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ABSTRACT
Interactive exploratory data analysis consists of workloads that
are composed of filter-aggregate queries with highly selective
filters [1]. Hence, their performance is dependent on how much
data they can skip during their scans, with indexes being the
most efficient technique for aggressive data-skipping. Progressive
Indexes are the state-of-the-art on automatic index creation for
interactive exploratory data analysis. These indexes are partially
constructed during query execution, eventually refining to a full
index. However, progressive indexes have been designed for static
databases, while in exploratory data analysis updates — usually
batch-appends of newly acquired data — are frequent.

In this paper, we propose Progressive Mergesort, a novel merg-
ing technique to make Progressive Indexes cope with updates.
Progressive Mergesort differs from other merging techniques
for partial indexes as it incorporates the index budget strategy
design from Progressive Indexing. It follows the same three prin-
ciples as Progressive Indexes: (1) fast query execution, (2) high
robustness,(3) guaranteed convergence.

Our experimental evaluation demonstrates that Progressive
Mergesort is capable of achieving a 2x speedup when merging
updates and up to 3 orders of magnitude lower variance than the
state of the art.

1 INTRODUCTION
Data scientists perform interactive exploratory data analysis to
discover unexpected patterns in large collections of data. This pro-
cess is done using hypothesis-driven trial-and-error queries [10].
Given the result of a query, the data scientists refine their original
hypothesis and either zoom in on the same data segment or move
to a different one depending on the insights gained.

In the typical interactive exploratory data analysis workload,
the data scientist inspects a massive amount of data by issuing
selective analytical queries (usually via a visualization tool) to
test their hypothesis. Battle et al. [1] depict that the most demand-
ing type of interactive queries are cross filter applications (i.e.,
grouping data after applying selective filters). In these workloads,
users expect almost immediate responses from the system, and
each movement on the visualization tool will immediately submit
another query to the database system.

Figure 1 depicts an example of a cross filter application. Here
the data scientist uses a dataset that contains multiple attributes
of flight information. The user visualizes each attribute as one
histogram figure (e.g., departure time or airtime in minutes). The
range slider on the top of the figure allows the users to change
the filter used to construct these histograms, and the graphs are
automatically updated depending on the new filter input.
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Figure 1: Interactive Data Analysis Example [1]

Since these workloads are dependent on a filter, when these
filters are selective (e.g., wanting to know the information of a
small number of flights), aggressive data skipping techniques can
significantly improve the query performance.

Index structures are frequently used to boost workloads that
depend on data skipping. There are two main strategies that
automatically create indexes for interactive data analysis.

(1) Adaptive Indexing [6, 9] automatically creates indexes
based on query predicates of range queries. They perform quick-
sort iterations with query predicates as pivots, indexing the ac-
cessed pieces during query execution, efficiently smearing out
the index creation cost over a workload.

Adaptive Indexing follows a philosophy of only indexing the
minimum amount of data necessary to the currently executing
query. Although this strategy allows for fast convergence on
skewed workloads (i.e., workloads where the same piece is fre-
quently accessed), it has no control over the amount of indexing
that one query can perform. When accessing pieces with differ-
ent levels of refinement, query execution time spikes, resulting
in a highly unpredictable query cost, which is undesirable for
interactive data analysis since the user expects the query to be
executed within a time limit.

(2) Progressive Indexes [3, 5, 8] are designed to be highly ro-
bust, have a predictable convergence, and present a low total
cost during the entire workload execution. Their main difference

Short Paper

 

 

Series ISSN: 2367-2005 481 10.5441/002/edbt.2021.55

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.55


from Adaptive Indexing is the introduction of an indexing bud-
get 𝛿 . With this indexing budget, the data scientist sets a value
for 𝛿 , and the index invests a fixed amount of time into per-query
index creation, being the state-of-the-art algorithm developed
for interactive exploratory data analysis.

