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ABSTRACT
With the growing popularity of storing data in native RDF, we

witness more and more diverse use cases with complex SPARQL

queries. As a consequence, query optimization – and in partic-

ular cardinality estimation and join ordering – becomes even

more crucial. Classical methods exploit global statistics covering

the entire RDF graph as a whole, which naturally fails to cor-

rectly capture correlations that are very common in RDF datasets,

which then leads to erroneous cardinality estimations and subop-

timal query execution plans. The alternative of trying to capture

correlations in a ne-granular manner, on the other hand, re-

sults in very costly preprocessing steps to create these statistics.

Hence, in this paper we propose shapes statistics, which extend

the recent SHACL standard with statistic information to capture

the correlation between classes and properties. Our extensive ex-

periments on synthetic and real data show that shapes statistics

can be generated and managed with only little overhead with-

out disadvantages in query runtime while leading to noticeable

improvements in cardinality estimation.

1 INTRODUCTION
Driven by diverse movements, such as Linked Open Government

Data, Open Street Map, DBpedia [3], and YAGO [21], more and

more data is being published in RDF [7] capturing a multitude

of diverse information. Along with the growing popularity, in-

creasingly complex queries formulated in SPARQL [6] are being

executed over such data to answer business and research ques-

tions. Query logs of the public DBpedia SPARQL endpoint, for

instance, contain SPARQL queries with up to 10 joins [4] and

analytic queries in the biomedical eld can involve more than

50 joins per query [9]. Therefore, the need for high-performance

SPARQL query processing is now more pressing than ever.

Existing approaches for query optimization in RDF stores of-

ten adapt techniques from relational databases modeling an RDF

dataset as a single large table with three column [5, 16] (one

column for each of the components of an RDF triple: subject,

predicate, and object). Nevertheless, accurate cardinality estima-

tion is at the heart of any query optimizer that does not rely on

heuristics but instead uses a cost model to nd the best query ex-

ecution plan for a given query. Cardinality estimation then relies

on the availability of statistics describing the characteristics of the

data to estimate the sizes of intermediate results produced while

query execution. However, general statistics typically result in

highly imprecise estimations since they are mostly gathered on

the RDF graph as a whole, in contrast to the relational case where

it is possible to create such statistics with higher precision since

data is separated into multiple tables [15]. Furthermore, assum-

ing independence when joining parts of SPARQL queries (triple

patterns) leads to erroneous estimations [9] as co-occurrences of

certain predicates are highly correlated [19].
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Hence, exploiting more ne-grained statistics capturing corre-

lations among RDF triples leads to more accurate join cardinality

estimations [19]. However, creating such statistics comes at the

price of a very time and resource-intensive preprocessing step.

On the other hand, the alternative of online, query-dependent,

sampling [20] results in overheads during query optimization.

Instead, what we propose in this paper is to better exploit the

information that is often provided along with an RDF dataset:

SHACL (Shapes Constraint Language) [14] constraints, which is

a recent standard for validating RDF datasets that are becoming

more and more popular. SHACL denes so-called shapes describ-

ing the relationships between entities of a specic class, their

properties, and their connections to other classes of entities. Al-

though they are currently only used for validation purposes, we

show in this paper that by slightly extending them with basic sta-

tistics, they can also be exploited for join cardinality estimation.

In summary, this paper makes the following contributions.

First, we extend the SHACL denition to capture statistical infor-

mation to replace the need for creating complex (and expensive)

statistics over RDF datasets. To the best of our knowledge, this is

the rst proposal of this kind. Second, we introduce an algorithm

to enhance SHACL shapes with statistical information and to

exploit these statistics for join cardinality estimation and query

optimization. Third, we study the impact of our approach using

both synthetic (LUBM [10], WatDiv [2]) and real (YAGO-4 [21])

datasets, demonstrating that shapes statistics can provide higher

precision for query optimization with only a little overhead.

This paper is structured as follows. While Sections 2 and 3 dis-

cuss related work and introduce preliminaries, Section 4 formally

denes the problem. Section 5 then describes our proposed exten-

sion of the SHACL standards, and Section 6 presents techniques

to exploit the additional information for cardinality estimation

and query optimization. Section 7 discusses the results of our

extensive experimental study, and Section 8 concludes the paper

with an outlook to future work.

2 RELATEDWORK
Cardinality estimation has been studied extensively in the con-

text of relational databases [20]. For SPARQL queries, existing

techniques adapt relational approaches [13, 24] and focus mostly

on specic type of queries [19]. Usually, these approaches con-

struct dierent kinds of single or multidimensional synopses

over databases that can be used to estimate cardinalities [23].

While algorithms designed to generate synopsis for unlabelled

graphs are not applicable here (as the edges in RDF graphs are

labeled), consequently approaches to generate RDF summaries

either produce very large summaries [23], have very high com-

putational complexities, or they are unable to preserve the RDF

schema while constructing the summaries [23]. Therefore, the

most promising approaches aim at using statistics computed di-

rectly from edge label frequencies. In particular, RDF-3X proposes

a histogram-based technique for cardinality estimation based on

edge label frequencies. This technique was later extended by

exploiting the statistical information of Characteristic Sets [19],

which compute frequencies of sets of predicates sharing the same
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subject to estimate the cardinalities. This approach shows high

performance for star-shaped queries while it suers from signi-

cant underestimation due to the independence assumption in the

general case [20]. This approach was extended as Characteristic

Pairs [18] to overcome this limitation, but it could only support

multi-chain star queries. Moreover, extracting Characteristic Sets

from large heterogeneous graphs is computationally expensive.

