
streaming OLAP are stored in Cassandra (a NoSQL database that
uses a wide-column store model), and conceptual relationships
exist between data stored in both systems, as represented in
Figure 6. We use the code available in [1] to populate the data
sources.

In this case, EasyBDI’s automatic matching, integration and
mapping was mostly correct. Only a few manual edits are needed
and no user-defined commands are necessary. We also show
how to create the star schemas for batch OLAP and streaming
OLAP and how to execute queries. SSB+ has a listing of analytical
queries that we used to test the functionality of EasyBDI and
we also use some of these queries in this demonstration. Regard-
ing EasyBDI’s performance, the overhead associated with query

Figure 6: Case study 2: batch and streaming OLAP –
overview of local schemas

generation is small (≈ 1% of query execution time). Query exe-
cution time depends mostly on query complexity, data sources’
efficiency, and on the resources available for Trino.

4 SUMMARY
In this work, we present EasyBDI, a framework for near real-
time data analytics that uses logical data integration to pro-
vide a high-level abstraction of data distribution and hetero-
geneity, while keeping the autonomy of the data sources. Au-
tomatic schema matching and configuration wizards are used
to support the addition of new data sources. Multidimensional
data organization is used to enable query analytics by subject-
experts. We present two scenarios, one based on real data and
the other on the use of a benchmark that simulates sales data
and social media data. We also present several implementation
issues, discussing adopted solutions that may be helpful to re-
searchers and practitioners. EasyBDI is publicly available on
Github https://github.com/bsilva3/EasyBDI .

ACKNOWLEDGMENTS
This work is partially funded by National Funds through the FCT
(Foundation for Science and Technology) in the context of the
projects UIDB/04524/2020, UIDB/00127/2020 and POCI-01-0247-
FEDER-024541.

REFERENCES
[1] Carlos Costa. 2019. Big Data Benchmarks. https://github.com/epilif1017a/

bigdatabenchmarks Accessed = 2021-02-01.
[2] Carlos Costa and Maribel Yasmina Santos. 2018. Evaluating several design

patterns and trends in big data warehousing systems. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Vol. 10816 LNCS. Springer Verlag, 459–473.
https://doi.org/10.1007/978-3-319-91563-0_28

[3] Jennie Duggan, Aaron J. Elmore, Michael Stonebraker, Magda Balazinska, Bill
Howe, Jeremy Kepner, Sam Madden, David Maier, Tim Mattson, and Stan
Zdonik. 2015. The BigDAWG Polystore System. SIGMOD Rec. 44, 2 (Aug.
2015), 11–16.

[4] Trino Software Foundation. 2021. Trino - Distributed SQL Query Engine for
Big Data. https://trino.io/ Accessed = 2021-02-01.

[5] Michael Hausenblas and Jacques Nadeau. 2013. Apache Drill: Interactive
Ad-Hoc Analysis at Scale. Big data 1, 2 (2013), 100–104.

[6] M. Tamer Özsu and Patrick Valduriez. 2020. Principles of distributed database
systems, fourth edition. Springer. 1–674 pages.

[7] Erhard Rahm and Philip A. Bernstein. 2001. A survey of approaches to auto-
matic schema matching. VLDB Journal 10, 4 (dec 2001), 334–350.

[8] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte,
and Christopher Berner. 2019. Presto: SQL on everything. Proceedings -
International Conference on Data Engineering 2019-April (2019), 1802–1813.

[9] Dimitris Stripelis, Chrysovalantis Anastasiou, and José Luis Ambite. 2018.
Extending Apache Spark with a Mediation Layer. In Proceedings of the In-
ternational Workshop on Semantic Big Data (Houston, TX, USA) (SBD’18).
Association for Computing Machinery, New York, NY, USA, Article 2, 6 pages.

[10] Ran Tan, Rada Chirkova, Vijay Gadepally, and Timothy G. Mattson. 2017.
Enabling query processing across heterogeneous data models: A survey. In
2017 IEEE International Conference on Big Data, BigData 2017, Boston, MA, USA,
December 11-14, 2017. IEEE Computer Society, 3211–3220.

705

	EasyBDI: Near Real-Time Data Analytics over Heterogeneous Data SourcesBruno Silva, Jose Moreira, Rogério Luís Costa