The major drawback of Progressive Indexes is that they are
only designed for static-databases. However, in the interactive
data analysis scenario, the data is not static but rather frequently
updated with batches of data that must be appended. As an ex-
ample, in our flight dataset we can consider the scenario where
batches of data are regularly appended since new flights hap-
pen all the time (e.g., either data is appended every few minutes,
hours, days, depending on how critical is to analyze recent data).

One way of adapting the current Progressive Indexing strat-
egy to support updates is to use the techniques developed for
merging updates on Adaptive Indexes since they produce simi-
lar partial-indexes up-to full index convergence. However, these
merging techniques follow Adaptive Indexing’s philosophy of
lazy query execution, drastically decreasing robustness (i.e., it
creates performance spikes that vary the per-query response
time in orders of magnitudes up and down), with no guaranteed
convergence and high penalties for larger batches of appends.

In this paper, we introduce Progressive Mergesort. Progressive
Mergesort is designed to efficiently merge batches of appends
while following the core design decisions of progressive index-
ing. It presents a low-query impact even for large batches, high
robustness, and guaranteed convergence (i.e., all elements are
merged into one array).

2 RELATEDWORK
In this section, we will cover how Progressive Indexing, in partic-
ular progressive quicksort, works and will present the Adaptive
Merges algorithms that merge updates into Adaptive Indexing.

2.1 Progressive Indexing
Progressive Indexes are inspired by Adaptive Indexes. Both tech-
niques perform index creation during query execution, aiming
to smear out the index creation cost over the workload. Conse-
quently, the indexes produced by both techniques have a similar
format (i.e., both are partial indexes), except that once fully con-
verged, progressive indexing turns into a standard B-tree. One
major difference between Progressive Indexes and Adaptive In-
dexes is that Progressive Indexes use an index budget constraint 𝛿
that indicates the amount of data that can be indexed, in one sort-
ing iteration, per query, while Adaptive Indexes only performs
full sorting iterations (e.g., adaptive indexing will fully parti-
tion one column around a pivot in one query, while progressive
indexing will partition a 𝛿 fraction of the column.).

Progressive Indexes come in two flavors, the fixed-𝛿 where the
user picks a fraction of the data, and the same fraction is indexed
per query, and a greedy version, where the user sets a desired
query execution time. The greedy algorithm uses a cost-model
to select a suitable 𝛿 tailored for each query automatically. In
this paper, we will focus on the fixed-𝛿 version of Progressive
Indexing and will leave the greedy version as future work.

Figure 2 depicts an example of Progressive Quicksort with
𝛿 = 0.5 (i.e., half the data is pivoted in each query), a progressive
indexing technique inspired by the quicksort algorithm. Progres-
sive quicksort is triggered when a filter is executed on a column.
In its first phase (Initialize), an uninitialized array is allocated

with the same space as the original column. A pivot is then se-
lected, and the data is copied to either the bottom or the top of
the new array considering the pivot. The subsequent step (Ini-
tialize 2) can already take advantage of this information and only
scan the necessary parts (either top, bottom, neither, or both)
relevant to the query. It also continues the copy process until our
progressive indexing array is completely populated. At the end
of the initialize phase, the column is partitioned into two pieces.
In the example ≤ 10 and > 10. We now start the refinement phase
where pivots are selected for each piece, and they are ordered
in-place. When pieces are sufficiently small, we fully sort them.
This phase results in a completely sorted array. When reaching a
completely sorted array, the consolidation phase starts building a
bottom-up B-Tree on top of the array.
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Figure 2: Progressive Quicksort [5]

2.2 Adaptive Merges
There are three main algorithms designed to efficiently merge
appends into adaptive indexes [7], the Merge Complete, Merge
Gradual, and Merge Ripple, and we will refer to these algorithms
as Adaptive Merges from now on. They follow the same phi-
losophy of Adaptive Indexing by only merging appends when
necessary. They differ from each other in terms of what data they
will merge and how they merge it. In the following subsections,
we overview each algorithm and present an example of their ex-
ecution. Besides the strategies to efficiently merge appends into
the index’s column, Holanda et al. [4] present a strategy to prune
cold data from the cracker index to boost updates. However, we
do not explore this strategy in this paper since it directly goes
against our full convergence philosophy.