SumRDF [23] is another cardinality estimation approach based

on a graph summarization. It fails to handle large queries due to

a prohibitive computation cost, and it is costly to construct such

summaries over large RDF graphs [20].

A recent benchmark, G-CARE [20], analyzed the performance

of existing cardinality estimation techniques for subgraph match-

ing. This analysis revealed that the techniques based on sampling

and designed for online aggregation outperform the cardinality

estimation techniques for RDF graphs. This calls for a more in-
depth study on how to perform cardinality estimation for SPARQL
query optimization appropriately.

In a recent work, Shape Expressions (ShEx) [22] have been

used to reorder triple patterns to enable SPARQL query opti-

mization [1], i.e., it estimates an order of execution for the triple

patterns based on some heuristic inference on which triples are

more selective. For instance, if a shape denition says that every

instructor has one or more courses, but every course has exactly

one instructor, it infers that the cardinality of courses is at least

the same as the cardinality of instructors and probably larger.

Hence, this optimization procedure is not based on actual data.

Therefore, contrary to existing works, we aim at exploiting

ne-grained statistics based on shapes to produce more precise

cardinality estimations for query planning. This will allow us to

overcome the limitations of existing methods that only use the

global-statistics [11]. To this end, instead of creating large expen-

sive summaries and characteristic sets over the RDF graphs to

estimate the cardinalities, we exploit SHACL shapes constraints

(which are as expressive as ShEx [22]) and annotate the Node
and Property Shapes with the statistics of the input RDF graph.

Compared to other solutions, it requires a lightweight prepro-

cessing and retains the structure of original RDF and SHACL

shapes graphs. Moreover, this allow us to study more closely the
eect of more ne-grained statistics, and more accurate cardinality
estimation for the task of SPARQL query optimization.

3 PRELIMINARIES
RDF Graphs: RDF graphs model entities and their relationships

in the form of triples consisting of SPO <subjects, predicates,
objects>. We present a simplied example of an RDF graph 𝐺

based on the LUBM [10] dataset in Figure 1, where oval and

rectangular shapes represent IRIs and literal nodes, respectively.

An RDF graph is formally dened as:

Denition 3.1 (RDF Graph). Given pairwise disjoint sets of IRIs

𝐼 , blank nodes 𝐵, and literals 𝐿, an RDF Graph𝐺 is a nite set of

RDF triples 〈𝑠, 𝑝, 𝑜〉 ∈ (𝐼 ∪ 𝐵) × 𝐼 × (𝐼 ∪ 𝐵 ∪ 𝐿).
SPARQL: SPARQL [6] is a standard query language for RDF. A

SPARQL query consists of a nite set of triple patterns (known

as basic graph pattern, BGP) and some conditions that have to

be met in order for data to be selected and returned from an

RDF graph. Each SPO position in a triple pattern can be concrete

(i.e., bound) or a variable (i.e., unbound). The variable names in a

SPARQL query are prexed by a ‘?’ symbol, e.g., ?X. To answer

a BGP, we require a mapping between variables to values in an
RDF graph, all the resulting triples existing in the RDF graph

Figure 1: An RDF Graph 𝐺

Figure 2: Query 𝑄 and its Graph 𝑄𝐺

obtained by replacing the variables with values are answers to

the BGP. Figure 2 shows an example SPARQL query (𝑄) and its

query graph 𝑄𝐺 on the graph of Figure 1. A BGP is dened as:

Denition 3.2 (BGP). Given a set of IRIs 𝐼 , literals 𝐿, and vari-

ables 𝑉 , a BGP is dened as 𝑇⊆(𝐼∪𝐿∪𝑉 ) × (𝐼∪𝑉 ) × (𝐼∪𝐿∪𝑉 ),
whose elements are called triple patterns.

Shapes Graphs: Several schema languages have been proposed

for RDF in the past, where the most common are RDF Schema

(RDFS
1
) and OWL [17]. RDFS is primarily used to infer im-

plicit facts, and OWL is an extension of RDF and RDFS to rep-

resent ontologies. The declarative Shapes Constraint Language

(SHACL) [14] became a W3C standard recently. SHACL schema

provides high-level information about the structure and con-

tents of an RDF graph. It allows to dene and validate structural

constraints over RDF graphs. SHACL models the data in two

components: the data graph and the shape graph. The data graph
contains the actual data to be validated, while the shape graph
contains the constraints against which resources in the data
graph are validated. These constraints are modeled as node and

property shapes, which consist of attributes encoding the con-

straints. The node shapes constraints are applicable on nodes

that are instances of a specic type in the data graph while the

property shapes constraints are applicable to predicates associ-

ated with nodes of specic types. We dene a SHACL shapes

graph as follows:

Denition 3.3 (SHACL Shapes Graph). A SHACL shapes graph

𝐺𝑠ℎ is an RDF graph describing a set of node shapes 𝑆 and a set of

property shapes 𝑃 , such that 𝑡𝑎𝑟𝑔𝑒𝑡𝑆 : 𝑆 ↦→𝐼 and 𝑡𝑎𝑟𝑔𝑒𝑡𝑃 : 𝑃 ↦→𝐼

are injective functions mapping each node shape 𝑠𝑖∈𝑆 and each

property shape 𝑝𝑖∈𝑃 to the IRI of a target class and a target

predicate in𝐺 respectively, and 𝜙 : 𝑆 ↦→2
𝑃
is a surjective function

assigning to each node shape 𝑠𝑖 a subset 𝑃𝑖⊆𝑃 of property shapes.

For example in Figure 3, node shape constraints are appli-

cable on node ub:GraduateStudent and its property shapes

constraints are applicable on predicates like takesCourse, and
advisor. This information is declared with attributes sh: target-
Class for node shapes and sh:path for property shapes. Note that

the attributes in the dark shaded boxes are part of our extension

of the SHACL denition, explained in Section 5.

1
https://www.w3.org/TR/rdf-schema/
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Figure 3: SHACL Shapes Graph

The Shapes Expression (ShEx [22]) language also serves a

similar purpose as SHACL to validate RDF graphs. Nonetheless,

the two formulations diverge mostly at the syntactic level [12],

and our approach can be extended to work using ShEx or other

constraints languages as well without the loss of generality.

4 PROBLEM FORMULATION
Given an input query 𝑄 , a query optimizer has the goal to nd

a query plan expected to answer 𝑄 in the minimum amount of

time [15]. Constructing a SPARQL query plan includes nding a

join ordering between triple patterns of its BGPs. In this paper,

we focus on the join ordering of BGPs dened as follows:

Denition 4.1 (Join Ordering). Given a set of triple patterns

𝑇={𝑡𝑝1, 𝑡𝑝2, ..., 𝑡𝑝𝑛} ⊆ (𝐼∪𝐿∪𝑉 ) × (𝐼∪𝑉 ) × (𝐼∪𝐿∪𝑉 ), the join

order O for BGPs is dened as a total ordering O of T so that for

every 𝑡𝑖 , 𝑡 𝑗∈𝑇 either 𝑡𝑖≺O𝑡 𝑗 or 𝑡 𝑗≺O𝑡𝑖 .

To nd an optimal plan, a query optimizer needs to explore the

search space of semantically equivalent join orders and choose

the optimal (cheapest) plan according to some cost function. It

is crucial to accurately estimate the join cardinality between

triple patterns of a given query to construct a query plan with

an ecient join ordering [9]. In line with the related work [20],

we neglect other cost factors and focus on join cardinality as the

most dominant cost factor to nd a join ordering. We formally

dene the problem of estimating join cardinalities as follows:

Problem 1 (Join Cardinality Estimation). Given a set of
triple patterns𝑇={𝑡𝑝1, 𝑡𝑝2, ..., 𝑡𝑝𝑛}, apply a cardinality estimation
function 𝐽 : 𝑇×𝑇 ↦→ N such that for every pair of triple patterns
(𝑡𝑝𝑖 , 𝑡𝑝 𝑗 )∈𝑇 , 𝐽 (𝑡𝑝𝑖 , 𝑡𝑝 𝑗 ) ≈ |𝑡𝑝𝑖Z𝑡𝑝 𝑗 |.

We extend the above estimation problem also to the case of

joining a triple pattern with the intermediate results of prior join

operations, e.g., to estimate the total cardinality 𝐽 ((𝑡𝑝𝑖Z𝑡𝑝 𝑗 ), 𝑡𝑝𝑘 )
≈ |(𝑡𝑝𝑖Z𝑡𝑝 𝑗 )Z𝑡𝑝𝑘 |. Then, given such estimates, an optimal query

plan minimizes the total number of operations to compute, i.e.,

the execution costs 𝐶𝑜𝑠𝑡 (𝑇,O) of the order O for the set 𝑇 . In

practice, this total join cost is obtained by summing up the inter-

mediate cardinalities of each join operation in their respective

join order. Hence, we formalize the problem of join order opti-

mization as follows:

Problem 2 (Join Order Optimization). Given a set of triple
patterns 𝑇={𝑡𝑝1, 𝑡𝑝2, ..., 𝑡𝑝𝑛} and a join cardinality estimation
function 𝐽 , nd the join order O obtained as argminO 𝐶𝑜𝑠𝑡 (𝑇,O).

5 EXTENDING SHACLWITH STATISTICS
To compute more accurate join cardinality estimations (Prob-

lem 1), we capture the correlations between RDF triples by ex-

tending SHACL’s node and property shapes with ne-grained

statistics of the RDF graph. We denote these statistics as shapes
statistics. These include the total triple count (sh:count), minimum

(sh:minCount) and maximum (sh:maxCount) number of triples

for each instance, and the number of distinct objects for property

instantiations (sh:distinctCount). The attributes shown in the dark
shaded boxes in Figure 3 are the annotated statistical attributes

of their respective node and property shapes. These statistics

are computed by executing analytical SPARQL queries over the

RDF graph. For instance, to compute the number of instances of

GraduateStudent in the dataset, i.e, the value of attribute sh:count
of node shape GraduateStudent, the annotator issues the SPARQL
query: SELECT COUNT(*) WHERE {?x a ub:GraduateStudent}.