Merge Complete (MC) This algorithm completely merges
the full Appends vector into the Cracker Column (i.e., the cracker
column is a full copy of the original column owned by the adap-
tive indexing structure) as soon as a query requests data that is
also present in the Appends vector.

Merge Gradual (MG) Merge Gradual differs from Merge
Complete with respect to the amount of data merged per query. It
only merges items that qualify for the currently executing query.

Merge Ripple (MR) Like Merge Complete, the Merge Ripple
algorithm only merges the elements that qualify for the query
predicates. They differ on how they merge them. In the Merge
Ripple, instead of resizing the Cracker Column and appending
the element to its end as its first step, it starts by swapping the
to-be inserted element with the first element in the next greater-
neighboring piece from its correct piece.
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Figure 3: Merge Ripple on query A < 8

Figure 3 depicts an example of Merge Ripple executing the
query 𝐴 < 8. In our example, the column is already partitioned
around three pivot points (8, 10, 14) and the appends array con-
tains four values (6, 8, 11, 17). Sincewe only need to insert element
6 from the appends array, we perform a cracker index lookup
and identify the element’s piece (i.e., the first piece holding 6, 4,
2, and 7). We then go to the successor piece (i.e., piece 2 with
elements 8 and 9) and swap the first element of that piece (8)
with the element in our appends (6). After that, we only need
to update the cracker index node that points to the value 8. In
this case, we only had to perform 1 swap and update 1 node in
the cracker index to merge 25% of our appends. Merge Ripple
performs fewer swaps and updates than the previous algorithms
while merging the necessary amount of data to our index.

3 PROGRESSIVE MERGESORT
Progressive Mergesort is a progressive indexing technique in-
spired by the mergesort algorithm [2] and used for merging ap-
pends into the main progressive indexing structure. It follows the
three pillars of progressive indexes: (1) low impact on query exe-
cution, (2) robust performance, and (3) guaranteed convergence.
It relies on an index-budget 𝛿 that represents the percentage of
the data that is indexed per-query, guaranteeing that the same
amount of effort will be distributed for the entire workload.

In practice, during query execution, the 𝛿 defined for our
Progressive Indexing algorithm is used for both the main index
structure and progressive mergesort.

Progressive mergesort follows two distinct canonical phases,
the refinement phase, and the merge phase, which are described
in this section.

Refinement. In the refinement phase, we can use any of the
other proposed progressive indexing algorithms, getting the most
performance depending on data distribution and workload. Our
budget is used as described in the original Progressive Indexing
paper [5] depending on the algorithm executing the refinement.
In this paper, we decided to experiment with Progressive Quick-
sort as our algorithm of choice. Utilizing the other algorithms is
left as an engineering exercise for future work.

Merge. At the end of the refinement phase of any progressive
indexing algorithm, the result is a sorted list. When all merge
chunks are fully sorted, we progressively merge them into one
sorted chunk. We perform a progressive two-way-merge in order
to merge said chunks.

Figure 4: Progressive Mergesort

Figure 4 depicts a high-level concept of Progressive Mergesort.
In this figure, red vectors are completely unsorted vectors, yellow
are partially sorted vectors, and green are completely sorted. We
start with our main index structure only partially sorted and with
a new batch of appends.

It starts with the refinement phase. At this step, any Progres-
sive Indexing technique can be used and will continue their exe-
cution until reaching completely sorted lists. When all chunks are
entirely sorted, the second phase of Progressive Mergesort starts.
Here, the Appends arrays are progressively merged into one ar-
ray. One might note that new batches can be introduced while
other batches are already being refined. In this case, a Progressive
Mergesort run will be initiated to newly appended chunks. All
these chunks use the same 𝛿 as our main progressive index but
normalized to the chunk size. Only when the original Progressive
Indexing column and the appends are fully sorted (i.e., we have
one sorted column for the Progressive Indexing and one sorted
column for all the appends) and the appends have the same or
bigger size as the Progressive Indexing column we merge them.