Along with shapes statistics, we also dene global statistics by
extending VOID

2
statistics with more precise statistics of RDF

properties, i.e., the distinct subject count (DSC) and distinct object

count (DOC) of each property of the RDF graph.

6 QUERY PLANNING
In this section, we present our approach to exploit global and

shapes statistics to obtain more accurate join cardinality esti-

mates (Problem 1). These estimates, in turn, are used for join

order optimization (Problem 2).

6.1 Cardinality Estimation of Triple Patterns
A SPARQL query contains joins between multiple triple patterns.

Hence, the rst step is to estimate how many triples match every

triple pattern individually. We exploit the statistical information

contained in the extended SHACL shapes graph (Section 5) to

obtain this estimate. Hence, for each triple pattern, we obtain

their corresponding node or property shapes using the values of

the sh:targetClass and sh:path attributes.

First, all triples of the type <?x, a, [Class]> (i.e., instances with
rdf:type [Class]) are mapped to the node shape having that class

as the value of the attribute sh:targetClass. Then, triples having
variable ?x as a subject are also assigned to that node shape. The

triple predicate determines instead its corresponding candidate

property shapes, i.e., those with a matching value for sh:path.
For example, given triples 𝑡𝑝1=<?x, rdf:type, ub:GraduateStudent>
and 𝑡𝑝2=<?x, ub:name, ?n>, the subject ?x is assigned to node

shape:GraduateStudent, while the predicate in 𝑡𝑝2 matches shape:
name (Figure 3, top left and top right).

Once the candidate shapes for all the triple patterns are iden-

tied, their statistical information combined with the distinct

subject and object count (DSC & DOC) from the global statistics
are used in combination with the formulas shown in Table 1 to

compute their expected cardinality. These formulas, inspired by

a previous work [11], cover all possible types of triple patterns.

The term 𝑐𝑋 in the formulas denotes the count of 𝑋 in the RDF

graph; 𝑐𝑡𝑟𝑖𝑝𝑙𝑒𝑠 denotes the count of all triples and 𝑐𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 the

count of all objects. Similarly, 𝑐𝑋𝑌
represents the count of 𝑋 hav-

ing 𝑌 . This can be used, for instance, to derive that there are

∼ 85K triples matching <?x, rdf:type, ub:FullProfessor> (Table 2a).
While both global and shapes statistics can be used to estimate

the cardinality of triple patterns using these formulas, they can

lead to dierent estimated cardinalities. When the query does not

contain any type-dened triple, only global statistics are used.

2
Vocabulary of Interlinked Datasets: https://www.w3.org/TR/void/
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Triple Pattern Cardinality Triple Pattern Cardinality

?s ?p obj

𝑐𝑡𝑟𝑖𝑝𝑙𝑒𝑠

𝑐𝑜𝑏 𝑗𝑒𝑐𝑡𝑠
?s ?p ?o 𝑐𝑡𝑟𝑖𝑝𝑙𝑒𝑠

subj ?p obj

𝑐𝑡𝑟𝑖𝑝𝑙𝑒𝑠

𝑐𝑑𝑖𝑠𝑡𝑆𝑢𝑏 𝑗 × 𝑐𝑑𝑖𝑠𝑡𝑂𝑏 𝑗

subj ?p ?o

𝑐𝑡𝑟𝑖𝑝𝑙𝑒𝑠

𝑐𝑑𝑖𝑠𝑡𝑆𝑢𝑏 𝑗

?s pred obj

𝑐𝑝𝑟𝑒𝑑

𝑐𝑝𝑟𝑒𝑑𝑜𝑏 𝑗
?s pred ?o 𝑐𝑝𝑟𝑒𝑑

subj pred obj

𝑐𝑝𝑟𝑒𝑑

𝑐𝑑𝑖𝑠𝑡𝑆𝑢𝑏 𝑗 × 𝑐𝑑𝑖𝑠𝑡𝑂𝑏 𝑗

sub pred ?o

𝑐𝑝𝑟𝑒𝑑

𝑐𝑝𝑟𝑒𝑑𝑠𝑢𝑏
?s rdf:type obj 𝑐𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒𝑜𝑏 𝑗

?s rdf:type ?o 𝑐𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒

subj rdf:type obj 1 𝑜𝑟 0 subj rdf:type ?o

𝑐𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒

𝑐𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒𝑠𝑢𝑏

Table 1: Cardinality estimation of triple patterns
6.2 Cardinality Estimation of Joins
The join operation is performed on a common variable between

two triple patterns. We consider three possible types of joins

between two triple patterns based on the position of the common

variable, namely: Subject-Subject (SS), Subject-Object (SO), and

Object-Object (OO). If there is no common variable between

two triple patterns, the join will result in a Cartesian product.

Inspired by related work [8], we estimate the SS, SO, and OO join

cardinalities using the formulas stated in Equations 1, 2, and 3.

Note that 𝐷𝑆𝐶𝑖 and 𝐷𝑂𝐶𝑖 in the formulas represent the distinct

subject and object count of triple pattern 𝑖 respectively.

�𝑐𝑎𝑟𝑑 (𝑡𝑝𝑖 Z𝑆𝑆 𝑡𝑝 𝑗 ) =
𝑐𝑎𝑟𝑑𝑖 × 𝑐𝑎𝑟𝑑 𝑗

𝑚𝑎𝑥 ( 𝐷𝑆𝐶𝑖 , 𝐷𝑆𝐶 𝑗 )
(1)

�𝑐𝑎𝑟𝑑 (𝑡𝑝𝑖 Z𝑆𝑂 𝑡𝑝 𝑗 ) =
𝑐𝑎𝑟𝑑𝑖 × 𝑐𝑎𝑟𝑑 𝑗

𝑚𝑎𝑥 ( 𝐷𝑆𝐶𝑖 , 𝐷𝑂𝐶 𝑗 )
(2)

�𝑐𝑎𝑟𝑑 (𝑡𝑝𝑖 Z𝑂𝑂 𝑡𝑝 𝑗 ) =
𝑐𝑎𝑟𝑑𝑖 × 𝑐𝑎𝑟𝑑 𝑗

𝑚𝑎𝑥 ( 𝐷𝑂𝐶𝑖 , 𝐷𝑂𝐶 𝑗 )
(3)

6.3 Join Ordering
Given an RDF graph 𝐺 , its shapes statistics graph (𝐺𝑠ℎ), and
global statistics graph (𝐺𝑔𝑠 ), we propose an algorithm to com-

pute the join ordering for an input query 𝑄 (Algorithm 1). In

the rst step, the triple patterns of 𝑄 are sorted in ascending

order of their estimated cardinalities using only global statis-

tics. The algorithm starts with the triple pattern having the least

cardinality and then estimates its join cardinality with the rest

of the triple patterns using the formulas from Section 6.2. The

algorithm iterates over all the triple patterns and chooses a triple

pattern with the least estimated join cardinality (size of interme-

diate result) given the triple already selected. This produces a

rst join ordering based on global statistics. In the second step,

shapes statistics are taken into account, and both the estimated

cardinalities and the join ordering proposed in the rst step are

revised using these shapes specic ne-grained statistics. The

algorithm also computes the cost of each join ordering by adding

the estimated join cardinalities in each iteration. Its complexity

is cubic to the number of triple patterns in the query, i.e., 𝑂 (𝑛3).
Given our example query 𝑄 , and the cardinalities of its triple

patterns𝑇={𝑡𝑝1, 𝑡𝑝2, ..., 𝑡𝑝9} estimatedwith both global and shape

statistics, Tables 2a and 2b show the join ordering computed only

using global statistics (O𝑔𝑠 ) and via shapes statistics (O𝑠𝑠 ), respec-
tively. There is a signicant dierence between the estimated and

true join cardinalities and their nal total cost. The estimated

join cardinalities for O𝑠𝑠 are much closer to the true cardinalities

of the query than the estimates for O𝑔𝑠 with two exceptions for

𝑡𝑝5 and 𝑡𝑝8 where shapes statistics largely overestimate their

cardinalities due to skewed distribution of data.

Algorithm 1 Join Ordering

Input:𝑄 ,𝐺 ,𝐺𝑠ℎ ,𝐺𝑔𝑠

Output: Join order O of𝑄
1: 𝑝← [] ; 𝑟 ← [] ; ⊲ p: processed, r: remaining

2: 𝑐𝑜𝑠𝑡 ← 0 ; 𝑐𝑎𝑟𝑑 ← 0 ; 𝑞𝑢𝑒𝑢𝑒 ← 𝑞𝑢𝑒𝑢𝑒.𝑖𝑛𝑖𝑡 () ;
3: 𝑡𝑝𝑠← 𝑔𝑒𝑡𝑇𝑃𝑠 (𝑄) ;
4: 𝑡𝑝𝑠4 ← 𝑔𝑒𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆ℎ𝑎𝑝𝑒𝑠(𝑄 ,𝐺 ,𝐺𝑠ℎ ,𝐺𝑔𝑠 ) ;

5: 𝑡𝑝𝑠′← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑖𝑒𝑠 (𝑡𝑝𝑠4) ; ⊲ Table 1

6: 𝑠𝑜𝑟𝑡 (𝑎𝑠𝑐, 𝑡𝑝𝑠′.𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦) ;
7: 𝑝.𝑎𝑑𝑑 (𝑡𝑝𝑠′

0
) ; 𝑟 .𝑎𝑑𝑑𝐴𝑙𝑙 (𝑡𝑝𝑠′ − 𝑡𝑝𝑠′

0
) ;

8: 𝑐𝑜𝑠𝑡 = 𝑡𝑝𝑠′
0
.𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 ;

9: 𝑞𝑢𝑒𝑢𝑒.𝑎𝑑𝑑 (𝑡𝑝𝑠′
0
.𝑖𝑛𝑑𝑒𝑥) ;

10: for 𝑡𝑝𝑖 ∈ 𝑡𝑝𝑠′ do ⊲ i > 0

11: 𝑖𝑛𝑑𝑒𝑥 = 𝑡𝑝𝑖 .𝑖𝑛𝑑𝑒𝑥 ; 𝑐𝑜𝑠𝑡𝑙𝑜𝑐𝑎𝑙 = 𝑐𝑜𝑠𝑡 ;

12: 𝑞𝑢𝑒𝑢𝑒′ = 𝑞𝑢𝑒𝑢𝑒 ;