Figure 5: Progressive Mergesort Example (𝛿 = 0.5)

Figure 5 depicts an example of Progressive Mergesort with
delta = 0.5. We start with two batches of updates. In the initial
iterations, we execute Progressive Quicksort as the refinement
phase. In Refine (1), a Progressive Quicksort iteration is initiated
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for each chunk, since 𝛿 = 0.5 both iterations index half of each
chunk around one pivot. In Refine (3) both Progressive Quicksort
iterations ended, and both chunks are fully sorted. Hence we will
start the merge phase of Progressive Mergesort in the following
query. In Merge (1) we start to merge both lists using a two-way
merge algorithm, and we stop when the resulting list is half
complete due to our 𝛿 . For the chunks that are being merged,
we must store the offsets where we stopped merging. Finally, in
Merge (2) we end the merge phase with one completely sorted
append list and delete the previous chunks.

Query Processing. When executing a query on a column
with progressive indexing, we might encounter several arrays
(i.e., the original Progressive Indexing column and batches of
appends that started to be refined but are not yet merged) with
different levels of refinement.

During the query execution, each array must be checked to
return the elements that fit the query predicates. If the array is
already fully sorted, a binary search will be executed to return the
result. Otherwise, the array will be at some step of the refinement
phase. Hence a lookup on the binary tree is necessary to return
the offsets that match the query predicates.

When to Merge. In this paper, we decided to first completely
merge all appends into one, fully sorted, append array. If this
array has a size equal to or bigger than the current Progressive
Indexing column, we merge both. This decision was made to
avoid frequent resizes of large arrays (e.g., if we merged the
Progressive Indexing column with every append first, this would
result in a resize for the progressive column at every batch, which
would be prohibitively expensive).

However, this decision is not necessarily optimal for all work-
loads. Having multiple arrays increase the random access to
respond to the workload while diminishing the merge costs cre-
ating a trade-off depending on when and how these merges are
performed. Creating an algorithm that decides when is the appro-
priate moment to merge these different arrays and which arrays
should be merged is out of this paper’s scope, and we leave it as
future work.

4 EXPERIMENTAL ANALYSIS
This section provides an experimental evaluation of Progressive
Mergesort and compares it with the Adaptive Merges techniques.

4.1 Setup
We implemented the Progressive Mergesort algorithm and the
Adaptive Merges in a stand-alone program written in C++. The
Progressive Mergesort uses Progressive Quicksort in its refine-
ment phase.

Compilation. This application was compiled with GNU g++
version 7.2.1 using optimization level -O3.

Machine. All experiments were conducted on a machine
equipped with 256GB main memory and an 8-core Intel Xeon
E5-2650 v2 CPU @ 2.6GHz with 20480 KB L3 cache.

Appends. All experiments have 3 parameters regarding the
appends, (1) the batch_size that represents the size of a batch of
appends, (2) the frequency which represents an interval of queries
where a new batch of appends is executed, and (3) start_after
that describes how many queries need to be executed before
the first append happens. With these 3 parameters we calculate
the number of appends that will be executed 𝑡𝑜𝑡𝑎𝑙_𝑎𝑝𝑝𝑒𝑛𝑑𝑠 =
𝑡𝑜𝑡𝑎𝑙_𝑞𝑢𝑒𝑟𝑖𝑒𝑠−𝑠𝑡𝑎𝑟𝑡_𝑎𝑓 𝑡𝑒𝑟

𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
∗ 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 , and divide our data set

into the original_column set that represents our initially loaded

column and the appends set that represent the appends that will
be inserted.

Data set.We generate a synthetic data set composed of 𝑁 +
𝑡𝑜𝑡𝑎𝑙_𝑎𝑝𝑝𝑒𝑛𝑑𝑠 unique 8-byte integers, with 𝑁 ∈ {107, 108, 109}
and representing the original column size. After generating the
data set, we shuffle it following a uniform-random distribution
and divide it into our original column and a list of appends.