13: while !𝑞𝑢𝑒𝑢𝑒′.𝑖𝑠𝐸𝑚𝑝𝑡𝑦 do
14: 𝑡𝑝𝑎 = 𝑞𝑢𝑒𝑢𝑒′.𝑝𝑜𝑙𝑙 () ;
15: for 𝑡𝑝𝑏 ∈ 𝑟 do
16: 𝑐 = 0 ;

17: if tp𝑎 Z𝑇 tp𝑏 then ⊲ 𝑇 ∈ {𝑆𝑆, 𝑆𝑂,𝑂𝑆,𝑂𝑂 }
18: c = 𝐽 (𝑡𝑝𝑎 , 𝑡𝑝𝑏 ) ; ⊲ 𝐽 : 𝑇×𝑇 ↦→ N (Prob 1)

19: else𝑐 = 𝑐𝑝 (𝑡𝑝𝑎 , 𝑡𝑝𝑏 ) ; ⊲ Cartesian Product

20: if 𝑐 < 𝑐𝑜𝑠𝑡𝑙𝑜𝑐𝑎𝑙 then
21: 𝑐𝑜𝑠𝑡𝑙𝑜𝑐𝑎𝑙 = 𝑐 ; 𝑖𝑛𝑑𝑒𝑥 = 𝑡𝑝𝑏 .𝑖𝑛𝑑𝑒𝑥 ; 𝑐𝑎𝑟𝑑 = 𝑐 ;

22: 𝑐𝑜𝑠𝑡+=𝑐𝑜𝑠𝑡𝑙𝑜𝑐𝑎𝑙 ;

23: 𝑞𝑢𝑒𝑢𝑒.𝑎𝑑𝑑 (𝑖𝑛𝑑𝑒𝑥) ; 𝑝.𝑎𝑑𝑑 (𝑡𝑝𝑠′.𝑔𝑒𝑡 (𝑖𝑛𝑑𝑒𝑥)) ;
24: 𝑟 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑡𝑝𝑠′.𝑔𝑒𝑡 (𝑖𝑛𝑑𝑒𝑥)) ;
25: O ← 𝑞𝑢𝑒𝑢𝑒.𝑝𝑜𝑙𝑙 () ;

7 EXPERIMENTAL EVALUATION
We investigated the performance of query plans proposed using

our algorithm (with global and shapes statistics) compared to the

plans proposed by two state-of-the-art query engines (Apache

Jena ARQ
3
and GraphDB

4
) as well as two state-of-the-art RDF

cardinality estimation approaches (Characteristic Sets [19] and

SumRDF [23]). All experiments are performed on a single ma-

chine with Ubuntu 18.04, having 16 cores and 256GB RAM.

Datasets: We used LUBM [10], WatDiv [2], and YAGO-4 [21]

to study various query plans on dierent datasets and sizes (Ta-

ble 3). In particular, we used LUBM-500, two variants of WatDiv

datasets (WATDIV-S (Small) with ~108.9 M triples andWATDIV-L

(Large) with 1 billion triples), and for YAGO-4 we used the subset

containing instances that have an English Wikipedia article.

Implementation: Nowadays, constraints languages are having
widespread application to validate RDF graphs [21]. We assume

the availability of SHACL shapes graph with the dataset and

provide a Shapes Annotator to extend it with statistics of the graph.
For cases where they are not present, the SHACLGEN

5
library is

commonly used to generate shapes graphs and we also use it in

our case (e.g., for YAGO-4). All shapes are then extended with the

required statistics using our Shapes Annotator (implemented in

Java). The SHACL shapes graph for LUBM, for instance, is 45 KB,

and the size of extended shapes is 68 KB. The time required to

extend the SHACL shapes depends on the number of its nodes and

property shapes. The process of extending LUBM shapes graph

took 16 minutes, WATDIV-S took 8 minutes, and for YAGO-4

(which consists of 8888 nodes and 80831 property shapes) it took

62 minutes. We implemented our join ordering algorithm in Java

using Jena
3
. The source code is available on our website

6
.

We loaded all three datasets and their relevant SHACL shapes

graphs into Jena TDBs
3
. We used our join ordering algorithm

to construct query plans using global and shapes statistics. For

Jena, we used its ARQ query engine to obtain the query plans.

For GraphDB, we loaded all datasets in GraphDB and used its

onto:explain feature to obtain the query plans. For Characteris-

tic Sets [19] approach, we generated characteristic sets of each

3
https://jena.apache.org/documentation/

4
https://graphdb.ontotext.com

5
https://pypi.org/project/shaclgen/

6
https://relweb.cs.aau.dk/rdfshapes/
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Triple Pattern (TP) DSC DOC E𝑇𝑃 Card EZ Card TZ Card
1: ?A 𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒 :FullProfessor 85, 006 85, 006 85, 006

2: ?A :𝑛𝑎𝑚𝑒 ?N 10, 696, 541 1, 480 10, 696, 541 85, 006 85, 006

3: ?A :𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑂 𝑓 ?C 359, 795 1, 079, 580 1, 079, 580 8, 579 255, 148

4: ?C :𝑎𝑑𝑣𝑖𝑠𝑜𝑟 ?A 2, 052, 228 299, 177 2, 052, 228 1, 646 2, 055, 430

5: ?X 𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒 :GraduateCourse 539, 467 539, 467 539, 467 822 1, 027, 909

6: ?X 𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒 :GraduateStudent 1, 259, 681 1, 259, 681 1, 259, 681 504 630, 419