Workload. Unless stated otherwise, all experiments consist
of a synthetic workload with 104 queries in the form SELECT
SUM(R.A) FROM R WHERE R.A BETWEEN 𝑉1 AND 𝑉2. A random
value is selected for 𝑉1 and 𝑉2 = 𝑉1 + (𝑁 + 𝑡𝑜𝑡𝑎𝑙_𝑎𝑝𝑝𝑒𝑛𝑑𝑠) ∗ 1%.

Configuration.We experiment with 3 main configurations.

• High Frequency Low Volume (HFLV): A batch of appends
with 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 0.001% ∗ 𝑁 executed every 10 queries.

• Medium Frequency Medium Volume (MFMV): A batch of
appends with 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 0.01% ∗ 𝑁 executed every 100
queries.

• Low Frequency High Volume (LFHV): A batch of appends
with 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 0.1% ∗ 𝑁 executed every 1000 queries.

4.2 Performance Comparison
In this paper, we decided to use the Adaptive Merges algorithms
only with Adaptive Indexing due to the increased complexity
of implementing them to work with Progressive Indexing and
leave this task as an engineering exercise for future work. Since
the base indexing algorithm is different for the Adaptive Merges
and Progressive Mergesort, we decided to start appending data
after 1000 queries to have refined indexes and better isolate the
actual append cost from early index creation. Hence we avoid the
noise of partitioning the original_column and focus on the actual
merges from the appends. Our Progressive Mergesort uses a fixed
𝛿 of 0.1 in all experiments. It is also important to notice that our
Progressive Indexing implementation stops its convergence when
it becomes a fully sorted list. We leave merging appends into the
concise B+-Tree format as future work.

Figure 6 depicts a per-query performance comparison of Pro-
gressive Mergesort and Adaptive Merges. In this experiment, we
use a data set with 𝑁 = 107 and run all 3 configurations described
in the previous section. We continue this section by describing
two observations present in all experiments, (1) regarding the
column resizes and (2) an overall analysis of query robustness.

Resizes. In all three configurations, HFLV, MFMV, and LFHV,
we can notice that all three Adaptive Merges present a perfor-
mance spike right after the start of the updates around query
1000. The main reason for this spike is the need to resize the
Cracker Column when appending new data. Since this resize re-
serves 2 times the space of the original Cracker Column, it only
happens once. It is also possible to notice that with Merge Ripple,
the spike occurs 100 queries later than with Merge Complete
and Merge Gradual. This is because Merge Ripple avoids resizing
the Cracker Column by swapping the data from the Appends and
the Column with the actual resize only happening when we are
in the last piece. This problem does not exist with Progressive
Mergesort since we perform a vector.reserve() to allocate memory
to the merge vector, and filling out the merge vector is completed
over multiple queries.

Robustness. The Merge Complete presents the lowest ro-
bustness from all algorithms. Whenever a merge happens, it has
a big spike upwards since it completely merges it. Merge Gradual
is the second-worst. Since it completely merges all elements that
qualify the predicate, it does not have one big performance spike,
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(a) HFLV (b) MFMV (c) LFHV

Figure 6: Progressive Mergesort and Adaptive Merges (𝑁 = 107 and 𝑠𝑡𝑎𝑟𝑡_𝑎𝑓 𝑡𝑒𝑟 = 1000)

spreading those merges through many queries. This is partic-
ularly visible in Figure 6c that depicts the low-frequency high
volume experiment (i.e., at every 1000 queries, a batch of size 104
is inserted. One can see that at every 1000 queries, there is an
upwards spike that slowly decreases for 500 queries, and then
has a slop down since most of the Appends array was merged by
that point. From the Adaptive Merges, the Merge Ripple presents
the least variance. All queries slightly increase their cost with
increasing updates. Finally, the Progressive Mergesort presents
the lowest variance, with no performance spikes up.