7: ?X :𝑑𝑒𝑔𝑟𝑒𝑒𝐹𝑟𝑜𝑚 ?U 1, 619, 476 1, 000 2, 337, 985 575 630, 419

8: ?Y :𝑡𝑎𝑘𝑒𝑠𝐶𝑜𝑢𝑟𝑠𝑒 ?C 5, 220, 814 1, 074, 409 14, 405, 077 7, 674 2, 964, 894

9: ?Y 𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒 :GraduateStudent 1, 259, 681 1, 259, 681 1, 259, 681 1, 851 2, 964, 894∑
=106, 657

∑
=10, 614, 119

(a) Join ordering using Global Statistics (O𝑔𝑠 )

Triple Pattern (TP) DSC DOC E𝑇𝑃 Card EZ Card TZ Card
1: ?A 𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒 :FullProfessor 85, 006 85, 006 85, 006

2: ?A :𝑛𝑎𝑚𝑒 ?N 85, 006 10 85, 006 85, 006 85, 006

3: ?A :𝑡𝑒𝑎𝑐ℎ𝑒𝑟𝑂 𝑓 ?C 85, 006 255148 255, 148 85, 006 255, 148

4: ?C 𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒 :GraduateCourse 539, 467 539, 467 539, 467 255, 148 255, 148

5: ?X :𝑎𝑑𝑣𝑖𝑠𝑜𝑟 ?A 2, 052, 228 299, 177 2, 052, 228 1, 750, 207 127, 523

6: ?X 𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒 :GraduateStudent 1, 259, 681 1, 259, 681 1, 259, 681 1, 074, 297 1, 027, 909

7: ?X :𝑑𝑒𝑔𝑟𝑒𝑒𝐹𝑟𝑜𝑚 ?U 1, 259, 681 1, 000 1, 259, 681 659, 416 630, 419

8: ?Y :𝑡𝑎𝑘𝑒𝑠𝐶𝑜𝑢𝑟𝑠𝑒 ?C 5, 220, 814 1, 074, 409 5, 220, 814 8, 841, 082 2, 964, 894

9: ?Y 𝑟𝑑 𝑓 :𝑡𝑦𝑝𝑒 :GraduateStudent 1, 259, 681 1, 259, 681 1, 259, 681 2, 133, 181 2, 964, 894∑
=14, 883, 343

∑
=8, 310, 941

(b) Join ordering using Shapes Statistics (O𝑠𝑠 )

Table 2: This table shows the statistics (distinct subject count (DSC) and distinct object count (DOC)) of each triple pattern,
the estimated cardinality of each triple pattern (E𝑇𝑃 ), the estimated join cardinality (EZ Card) and the true join cardinality
(TZ Card) for the ordered triple patterns of example query 𝑄 computed over LUBM dataset.

LUBM WATDIV-S WATDIV-L YAGO-4
# of triples 91M 108M 1,092M 210M

# of distinct objects 12M 9M 92M 126M

# of distinct subjects 10M 5M 52M 5M

# of distinct RDF type triples 1M 25M 13M 17M

# of distinct RDF type objects 39 46 39 8,912

Table 3: Size and characteristic of the datasets

dataset and used Extended Characteristic Sets [18] to optimize

query plans for non-star type queries. Generating characteristic

sets for large RDF graphs is computationally expensive. For in-

stance, it took 6.2 hours to generate Characteristic Sets for LUBM,

1.2 hours for WATDIV-S, and 8.2 hours for YAGO-4.

For SumRDF [23], we generated the summaries of each dataset

and adapted our join ordering algorithm to exploit their estimates.

Similar to Characteristic Sets, the generated summaries require

a few GBs of memory and their generation time depends on the

size and heterogeneity of the dataset, e.g., it took 4.5 minutes to

generate the summary for the LUBM, 14 minutes for WATDIV-S,

and 4.3 hours for YAGO-4. We use the same size of LUBM and

WatDiv datasets as used in SumRDF [23]. Hence, we used the

same parameters to generate their summaries. It is suggested

that a reasonable default size for the target SumRDF’s summary

should be in the order of tens of thousands [23]. Therefore, for

YAGO-4, to generate the summary in a reasonable amount of

time, we chose 100K as the target size of the summary.

All query plans obtained using these approaches are executed

10x in Jena TDB and each query is interrupted after a timeout of

10 minutes. Since for some approaches the order in which triples

are stated in the querymatters we shue the triple patterns in the

BGPs randomly in each iteration before proceeding with query

optimization. As the query planning time is always less than 20

milliseconds for all approaches and queries, in the following we

focus on analyzing the precision of the cardinality estimation

and the resulting query performance.

Queries: We distinguish complex (C), snowake (F), and star (S)

queries. LUBM provides 14 default queries that have relatively

simple structures. Therefore, we selected queries Q2, Q4, Q8, Q9,

Q12 and then created a few additional queries for each category

C, F, and S. The WatDiv benchmark includes 3 C, 7 S, and 5

F queries. For YAGO-4 there are no available standard queries

or query logs available for benchmarking. Therefore, we have

handcrafted 13 queries following the C, F, and S graph patterns

from the WatDiv Benchmark. These queries are available on our

website
6
.