One can notice that all algorithms present downwards spikes
at the same queries overall 3 configurations. These are caused by
noise due to the way we select our query predicates to fix our
workload selectivity. Since we create our second query predicate
as 𝑉2 = 𝑉1 + (𝑁 + 𝑡𝑜𝑡𝑎𝑙_𝑎𝑝𝑝𝑒𝑛𝑑𝑠) ∗ 1%. Queries might not have
exactly 1% selectivity if the data is not completely merged in
the column. Since the figures are with the y-axis in log scale,
small differences in the selectivity produce these downwards
performance spikes.

4.3 Varying Data Sizes

Workload MC MG MR PM

10
7

HFLV 2.72 3.52 2.57 1.07
MFMV 2.18 3.39 2.45 1.07
LFHV 2.00 2.55 2.34 1.06

10
8

HFLV 22.76 26.16 26.61 10.64
MFMV 20.25 26.14 25.19 10.72
LFHV 22.14 22.42 23.89 10.63

10
9

HFLV 209.25 221.67 295.39 104.77
MFMV 206.39 219.39 267.94 104.96
LFHV 197.89 200.62 250.62 103.95

Table 1: Cumulative Time (s)

Table 1 depicts the total execution cost for the workload, ex-
cluding the initial 1000 queries. On all experiments, Progressive
Mergesort presented approximately 2x better performance than
the best performing Adaptive Merge algorithm. The main reason
for this performance difference is that all Merge Adaptive algo-
rithms must keep the appends sorted to merge them efficiently.
This problem impacts Merge Ripple the most since it tends to
keep a larger appends array due to its lazier merging property.
That means that a larger array must be re-sorted at every append
insertion. One might notice that the results of Adaptive Merges
seem to directly contradict Idreos et al. [7], where Merge Ripple
was the best performing algorithm of the three. The HFLV with
𝑁 = 107 is the only experiment with the same parameters as the
original paper and showcases a similar result, with Merge Ripple

being the fastest of the Adaptive Merges. However, as discussed
before, with larger appends Merge Ripple starts to lose its benefit
of fewer swaps to keep the append vector sorted.

One other interesting result is the variance in the total cost
depending on the configuration of the workload. The Adaptive
Merges algorithms present a much higher variance than Progres-
sive Mergesort for the same data size. This is more prominent
with larger data sizes. Taking 𝑁 = 109 as an example, Merge
Complete presents a variance of 11.36s, Merge Gradual of 21.05s,
Merge Ripple of 44.72s, and Progressive Mergesort of 1.01s.

Compared to the Adaptive Merges algorithms, Progressive
Mergesort has a very low variance from configurations at the
same data size. This is due to the ProgressiveMergesort algorithm
not performing a complete sort in the append list but rather
properly refining and merging it depending on their data size.

Workload MC MG MR PM

10
7

HFLV e-07 e-07 e-07 e-10
MFMV e-06 e-07 e-07 e-10
LFHV e-06 e-07 e-07 e-10

10
8

HFLV e-05 e-05 e-05 e-07
MFMV e-05 e-05 e-05 e-07
LFHV e-04 e-05 e-05 e-07

10
9

HFLV e-03 e-03 e-03 e-06
MFMV e-03 e-03 e-03 e-06
LFHV e-02 e-03 e-03 e-06

Table 2: Robustness (Orders of Magnitude)

Table 2 depicts the order of magnitude of the query variance
of each workload on all 3 data sizes. We only calculate the query
variance after executing the first 1000 queries. Note that the lower
the variance the more robust the algorithm is. As expected, Merge
Complete presents the lowest robustness since it completely
merges the Appends array to the Cracker Column causing a huge
performance spike. The Merge Gradual/Ripple are better than
the Merge Complete, since it only merges that tuples that qualify
the query predicates. Progressive Mergesort present the highest
robustness due to its indexing budget, effectively offering a more
fine-grained control over the stream of queries.

4.4 Appends during Index Creation
To perform a fair comparison of the AdaptiveMerges and Progres-
sive Mergesort, we only initiated the updates after 1000 queries
to minimize the initial index creation cost of Adaptive Indexing
and Progressive Indexing. However, after 1000 queries, the pro-
gressive indexing is already fully converged (i.e., the main index
is a sorted list).