Query Runtime: Due to space constraints, here we only report

our ndings on LUBM and YAGO-4, results on WatDiv datasets

are discussed in the appendix of the extended version
6
. These

experiments oer analogous insights to those obtained from the

other datasets. Figure 4a shows the query runtime analysis for

query plans proposed using the SS approach (plans constructed by
our join ordering algorithm using shapes statistics), GS approach

(plans constructed by our join ordering algorithm using global
statistics), Jena, GraphDB (GDB), Characteristic Sets (CS), and

SumRDF on LUBM queries. The query runtime shows that: (i) the

plans proposed by the SS approach are more ecient than those

obtained with GS for queries having at least one type-dened

triple pattern, (ii) the plans proposed by the GS approach are

competitive in comparison to the plans of GDB, CS, and SumRDF,

(iii) the CS approach is not well suited for large snowake queries

(e.g., F1, F2 (timeout), & F5), and (iv) the plans proposed by Jena

are often suboptimal and non-deterministic (shown in the size of

the error bars) as it is based on a heuristics-based query optimizer

that takes into account the given order of triple patterns in the

input query.

Similarly, Figure 4b shows the query runtime for queries on

YAGO-4. The query runtime for complex queries (C1, C2, C3)

using SS and GS are competitive to the plans proposed by GDB,

CS, and SumRDF. Snowake queries provide interesting insights

where each approach behaves dierently for every single query.

For instance, CS could not nd the optimal query plan for queries

F1, F3, F4, F5, and SS and GS could not nd the most ecient

query plan for query F4 due to underestimation of the join car-

dinalities. However, GDB and SumRDF found almost optimal

query plans for all snowake queries except F1 (GraphDB) and

F4 (SumRDF). For star queries, almost all approaches identify

plans with comparable good performances. Similar to LUBM, the

plans proposed by Jena are rarely the most ecient.

In addition to query runtime, we also report the q-error, which

is used to measure the precision of the nal query result car-

dinality estimates [19]. It quanties the ratio between the esti-

mated (𝑐) and true result cardinality (𝑐) and is computed as the ra-

tio𝑚𝑎𝑥 (𝑚𝑎𝑥 (1, 𝑐)/𝑚𝑎𝑥 (1, 𝑐),𝑚𝑎𝑥 (1, 𝑐)/𝑚𝑎𝑥 (1, 𝑐)). Ideally, the
lower the value of the q-error, the better the estimates are. We

analyze the q-error values for SS, GS, GDB, CS, and SumRDF.

Figure 4c shows the q-error analysis for LUBM queries. For SS,

15 queries have q-errors lower than 15, 8 queries have q-errors

lowever than 250, and only 3 queries have q-errors greater than

250. For GS, 14 queries have q-errors lowever than 15, 8 queries

have q-errors lower than 250, and only 4 queries have q-errors

greater than 250. Overall, the q-errors for GS and SS are com-

petitive to GDB and CS with few exceptions. However, overall

the q-error is very low for SumRDF except queries Q9 and C5.

Figure 4d shows the q-error analysis for YAGO-4. For GS and SS,

14 queries have q-errors lower than 15, 2 queries have q-errors

lowever than 250, and only 4 queries have q-errors greater than

250. Similar to LUBM, the q-errors of GS and SS are competitive

with GDB, CS, and SumRDF with few exceptions.

Finally, Figure 4e and 4f present the analysis between actual

and true costs of query plans produced by SS and GS on the

LUBM and YAGO-4 datasets. For LUBM, the cost estimated by SS

is closer to the actual cost for Q4, Q9, C0, C1, C5, F7, F8, and all
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(a) Query runtime in LUBM (b) Query runtime in YAGO-4

(c) q-error in LUBM (d) q-error in YAGO-4

(e) Cost in LUBM (f) Cost in YAGO-4

Figure 4: Query runtime, q-error, and cost analysis on LUBM and YAGO-4

star queries. However, for YAGO-4, the cost estimated by SS is

closer to the true cost for almost all queries except C2, F4, and S4.

Summary: Our results showed that, with only a few exceptions,

the query plans proposed using SS and GS are competitive with

the other tested approaches on both the synthetic and real data.

Overall, the results revealed that our approach is ecient for all

examined types of SPARQL queries while requiring only very

little overhead to extend SHACL graphs with statistics, which is

more ecient and feasible than generating extensive summaries

or Characteristic Sets. On average, our approach nds the best

query plans for 75% cases on both datasets. For the remaining

cases, our approach proposes query plans having an overhead

from 14% to 30% on average query runtime w.r.t. the best query

plan. Our approach requires 2-4x less preprocessing time, this

implies 2 to 6 hours less preprocessing time in our experiments,

and 2 orders of magnitude less space.

8 CONCLUSION AND FUTUREWORK
In this paper, we have presented an alternative approach to car-

dinality estimation for SPARQL query optimization. In particular,

we have proposed novel light-weight statistics to capture the

correlation in RDF graphs, a cardinality estimation approach,

and a join ordering algorithm. We have performed extensive

experiments on synthetic and real data to show our approach’s

eectiveness against two SPARQL query engines and two state-

of-the-art RDF cardinality estimators. The results revealed that

our approach is ecient in terms of both the preprocessing steps

to generate statistics and the cardinality estimation to optimize

query plans. Going forward, we plan to integrate our approach

with one of the state-of-the-art query engines and enable the

support of additional SPARQL query operators.
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