In this experiment, we want to evaluate Progressive Merge-
sort’s impact during Progressive Indexing’s creation phase (i.e.,
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Initialization and Refinement phases). In our setup, we use a
dataset with 𝑁 = 107, a workload with 1% selectivity and 200
queries, and three different update setups. All update setups start
at the first query and perform appends at every 10 queries, they
differ on the size of the batches, with batches of size 100, 1000
and 10000.

Figure 7: ProgressiveMergesort before index convergence.

Figure 7 depicts the per-query cost for the 200 queries. The
height of the performance spikes are strongly correlated to the
batch sizes, with larger batches introducing a higher spike. This
happens due to our strategy using a fixed 𝛿 (i.e., a % of the total
size of the data that is indexed per-query) for the entire workload.
Hence the more data we ingest, the actual per-query cost will
increase since the data size increases. One way of minimizing
this issue is to extend the cost models proposed in Holanda et
al. [5] to automatically generate a value for 𝛿 to reduce query
variance. We leave that algorithm as an exercise for future work.

5 CONCLUSION & FUTURE WORK
In this paper, we introduce the Progressive Mergesort, a novel
progressive algorithm used to merge batches of appends. We
compare it to the state-of-the-art merging algorithms from adap-
tive indexing techniques and show how they perform under
multiple synthetic benchmarks. Our solution is more robust and
faster than the state-of-the-art.

We point out the following as the main aspects to be explored
in Progressive Mergesort’s future work:

• Integrating Merge Ripple With Progressive Index-
ing. In our experiments we compare against adaptive
indexing using the merge gradual/complete/ripple algo-
rithms. However, this comparison would be even more
significant if these algorithms were implemented directly
into progressive indexing. For example, if the main index
algorithm is Progressive Quicksort, by using an AVL-Tree,
similar merge algorithms could be used.

• Refinement Method. In this paper, we only use Pro-
gressive Quicksort as our refinement strategy within Pro-
gressive Mergesort. However, in the Progressive Indexing
work, it is demonstrated that different progressive index-
ing algorithms can present better performance depending
on the data distribution and workload.With mergesort, we
also have the opportunity of selecting a different algorithm
for each chunk in the refinement step. Deciding which
algorithm to use could drastically improve performance.

• Merge Strategy. Deciding when to merge and which ar-
rays to merge can be beneficial to the cumulative cost
of the workload since there is a trade-off on the random

access vs merging costs (i.e., keeping many smaller arrays
or frequently merging them in order to maintain only a
small number of bigger arrays). Designing an algorithm
that takes that this trade-off into consideration is left as
future work.

• Greedy Progressive Mergesort. Our current implemen-
tation of progressive mergesort relies on a fixed 𝛿 for
the entire workload. The development of a cost-model to
the merge phase will allow it to also be integrated with
progressive indexing algorithms that use an interactivity
threshold and automatically adapt the 𝛿 value to boost
robustness. Hence, as future work, a greedy version of our
progressive mergesort can bring even fewer performance
spikes to our algorithm.

• Handling Updates. In this paper, we describe how to ef-
ficiently merge appends, since these are the most common
types of updates in interactive data analysis. However,
although deletes and updates are not frequent, they might
still occur, therefore progressive mergesort must be capa-
ble of properly handling them.

• Multidimensional Updates.Until now, we only focused
on unidimensional progressive indexing. However, mul-
tidimensional progressive indexing [8] was recently pro-
posed to efficiently index columns for queries with multi-
ple selective filters. In this algorithm, a KD-Tree is used to
store and navigate the partitions created by progressive
indexing. To support updates on this structure, progres-
sive mergesort must be extended to consider the KD-Tree
nodes to merge multiple batches of updates correctly.

• Real Benchmarks. The Sloan Digital Sky Survey 1 is an
open-source project that maps the universe with an open
data set and interactive-exploratory query logs. Capturing
the updates on this database can depict a good representa-
tion of real patterns of updates on interactive data.
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